
Lecture 13:
Joins Part II

Lecture 13

Today’s Lecture

1. Sort-Merge Join (SMJ)

2. Hash Join (HJ)

3. The Cage Match: SMJ vs. HJ

2

Lecture 13

1. Sort-Merge Join (SMJ)

3

Lecture 13 > Section 1

What you will learn about in this section

1. Sort-Merge Join

2. “Backup” & Total Cost

3. Optimizations

4. ACTIVITY: Sequential Flooding

4

Lecture 13 > Section 1

Sort Merge Join (SMJ): Basic Procedure

To compute R ⋈ # $% &:

1. Sort R, S on A using external merge sort

2. Scan sorted files and “merge”

3. [May need to “backup”- see next subsection]

Note that if R, S are already sorted on A,
SMJ will be awesome!

Lecture 13 > Section 1 > SMJ

Note that we are only
considering equality
join conditions here

SMJ Example: R ⋈ # $% & with 3 page buffer

• For simplicity: Let each page be one tuple, and let the first value be A

Disk

Main Memory

Buffer
R (5,b) (3,j)(0,a)

S (7,f) (0,j)(3,g)

We show the file
HEAD, which is
the next value
to be read!

Lecture 13 > Section 1 > SMJ

SMJ Example: R ⋈ # $% & with 3 page buffer

1. Sort the relations R, S on the join key (first value)

Disk

Main Memory

Buffer
R (5,b) (3,j)(0,a)

S (7,f) (0,j)(3,g)

(3,j) (5,b)(0,a)

(3,g) (7,f)(0,j)

Lecture 13 > Section 1 > SMJ

SMJ Example: R ⋈ # $% & with 3 page buffer

2. Scan and “merge” on join key!

Disk

Main Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,j)

(0,a)(0,a)

(0,j)

Lecture 13 > Section 1 > SMJ

SMJ Example: R ⋈ # $% & with 3 page buffer

2. Scan and “merge” on join key!

Disk

Main Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,j)(0,a)

(0,a)

(0,j)
(0,a,j)

Lecture 13 > Section 1 > SMJ

SMJ Example: R ⋈ # $% & with 3 page buffer

2. Scan and “merge” on join key!

Disk

Main Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,a)

(0,j)

(0,a,j)

(3,j,g)

(3,j)

(3,g)

(5,b)

(7,f)

Lecture 13 > Section 1 > SMJ

SMJ Example: R ⋈ # $% & with 3 page buffer

2. Done!

Disk

Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,a)

(0,j)

(0,a,j)

(3,j)

(3,g)

(3,j,g)

(5,b)

(7,f)

Lecture 13 > Section 1 > SMJ

What happens with duplicate join
keys?

Lecture 13 > Section 1 > Backup

Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Disk

Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j)

(0,g)

(0,b)

(7,f)

(0,a)

(0,j)

(0,a)

(0,j)

Lecture 13 > Section 1 > Backup

1. Start with sorted relations, and begin scan / merge…

Disk

Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j)

(0,g)

(0,b)

(7,f)

(0,a)

(0,a)
(0,j)

(0,j) (0,a,j)

Multiple tuples with Same Join Key: “Backup”

Lecture 13 > Section 1 > Backup

1. Start with sorted relations, and begin scan / merge…

Disk

Main Memory

Buffer
R

S (0,g) 7,f

(0,j) 5,b

Output

(0,b)

(7,f)

(0,a)

(0,a)
(0,j)

(0,a,j)

(0,a,g)

Multiple tuples with Same Join Key: “Backup”

(0,g)

(0,j)

Lecture 13 > Section 1 > Backup

1. Start with sorted relations, and begin scan / merge…

Disk

Main Memory

Buffer
R

S 0,g 7,f

0,j 5,b

Output

(0,j) (0,b)

(7,f)

(0,a)

(0,a,j)

(0,g)

(0,a,g)

(0,j)

Have to “backup” in the scan of S
and read tuple we’ve already read!

(0,j)

Multiple tuples with Same Join Key: “Backup”

(0,j)

Lecture 13 > Section 1 > Backup

Backup

• At best, no backup à scan takes P(R) + P(S) reads
• For ex: if no duplicate values in join attribute

• At worst (e.g. full backup each time), scan could take P(R) * P(S) reads!
• For ex: if all duplicate values in join attribute, i.e. all tuples in R and S have the same

value for the join attribute
• Roughly: For each page of R, we’ll have to back up and read each page of S…

• Often not that bad however, plus we can:
• Leave more data in buffer (for larger buffers)
• Can “zig-zag” (see animation)

Lecture 13 > Section 1 > Backup

SMJ: Total cost

• Cost of SMJ is cost of sorting R and S…

• Plus the cost of scanning: ~P(R)+P(S)
• Because of backup: in worst case P(R)*P(S); but this would be very unlikely

• Plus the cost of writing out: ~P(R)+P(S) but in worst case T(R)*T(S)

~ Sort(P(R)) + Sort(P(S))
+ P(R) + P(S) + OUT

Recall: Sort(N) ≈ 2# log' (
)(+,-) + 1

Note: this is using repacking, where we estimate
that we can create initial runs of length ~2(B+1)

Lecture 13 > Section 1 > Backup

SMJ vs. BNLJ: Steel Cage Match

• If we have 100 buffer pages, P(R) = 1000 pages and P(S) = 500 pages:
• Sort both in two passes: 2 * 2 * 1000 + 2 * 2 * 500 = 6,000 IOs
• Merge phase 1000 + 500 = 1,500 IOs
• = 7,500 IOs + OUT

What is BNLJ?
• 500 + 1000* !""

#$ = 6,500 IOs + OUT

• But, if we have 35 buffer pages?
• Sort Merge has same behavior (still 2 passes)
• BNLJ? 15,500 IOs + OUT!

SMJ is ~ linear vs. BNLJ is quadratic…
But it’s all about the memory.

Lecture 13 > Section 1 > Backup

A Simple Optimization: Merges Merged!

• SMJ is composed of a sort phase and a merge phase

• During the sort phase, run passes of external merge sort on R and S
• Suppose at some point, R and S have <= B (sorted) runs in total

• We could do two merges (for each of R & S) at this point, complete the sort
phase, and start the merge phase…

• OR, we could combine them: do one B-way merge and complete the join!

Given B+1 buffer pages

Lecture 13 > Section 1 > Backup

Merge / Join Phase

Sort Phase
(Ext. Merge Sort)

Un-Optimized SMJ

SR

Split & sortSplit & sort

MergeMerge

MergeMerge

Given B+1 buffer pages

Joined output
file created!

Unsorted input relations

Lecture 13 > Section 1 > Backup

Merge / Join Phase

Sort Phase
(Ext. Merge Sort)

Simple SMJ Optimization

SR

Split & sortSplit & sort

MergeMerge

Given B+1 buffer pages

Joined output
file created!

Unsorted input relations

<= B total runs

B-Way Merge / Join

Lecture 13 > Section 1 > Backup

Simple SMJ Optimization

• Now, on this last pass, we only do P(R) + P(S) IOs to complete the join!

• If we can initially split R and S into B total runs each of length approx. <=
2(B+1), assuming repacking lets us create initial runs of ~2(B+1)- then we
only need 3(P(R) + P(S)) + OUT for SMJ!
• 2 R/W per page to sort runs in memory, 1 R per page to B-way merge / join!

• How much memory for this to happen?

• ! " #!(%)
' ≤ 2 * + 1 ⇒ ~ P R + P S ≤ 2*2

• Thus, 345{7 8 , 7 : } ≤ <= is an approximate sufficient condition

Given B+1 buffer pages

If the larger of R,S has <= B2 pages, then SMJ costs
3(P(R)+P(S)) + OUT!

Lecture 13 > Section 1 > Backup

See Lecture 13,
Slide 13-14 – to
clarify this slide.

Takeaway points from SMJ

If input already sorted on join key, skip the sorts.
• SMJ is basically linear.
• Nasty but unlikely case: Many duplicate join keys.

SMJ needs to sort both relations
• If max { P(R), P(S) } < B2 then cost is 3(P(R)+P(S)) + OUT

Lecture 13 > Section 1 > Summary

Bonus questions.

• Q1: Fast dog.
• If max {P(R), P(S)} < B2 then SMJ takes 3(P(R) + P(S)) + OUT
• What is the similar condition to obtain 5(P(R) + P(S)) + OUT?
• What is the condition for (2k+1)(P(R) + P(S)) + OUT

• Q2: BNLJ V. SMJ
• Under what conditions will BNLJ outperform SMJ?

• Size of R, S and # of buffer pages

• Discuss! And We’ll put up a google form.

2. Hash Join (HJ)

26

Lecture 13 > Section 2

What you will learn about in this section

1. Hash Join

2. Memory requirements

27

Lecture 13 > Section 2

Recall: Hashing

• Magic of hashing:
• A hash function hB maps into [0,B-1]
• And maps nearly uniformly

• A hash collision is when x != y but hB(x) = hB(y)
• Note however that it will never occur that x = y but hB(x) != hB(y)

• We hash on an attribute A, so our has function is hB(t) has the form
hB(t.A).
• Collisions may be more frequent.

Lecture 13 > Section 2 > HJ

Recall: Mad Hash Collisions

Say something here to justify this
slide’s existence? [TODO]

Lecture 13 > Section 2 > HJ

Hash Join: High-level procedure

To compute R ⋈ # $% &:

1. Partition Phase: Using one (shared) hash function hB, partition R
and S into B buckets

2. Matching Phase: Take pairs of buckets whose tuples have the same
values for h, and join these
1. Use BNLJ here; or hash again à either way, operating on small partitions so

fast!

Note again that we are only
considering equality constraints here

We decompose the problem using hB, then
complete the join

Lecture 13 > Section 2 > HJ

Hash Join: High-level procedure
To compute R ⋈ # $% &:
1. Partition Phase: Using one (shared) hash function hB per pass

partition R and S into B buckets.
• Each phase creates B more buckets that are a factor of B smaller.
• Repeatedly partition with a new hash function
• Stop when all buckets for one relation are smaller than B-1 (Why?)

2. Matching Phase: Take pairs of buckets whose tuples have the same
values for h, and join these
• Use BNLJ here for each matching pair.

We decompose the problem using hB, then complete the join

Lecture 13 > Section 2 > HJ

P(R) + P(S) + OUT

Each pass takes 2(P(R) + P(S))

Hash Join: High-level procedure

1. Partition Phase: Using one (shared) hash function hB, partition R and
S into B buckets

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

More detail in a
second…

(0,a)
(0,a)

(0,j)

(3,j)
(3,b)

(0,a)
(0,j)

(5,b)(5,b)

Note our new
convention:
pages each
have two tuples
(one per row)

Lecture 13 > Section 2 > HJ

Hash Join: High-level procedure

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join
matching
buckets

2. Matching Phase: Take pairs of buckets whose tuples have the same
values for hB, and join these

Lecture 13 > Section 2 > HJ

(3,j)
(3,b)

Hash Join: High-level procedure

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Don’t have
to join the
others! E.g.
(S1 and R2)!

2. Matching Phase: Take pairs of buckets whose tuples have the same
values for hB, and join these

Lecture 13 > Section 2 > HJ

(3,j)
(3,b)

Hash Join Phase 1: Partitioning

Goal: For each relation, partition relation into buckets such that if
hB(t.A) = hB(t’.A) they are in the same bucket

Given B+1 buffer pages, we partition into B buckets:
• We use B buffer pages for output (one for each bucket), and 1 for input

• The “dual” of sorting.
• For each tuple t in input, copy to buffer page for hB(t.A)
• When page fills up, flush to disk.

Lecture 13 > Section 2 > HJ

How big are the resulting buckets?

• Given N input pages, we partition into B buckets:
• à Ideally our buckets are each of size ~ N/B pages

• What happens if there are hash collisions?
• Buckets could be > N/B
• We’ll do several passes…

• What happens if there are duplicate join keys?
• Nothing we can do here… could have some skew in size of the buckets

Given B+1 buffer pages

Lecture 13 > Section 2 > HJ

How big do we want the resulting buckets?

• Ideally, our buckets would be of size ≤ " − $ pages
• 1 for input page, 1 for output page, B-1 for each bucket

• Recall: If we want to join a bucket from R and one from S, we
can do BNLJ in linear time if for one of them (wlog say R),
%(') ≤ " − $!
• And more generally, being able to fit bucket in memory is

advantageous

• We can keep partitioning buckets that are > B-1 pages, until
they are ≤ " − $ pages
• Using a new hash key which will split them… We’ll call each of these

a “pass” again…

Given B+1 buffer pages

Recall	for	BNLJ:
P 8 + : 8 :(;)

< − 1

Lecture 13 > Section 2 > HJ

We partition into B = 2 buckets using hash function h2 so that we can
have one buffer page for each partition (and one for input)

Hash Join Phase 1: Partitioning

Disk

R

(3,j)
(0,j)

Given B+1 = 3 buffer pages

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

For simplicity, we’ll look at partitioning
one of the two relations- we just do the
same for the other relation!

Recall: our goal will be to get B = 2
buckets of size <= B-1 à 1 page each

Lecture 13 > Section 2 > HJ

1. We read pages from R into the “input” page of the buffer…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

Lecture 13 > Section 2 > HJ

2. Then we use hash function h2 to sort into the buckets, which each
have one page in the buffer

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,a)

h2(0) = 0

(0,a)
(3,a)

(0,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

Lecture 13 > Section 2 > HJ

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,a)

h2(3) = 1

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

2. Then we use hash function h2 to sort into the buckets, which each
have one page in the buffer

Lecture 13 > Section 2 > HJ

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

Lecture 13 > Section 2 > HJ

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(3) = 1

(3,j)
(0,j)

(3,a)
(3,j)

Lecture 13 > Section 2 > HJ

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(0) = 0

(3,a)
(3,j)

(0,a)
(0,j)

Lecture 13 > Section 2 > HJ

3. We repeat until the buffer bucket pages are full… then flush to disk

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b) (5,a)
(0,j)

B0

B1

(3,a)
(3,j)

(0,a)
(0,j)

Lecture 13 > Section 2 > HJ

3. We repeat until the buffer bucket pages are full… then flush to disk

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)
(0,j)

Lecture 13 > Section 2 > HJ

Note that collisions can occur!

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(5) = 1

Collision!!!

(5,a)
(0,j)

(5,a)

Lecture 13 > Section 2 > HJ

h2(5) = h2(3) = 1

Finish this pass…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(0) = 0

(5,a)(0,j)

Lecture 13 > Section 2 > HJ

Finish this pass…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)

(5,b)

Lecture 13 > Section 2 > HJ

Finish this pass…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)(5,b)

h2(5) = 1

(5,a)
(5,b)

Lecture 13 > Section 2 > HJ

h2(5) = h2(3) = 1

Collision!!!

Finish this pass…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j) (5,a)
(5,b)

Lecture 13 > Section 2 > HJ

Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

We wanted buckets of size B-1 = 1…
however we got larger ones due to:

(1) Duplicate join keys

(2) Hash collisions

Lecture 13 > Section 2 > HJ

Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

To take care of larger buckets
caused by (2) hash collisions,
we can just do another pass!

What hash function should
we use?

Do another pass with a
different hash function, h’2,
ideally such that:

h’2(3) != h’2(5)

Lecture 13 > Section 2 > HJ

Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

To take care of larger buckets
caused by (2) hash collisions,
we can just do another pass!

What hash function should
we use?

Do another pass with a
different hash function, h’2,
ideally such that:

h’2(3) != h’2(5)

B2
(5,a)
(5,b)

Lecture 13 > Section 2 > HJ

Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

What about duplicate join keys?
Unfortunately this is a problem… but
usually not a huge one.

B2
(5,a)
(5,b)

We call this unevenness
in the bucket size skew

Lecture 13 > Section 2 > HJ

Now that we have partitioned R and S…

Lecture 13 > Section 2 > HJ

Hash Join Phase 2: Matching

• Now, we just join pairs of buckets from R and S that have the same
hash value to complete the join!

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join
matching
buckets

Lecture 13 > Section 2 > HJ

(3,j)
(3,b)

Hash Join Phase 2: Matching

• Note that since x = y à h(x) = h(y), we only need to consider pairs of
buckets (one from R, one from S) that have the same hash function value

• If our buckets are ~" − $ pages, can join each such pair using BNLJ in
linear time; recall (with P(R) = B-1):

BNLJ Cost: P & + () ((+)
-./ = 1(&) + (-./)((+)

-./ = P(R) + P(S)

Joining the pairs of buckets is linear!
(As long as smaller bucket <= B-1 pages)

Lecture 13 > Section 2 > HJ

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed values

R ⋈ # $% &

Lecture 13 > Section 2 > HJ

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed values

R ⋈ # $% &
To perform the join, we
ideally just need to
explore the dark blue
regions

= the tuples with same
values of the join key A

A=1

A=2

A=3

A=4
A=5

A=6

Lecture 13 > Section 2 > HJ

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed values

R ⋈ # $% &
With a join algorithm like
BNLJ that doesn’t take
advantage of equijoin
structure, we’d have to
explore this whole grid!

Lecture 13 > Section 2 > HJ

Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed values

R ⋈ # $% &
h(A)=0

h(A)=1

h(A)=2

With HJ, we only
explore the blue
regions

= the tuples with
same values of h(A)!

We can apply BNLJ to
each of these regions

Lecture 13 > Section 2 > HJ

Hash Join Phase 2: Matching

R.A
hashed
values

S.A hashed values

R ⋈ # $% &h'(A)=0

h'(A)
=2

An alternative to
applying BNLJ:

We could also hash
again, and keep doing
passes in memory to
reduce further!

h'(A)=1

h'(A)
=3 h'(A)

=4

h'(A)=5

Lecture 13 > Section 2 > HJ

How much memory do we need for HJ?

• Given B+1 buffer pages

• Suppose (reasonably) that we can partition into B buckets in 2 passes:
• For R, we get B buckets of size ~P(R)/B
• To join these buckets in linear time, we need these buckets to fit in B-1 pages,

so we have:

+ WLOG: Assume P(R) <= P(S)

! − 1 ≥ % &
! ⇒ ~)* ≥ +(-) Quadratic relationship

between smaller
relation’s size & memory!

Lecture 13 > Section 2 > Memory requirements

Hash Join Summary

• Given enough buffer pages as on previous slide…

• Partitioning requires reading + writing each page of R,S
• à 2(P(R)+P(S)) IOs

• Matching (with BNLJ) requires reading each page of R,S
• à P(R) + P(S) IOs

• Writing out results could be as bad as P(R)*P(S)… but probably closer to P(R)+P(S)

HJ takes ~3(P(R)+P(S)) + OUT IOs!

Lecture 13 > Section 2 > Memory requirements

Bonus questions #2

• Q1: Fast little dog.
• If min {P(R), P(S)} < B2 then HJ takes 3(P(R) + P(S)) + OUT
• What is the similar condition to obtain 5(P(R) + P(S)) + OUT?
• What is the condition for (2k+1)(P(R) + P(S)) + OUT

• Q2: SMJ V. HJ
• Under what conditions will HJ outperform SMJ?
• Under what conditions will SMJ outperform SMJ?

• Size of R, S and # of buffer pages

• Discuss! And We’ll put up a google form.

3. The Cage Match

Lecture 13 > Section 3 > The Cage Match

Sort-Merge v. Hash Join

• Given enough memory, both SMJ and HJ have performance:

• “Enough” memory =

• SMJ: B2 > max{P(R), P(S)}

• HJ: B2 > min{P(R), P(S)}

Hash Join superior if relation sizes differ greatly. Why?

~3(P(R)+P(S)) + OUT

Lecture 13 > Section 3 > The Cage Match

Further Comparisons of Hash and Sort Joins

• Hash Joins are highly parallelizable.

• Sort-Merge less sensitive to data skew and result
is sorted

Lecture 13 > Section 3 > The Cage Match

Summary

• Saw IO-aware join algorithms
• Massive difference

• Memory sizes key in hash versus sort join
• Hash Join = Little dog (depends on smaller relation)

• Skew is also a major factor

• Message: The database can compute IO costs, and these are different
than a traditional system

Lecture 13 > Section 3 > The Cage Match

