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Today’s Lecture

1. Sort-Merge Join (SMJ)

2. Hash Join (HJ)

3. The Cage Match: SMJ vs. HJ
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1. Sort-Merge Join (SMJ)
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What you will learn about in this section

1. Sort-Merge Join

2. “Backup” & Total Cost

3. Optimizations

4. ACTIVITY: Sequential Flooding
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Sort Merge Join (SMJ): Basic Procedure

To compute R ⋈ # $% &:

1. Sort R, S on A using external merge sort

2. Scan sorted files and “merge”

3. [May need to “backup”- see next subsection]

Note that if R, S are already sorted on A, 
SMJ will be awesome!
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Note that we are only 
considering equality 
join conditions here



SMJ Example: R ⋈ # $% & with 3 page buffer

• For simplicity: Let each page be one tuple, and let the first value be A 

Disk

Main Memory

Buffer
R (5,b) (3,j)(0,a)

S (7,f) (0,j)(3,g)

We show the file 
HEAD, which is 
the next value 
to be read!
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SMJ Example: R ⋈ # $% & with 3 page buffer

1. Sort the relations R, S on the join key (first value)

Disk

Main Memory

Buffer
R (5,b) (3,j)(0,a)

S (7,f) (0,j)(3,g)

(3,j) (5,b)(0,a)

(3,g) (7,f)(0,j)
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SMJ Example: R ⋈ # $% & with 3 page buffer

2. Scan and “merge” on join key!

Disk

Main Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,j)

(0,a)(0,a)

(0,j)
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SMJ Example: R ⋈ # $% & with 3 page buffer

2. Scan and “merge” on join key!

Disk

Main Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,j)(0,a)

(0,a)

(0,j)
(0,a,j)
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SMJ Example: R ⋈ # $% & with 3 page buffer

2. Scan and “merge” on join key!

Disk

Main Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,a)

(0,j)

(0,a,j)

(3,j,g)

(3,j)

(3,g)

(5,b)

(7,f)
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SMJ Example: R ⋈ # $% & with 3 page buffer

2. Done!

Disk

Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,a)

(0,j)

(0,a,j)

(3,j)

(3,g)

(3,j,g)

(5,b)

(7,f)
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What happens with duplicate join 
keys?
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Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Disk

Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j)

(0,g)

(0,b)

(7,f)

(0,a)

(0,j)

(0,a)

(0,j)
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1. Start with sorted relations, and begin scan / merge…

Disk

Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j)

(0,g)

(0,b)

(7,f)

(0,a)

(0,a)
(0,j)

(0,j) (0,a,j)

Multiple tuples with Same Join Key: “Backup”
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1. Start with sorted relations, and begin scan / merge…

Disk

Main Memory

Buffer
R

S (0,g) 7,f

(0,j) 5,b

Output

(0,b)

(7,f)

(0,a)

(0,a)
(0,j)

(0,a,j)

(0,a,g)

Multiple tuples with Same Join Key: “Backup”

(0,g)

(0,j)
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1. Start with sorted relations, and begin scan / merge…

Disk

Main Memory

Buffer
R

S 0,g 7,f

0,j 5,b

Output

(0,j) (0,b)

(7,f)

(0,a)

(0,a,j)

(0,g)

(0,a,g)

(0,j)

Have to “backup” in the scan of S 
and read tuple we’ve already read!

(0,j)

Multiple tuples with Same Join Key: “Backup”

(0,j)
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Backup

• At best, no backup à scan takes P(R) + P(S) reads
• For ex: if no duplicate values in join attribute

• At worst (e.g. full backup each time), scan could take P(R) * P(S) reads!
• For ex: if all duplicate values in join attribute, i.e. all tuples in R and S have the same 

value for the join attribute
• Roughly: For each page of R, we’ll have to back up and read each page of S…

• Often not that bad however, plus we can:
• Leave more data in buffer (for larger buffers)
• Can “zig-zag” (see animation)
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SMJ: Total cost

• Cost of SMJ is cost of sorting R and S…

• Plus the cost of scanning: ~P(R)+P(S)
• Because of backup: in worst case P(R)*P(S); but this would be very unlikely

• Plus the cost of writing out: ~P(R)+P(S) but in worst case T(R)*T(S)

~ Sort(P(R)) + Sort(P(S)) 
+ P(R) + P(S) + OUT

Recall: Sort(N) ≈ 2# log' (
)(+,-) + 1

Note: this is using repacking, where we estimate 
that we can create initial runs of length ~2(B+1)
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SMJ vs. BNLJ: Steel Cage Match

• If we have 100 buffer pages, P(R) = 1000 pages and P(S) = 500 pages: 
• Sort both in two passes: 2 * 2 * 1000 + 2 * 2 * 500 = 6,000 IOs
• Merge phase 1000 + 500 = 1,500 IOs
• = 7,500 IOs + OUT

What is BNLJ?
• 500 + 1000* !""

#$ = 6,500 IOs + OUT

• But, if we have 35 buffer pages?
• Sort Merge has same behavior (still 2 passes)
• BNLJ? 15,500 IOs + OUT!

SMJ is ~ linear vs. BNLJ is quadratic…
But it’s all about the memory.
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A Simple Optimization: Merges Merged!

• SMJ is composed of a sort phase and a merge phase

• During the sort phase, run passes of external merge sort on R and S
• Suppose at some point, R and S have <= B (sorted) runs in total

• We could do two merges (for each of R & S) at this point, complete the sort 
phase, and start the merge phase…

• OR, we could combine them: do one B-way merge and complete the join!

Given B+1 buffer pages

Lecture 13  >  Section 1  >  Backup



Merge / Join Phase

Sort Phase
(Ext. Merge Sort)

Un-Optimized SMJ

SR

Split & sortSplit & sort

MergeMerge

MergeMerge

Given B+1 buffer pages

Joined output 
file created!

Unsorted input relations
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Merge / Join Phase

Sort Phase
(Ext. Merge Sort)

Simple SMJ Optimization

SR

Split & sortSplit & sort

MergeMerge

Given B+1 buffer pages

Joined output 
file created!

Unsorted input relations

<= B total runs

B-Way Merge / Join
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Simple SMJ Optimization

• Now, on this last pass, we only do P(R) + P(S) IOs to complete the join!

• If we can initially split R and S into B total runs each of length approx. <= 
2(B+1), assuming repacking lets us create initial runs of ~2(B+1)- then we 
only need 3(P(R) + P(S)) + OUT for SMJ!
• 2 R/W per page to sort runs in memory, 1 R per page to B-way merge / join!

• How much memory for this to happen?  

• ! " #!(%)
' ≤ 2 * + 1 ⇒ ~ P R + P S ≤ 2*2

• Thus, 345{7 8 , 7 : } ≤ <= is an approximate sufficient condition

Given B+1 buffer pages

If the larger of R,S has <= B2 pages, then SMJ costs 
3(P(R)+P(S)) + OUT!
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See Lecture 13, 
Slide 13-14 – to 
clarify this slide.



Takeaway points from SMJ

If input already sorted on join key, skip the sorts.
• SMJ is basically linear.
• Nasty but unlikely case: Many duplicate join keys.

SMJ needs to sort both relations
• If max { P(R), P(S) } < B2 then cost is 3(P(R)+P(S)) + OUT
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Bonus questions.

• Q1: Fast dog.
• If max {P(R), P(S)} < B2 then SMJ takes 3(P(R) + P(S)) + OUT
• What is the similar condition to obtain 5(P(R) + P(S)) + OUT?
• What is the condition for (2k+1)(P(R) + P(S)) + OUT

• Q2: BNLJ V. SMJ
• Under what conditions will BNLJ outperform SMJ?

• Size of R, S and # of buffer pages

• Discuss! And We’ll put up a google form. 



2. Hash Join (HJ)

26
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What you will learn about in this section

1. Hash Join

2. Memory requirements

27
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Recall: Hashing

• Magic of hashing:
• A hash function hB maps into [0,B-1]
• And maps nearly uniformly

• A hash collision is when x != y but hB(x) = hB(y)
• Note however that it will never occur that x = y but hB(x) != hB(y)

• We hash on an attribute A, so our has function is hB(t) has the form 
hB(t.A). 
• Collisions may be more frequent.
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Recall: Mad Hash Collisions

Say something here to justify this 
slide’s existence? [TODO]
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Hash Join: High-level procedure

To compute R ⋈ # $% &:

1. Partition Phase: Using one (shared) hash function hB, partition R 
and S into B buckets

2. Matching Phase: Take pairs of buckets whose tuples have the same 
values for h, and join these
1. Use BNLJ here; or hash again à either way, operating on small partitions so 

fast!

Note again that we are only 
considering equality constraints here

We decompose the problem using hB, then 
complete the join
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Hash Join: High-level procedure
To compute R ⋈ # $% &:
1. Partition Phase: Using one (shared) hash function hB per pass 

partition R and S into B buckets.
• Each phase creates B more buckets that are a factor of B smaller.
• Repeatedly partition with a new hash function
• Stop when all buckets for one relation are smaller than B-1 (Why?)

2. Matching Phase: Take pairs of buckets whose tuples have the same 
values for h, and join these
• Use BNLJ here for each matching pair.

We decompose the problem using hB, then complete the join
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P(R) + P(S) + OUT

Each pass takes 2(P(R) + P(S))



Hash Join: High-level procedure

1. Partition Phase: Using one (shared) hash function hB, partition R and 
S into B buckets

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

More detail in a 
second…

(0,a)
(0,a)

(0,j)

(3,j)
(3,b)

(0,a)
(0,j)

(5,b)(5,b)

Note our new 
convention: 
pages each 
have two tuples 
(one per row)
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Hash Join: High-level procedure

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join 
matching 
buckets

2. Matching Phase: Take pairs of buckets whose tuples have the same 
values for hB, and join these
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Hash Join: High-level procedure

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Don’t have 
to join the 
others!  E.g. 
(S1 and R2)!

2. Matching Phase: Take pairs of buckets whose tuples have the same 
values for hB, and join these
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Hash Join Phase 1: Partitioning

Goal: For each relation, partition relation into buckets such that if 
hB(t.A) = hB(t’.A) they are in the same bucket

Given B+1 buffer pages, we partition into B buckets:
• We use B buffer pages for output (one for each bucket), and 1 for input

• The “dual” of sorting. 
• For each tuple t in input, copy to buffer page for hB(t.A)
• When page fills up, flush to disk.
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How big are the resulting buckets?

• Given N input pages, we partition into B buckets:
• à Ideally our buckets are each of size ~ N/B pages

• What happens if there are hash collisions?
• Buckets could be > N/B
• We’ll do several passes…

• What happens if there are duplicate join keys?
• Nothing we can do here… could have some skew in size of the buckets

Given B+1 buffer pages
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How big do we want the resulting buckets?

• Ideally, our buckets would be of size ≤ " − $ pages
• 1 for input page, 1 for output page, B-1 for each bucket

• Recall: If we want to join a bucket from R and one from S, we 
can do BNLJ in linear time if for one of them (wlog say R),  
%(') ≤ " − $!
• And more generally, being able to fit bucket in memory is 

advantageous

• We can keep partitioning buckets that are > B-1 pages, until 
they are ≤ " − $ pages
• Using a new hash key which will split them… We’ll call each of these 

a “pass” again…

Given B+1 buffer pages

Recall	for	BNLJ:
P 8 + : 8 :(;)

< − 1
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We partition into B = 2 buckets using hash function h2 so that we can 
have one buffer page for each partition (and one for input)

Hash Join Phase 1: Partitioning

Disk

R

(3,j)
(0,j)

Given B+1 = 3 buffer pages

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

For simplicity, we’ll look at partitioning 
one of the two relations- we just do the 
same for the other relation!

Recall: our goal will be to get B = 2 
buckets of size <= B-1 à 1 page each
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1. We read pages from R into the “input” page of the buffer…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input 
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

(0,a)
(3,a)
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2. Then we use hash function h2 to sort into the buckets, which each 
have one page in the buffer

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input 
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,a)

h2(0) = 0

(0,a)
(3,a)

(0,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)
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Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input 
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,a)

h2(3) = 1

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

2. Then we use hash function h2 to sort into the buckets, which each 
have one page in the buffer
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3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input 
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)
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3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input 
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(3) = 1

(3,j)
(0,j)

(3,a)
(3,j)
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3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input 
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(0) = 0

(3,a)
(3,j)

(0,a)
(0,j)
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3. We repeat until the buffer bucket pages are full… then flush to disk

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input 
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b) (5,a)
(0,j)

B0

B1

(3,a)
(3,j)

(0,a)
(0,j)
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3. We repeat until the buffer bucket pages are full… then flush to disk

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input 
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)
(0,j)
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Note that collisions can occur!

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input 
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(5) = 1

Collision!!!

(5,a)
(0,j)

(5,a)
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Finish this pass…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input 
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(0) = 0

(5,a)(0,j)
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Finish this pass…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input 
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)

(5,b)
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Finish this pass…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input 
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)(5,b)

h2(5) = 1

(5,a)
(5,b)
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h2(5) = h2(3) = 1

Collision!!!



Finish this pass…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input 
page

0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j) (5,a)
(5,b)
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Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

We wanted buckets of size B-1 = 1… 
however we got larger ones due to:

(1) Duplicate join keys

(2) Hash collisions
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Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

To take care of larger buckets 
caused by (2) hash collisions, 
we can just do another pass!

What hash function should 
we use?

Do another pass with a 
different hash function, h’2, 
ideally such that:

h’2(3) != h’2(5)
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Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

To take care of larger buckets 
caused by (2) hash collisions, 
we can just do another pass!

What hash function should 
we use?

Do another pass with a 
different hash function, h’2, 
ideally such that:

h’2(3) != h’2(5)

B2
(5,a)
(5,b)
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Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

What about duplicate join keys?  
Unfortunately this is a problem… but 
usually not a huge one.

B2
(5,a)
(5,b)

We call this unevenness 
in the bucket size skew
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Now that we have partitioned R and S…
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Hash Join Phase 2: Matching

• Now, we just join pairs of buckets from R and S that have the same 
hash value to complete the join!

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join 
matching 
buckets

Lecture 13  >  Section 2  >  HJ

(3,j)
(3,b)



Hash Join Phase 2: Matching

• Note that since x = y à h(x) = h(y), we only need to consider pairs of 
buckets (one from R, one from S) that have the same hash function value

• If our buckets are ~" − $ pages, can join each such pair using BNLJ in 
linear time; recall (with P(R) = B-1):

BNLJ Cost: P & + ( ) ((+)
-./ = 1(&) + (-./)((+)

-./ = P(R) + P(S)

Joining the pairs of buckets is linear!  
(As long as smaller bucket <= B-1 pages)
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Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A 
hashed 
values

S.A hashed values

R ⋈ # $% &
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Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A 
hashed 
values

S.A hashed values

R ⋈ # $% &
To perform the join, we 
ideally just need to 
explore the dark blue 
regions 

= the tuples with same 
values of the join key A

A=1

A=2

A=3

A=4
A=5

A=6
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Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A 
hashed 
values

S.A hashed values

R ⋈ # $% &
With a join algorithm like 
BNLJ that doesn’t take 
advantage of equijoin 
structure, we’d have to 
explore this whole grid!

Lecture 13  >  Section 2  >  HJ



Hash Join Phase 2: Matching

h(1)=0
h(1)=0
h(2)=0
h(3)=1
h(3)=1
h(4)=1
h(5)=2
h(6)=2
h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A 
hashed 
values

S.A hashed values

R ⋈ # $% &
h(A)=0

h(A)=1

h(A)=2

With HJ, we only 
explore the blue 
regions

= the tuples with 
same values of h(A)!

We can apply BNLJ to 
each of these regions
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Hash Join Phase 2: Matching

R.A 
hashed 
values

S.A hashed values

R ⋈ # $% &h'(A)=0

h'(A)
=2

An alternative to 
applying BNLJ:

We could also hash 
again, and keep doing 
passes in memory to 
reduce further!

h'(A)=1

h'(A)
=3 h'(A)

=4

h'(A)=5
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How much memory do we need for HJ?

• Given B+1 buffer pages

• Suppose (reasonably) that we can partition into B buckets in 2 passes:
• For R, we get B buckets of size ~P(R)/B
• To join these buckets in linear time, we need these buckets to fit in B-1 pages, 

so we have:

+ WLOG: Assume P(R) <= P(S)

! − 1 ≥ % &
! ⇒ ~)* ≥ +(-) Quadratic relationship 

between smaller 
relation’s size & memory!
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Hash Join Summary

• Given enough buffer pages as on previous slide…

• Partitioning requires reading + writing each page of R,S
• à 2(P(R)+P(S)) IOs

• Matching (with BNLJ) requires reading each page of R,S
• à P(R) + P(S) IOs

• Writing out results could be as bad as P(R)*P(S)… but probably closer to P(R)+P(S)

HJ takes ~3(P(R)+P(S)) + OUT IOs!
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Bonus questions #2

• Q1: Fast little dog.
• If min {P(R), P(S)} < B2 then HJ takes 3(P(R) + P(S)) + OUT
• What is the similar condition to obtain 5(P(R) + P(S)) + OUT?
• What is the condition for (2k+1)(P(R) + P(S)) + OUT

• Q2: SMJ V. HJ
• Under what conditions will HJ outperform SMJ?
• Under what conditions will SMJ outperform SMJ?

• Size of R, S and # of buffer pages

• Discuss! And We’ll put up a google form. 



3. The Cage Match
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Sort-Merge v. Hash Join

• Given enough memory, both SMJ and HJ have performance:

• “Enough” memory =

• SMJ: B2 > max{P(R), P(S)}

• HJ: B2 > min{P(R), P(S)}

Hash Join superior if relation sizes differ greatly.  Why?

~3(P(R)+P(S)) + OUT
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Further Comparisons of Hash and Sort Joins

• Hash Joins are highly parallelizable.

• Sort-Merge less sensitive to data skew and result 
is sorted
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Summary

• Saw IO-aware join algorithms
• Massive difference

• Memory sizes key in hash versus sort join
• Hash Join = Little dog (depends on smaller relation)

• Skew is also a major factor

• Message: The database can compute IO costs, and these are different 
than a traditional system
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