
Lectures 8:
Concurrency & Locking

Lecture 8

Today’s Lecture

1. Concurrency, scheduling & anomalies

2. Locking: 2PL, conflict serializability, deadlock detection

2

Lecture 8

1. Concurrency, Scheduling &
Anomalies

3

Lecture 8 > Section 1

What you will learn about in this section

1. Interleaving & scheduling

2. Conflict & anomaly types

3. ACTIVITY: TXN viewer

4

Lecture 8 > Section 1

Concurrency: Isolation & Consistency

Lecture 8 > Section 1 > Interleaving & scheduling

• The DBMS must handle concurrency such that…

1. Isolation is maintained: Users must be able to execute
each TXN as if they were the only user
• DBMS handles the details of interleaving various TXNs

2. Consistency is maintained: TXNs must leave the DB in
a consistent state
• DBMS handles the details of enforcing integrity constraints

ACID

ACID

Example- consider two TXNs:

Lecture 8 > Section 1 > Interleaving & scheduling

T1: START TRANSACTION
UPDATE Accounts
SET Amt = Amt + 100
WHERE Name = ‘A’

UPDATE Accounts
SET Amt = Amt - 100
WHERE Name = ‘B’

COMMIT

T2: START TRANSACTION
UPDATE Accounts
SET Amt = Amt * 1.06

COMMIT

T1 transfers $100 from B’s account
to A’s account

T2 credits both accounts with a 6%
interest payment

Example- consider two TXNs:

Lecture 8 > Section 1 > Interleaving & scheduling

T1 transfers $100 from B’s

account to A’s account

T2 credits both accounts with a

6% interest payment

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Time

We can look at the TXNs in a timeline view- serial execution:

Example- consider two TXNs:

Lecture 8 > Section 1 > Interleaving & scheduling

T1 transfers $100 from B’s

account to A’s account

T2 credits both accounts with a

6% interest payment

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Time

The TXNs could occur in either order… DBMS allows!

Example- consider two TXNs:

Lecture 8 > Section 1 > Interleaving & scheduling

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Time

The DBMS can also interleave the TXNs

T2 credits A’s account with 6%
interest payment, then T1
transfers $100 to A’s account…

T2 credits B’s account with a 6%
interest payment, then T1
transfers $100 from B’s
account…

Example- consider two TXNs:

Lecture 8 > Section 1 > Interleaving & scheduling

What goes wrong here??

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Time

The DBMS can also interleave the TXNs

Recall: Three Types of Regions of Memory

1. Local: In our model each process in a DBMS has its
own local memory, where it stores values that only
it “sees”

2. Global: Each process can read from / write to
shared data in main memory

3. Disk: Global memory can read from / flush to disk

4. Log: Assume on stable disk storage- spans both
main memory and disk…

Local Global
Main

Memory
(RAM)

Disk

“Flushing to disk” =
writing to disk.

1 2

3

Lecture 8 > Section 1 > Interleaving & scheduling

Log is a sequence from
main memory -> disk

4

Why Interleave TXNs?

• Interleaving TXNs might lead to anomalous outcomes… why do it?

• Several important reasons:
• Individual TXNs might be slow- don’t want to block other users

during!

• Disk access may be slow- let some TXNs use CPUs while others
accessing disk!

12

Lecture 8 > Section 1 > Interleaving & scheduling

All concern large differences in performance

Interleaving & Isolation

• The DBMS has freedom to interleave TXNs

• However, it must pick an interleaving or schedule
such that isolation and consistency are maintained

• Must be as if the TXNs had executed serially!

13

Lecture 8 > Section 1 > Interleaving & scheduling

DBMS must pick a schedule which maintains isolation
& consistency

“With great power
comes great
responsibility”

ACID

Scheduling examples

14

Lecture 8 > Section 1 > Interleaving & scheduling

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

A B

$50 $200

A B

$159 $106

A B

$159 $106

Starting
Balance

Same
result!

Serial schedule T1,T2:

Interleaved schedule A:

Scheduling examples

15

Lecture 8 > Section 1 > Interleaving & scheduling

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

A B

$50 $200

A B

$159 $106

A B

$159 $112

Starting
Balance

Different
result than
serial
T1,T2!

Serial schedule T1,T2:

Interleaved schedule B:

Scheduling examples

16

Lecture 8 > Section 1 > Interleaving & scheduling

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

A B

$50 $200

A B

$153 $112

A B

$159 $112

Starting
Balance

Different
result than
serial T2,T1
ALSO!

Serial schedule T2,T1:

Interleaved schedule B:

Scheduling examples

17

Lecture 8 > Section 1 > Interleaving & scheduling

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

This schedule is different than any
serial order! We say that it is not

serializable

Interleaved schedule B:

Scheduling Definitions
• A serial schedule is one that does not interleave the actions of

different transactions

• A and B are equivalent schedules if, for any database state, the
effect on DB of executing A is identical to the effect of executing B

• A serializable schedule is a schedule that is equivalent to some serial
execution of the transactions.

The word “some” makes this
definition powerful & tricky!

Lecture 8 > Section 1 > Interleaving & scheduling

Serializable?

19

Lecture 8 > Section 1 > Interleaving & scheduling

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Same as a serial schedule
for all possible values of
A, B = serializable

Serial schedules:

A B
T1,T2 1.06*(A+100) 1.06*(B-100)
T2,T1 1.06*A + 100 1.06*B - 100

A B
1.06*(A+100) 1.06*(B-100)

Serializable?

20

Lecture 8 > Section 1 > Interleaving & scheduling

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Not equivalent to any
serializable schedule =
not serializable

Serial schedules:

A B
T1,T2 1.06*(A+100) 1.06*(B-100)
T2,T1 1.06*A + 100 1.06*B - 100

A B
1.06*(A+100) 1.06*B - 100

What else can go wrong with interleaving?

• Various anomalies which break isolation / serializability

• Often referred to by name…

• Occur because of / with certain “conflicts” between
interleaved TXNs

21

Lecture 8 > Section 1 > Interleaving & scheduling

The DBMS’s view of the schedule

22

Lecture 8 > Section 1 > Interleaving & scheduling

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

T1

T2

R(A)

R(A)

W(A)

W(A) R(B) W(B)

R(B) W(B)

Each action in the TXNs
reads a value from global
memory and then writes
one back to it

Scheduling order matters!

Conflict Types

• Thus, there are three types of conflicts:
• Read-Write conflicts (RW)
• Write-Read conflicts (WR)
• Write-Write conflicts (WW)

Why no “RR Conflict”?

Lecture 8 > Section 1 > Interleaving & scheduling

Two actions conflict if they are part of different TXNs, involve the same
variable, and at least one of them is a write

Interleaving anomalies occur with / because of these conflicts between
TXNs (but these conflicts can occur without causing anomalies!)

See next section for more!

Occurring with / because of a RW conflict

Lecture 8 > Section 1 > Interleaving & scheduling

Classic Anomalies with Interleaved Execution

“Unrepeatable read”:

T1

T2

R(A) R(A)

1. T1 reads some data from A

2. T2 writes to A

3. Then, T1 reads from A again
and now gets a different /
inconsistent value

R(A) W(A) C

Example:

Occurring with / because of a WR conflict

Lecture 8 > Section 1 > Interleaving & scheduling

Classic Anomalies with Interleaved Execution

“Dirty read” / Reading uncommitted data:

T1

T2

W(A) A

1. T1 writes some data to A

2. T2 reads from A, then writes
back to A & commits

3. T1 then aborts- now T2’s
result is based on an
obsolete / inconsistent value

R(A) W(A) C

Example:

Lecture 8 > Section 1 > Interleaving & scheduling

Classic Anomalies with Interleaved Execution

“Inconsistent read” / Reading partial commits:

T1

T2

W(A)

1. T1 writes some data to A

2. T2 reads from A and B, and
then writes some value
which depends on A & B

3. T1 then writes to B- now
T2’s result is based on an
incomplete commit

Example:

W(B) C

R(A) CR(B) W(C=A*B)

Again, occurring because of a WR conflict

Lecture 8 > Section 1 > Interleaving & scheduling

Classic Anomalies with Interleaved Execution

Partially-lost update:

T1

T2

W(A)

1. T1 blind writes some data to A

2. T2 blind writes to A and B

3. T1 then blind writes to B; now
we have T2’s value for B and T1’s
value for A- not equivalent to
any serial schedule!

Example:

W(B) C

W(A) CW(B)

Occurring because of a WW conflict

DB-WS08a.ipynb

28

Lecture 8 > Section 1 > ACTIVITY

Lecture_1_1.ipynb

2. Conflict Serializability, Locking
& Deadlock

29

Lecture 8 > Section 2

What you will learn about in this section

1. RECAP: Concurrency

2. Conflict Serializability

3. DAGs & Topological Orderings

4. Strict 2PL

5. Deadlocks

30

Lecture 8 > Section 2

Recall: Concurrency as Interleaving TXNs

• For our purposes, having
TXNs occur concurrently
means interleaving their
component actions (R/W)

31

Lecture 8 > Section 2 > Concurrency

We call the particular
order of interleaving a
schedule

T1

T2

R(A) R(B)W(A) W(B)

Serial Schedule:

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

Interleaved Schedule:

R(A) R(B)W(A) W(B)

Recall: “Good” vs. “bad” schedules

32

We want to develop ways of discerning “good” vs. “bad” schedules

Serial Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved Schedules:

Why?

Lecture 8 > Section 2 > Concurrency

Ways of Defining “Good” vs. “Bad” Schedules

• Recall from last time: we call a schedule serializable if it is equivalent
to some serial schedule

• We used this as a notion of a “good” interleaved schedule, since a
serializable schedule will maintain isolation & consistency

• Now, we’ll define a stricter, but very useful variant:

• Conflict serializability We’ll need to define
conflicts first..

Lecture 8 > Section 2 > Concurrency

Conflicts

Two actions conflict if they are part of different TXNs, involve the same
variable, and at least one of them is a write

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)W-R Conflict

W-W Conflict

Lecture 8 > Section 2 > Conflict Serializability

Conflicts

Two actions conflict if they are part of different TXNs, involve the same
variable, and at least one of them is a write

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

All “conflicts”!

Lecture 8 > Section 2 > Conflict Serializability

Conflict Serializability
• Two schedules are conflict equivalent if:

• They involve the same actions of the same TXNs

• Every pair of conflicting actions of two TXNs are ordered in the same way

• Schedule S is conflict serializable if S is conflict equivalent to some
serial schedule

Conflict serializable ⇒ serializable
So if we have conflict serializable, we have consistency & isolation!

Lecture 8 > Section 2 > Conflict Serializability

Recall: “Good” vs. “bad” schedules

37

Conflict serializability also provides us with an operative
notion of “good” vs. “bad” schedules!

Serial Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved Schedules:

Note that in the “bad” schedule, the
order of conflicting actions is different
than the above (or any) serial
schedule!

Lecture 8 > Section 2 > Conflict Serializability

Note: Conflicts vs. Anomalies

• Conflicts are things we talk about to help us characterize different
schedules
• Present in both “good” and “bad” schedules

• Anomalies are instances where isolation and/or consistency is broken
because of a “bad” schedule
• We often characterize different anomaly types by what types of conflicts

predicated them

Lecture 8 > Section 2 > Conflict Serializability

The Conflict Graph

• Let’s now consider looking at conflicts at the TXN level

• Consider a graph where the nodes are TXNs, and there is an edge
from Ti àTj if any actions in Ti precede and conflict with any actions
in Tj

T1 T2

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

Lecture 8 > Section 2 > Conflict Serializability

40

Serial Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved Schedules:

What can we say about “good” vs. “bad”
conflict graphs?

A bit complicated…

Lecture 8 > Section 2 > Conflict Serializability

41

Serial Schedule:

X

Interleaved Schedules:

What can we say about “good” vs. “bad”
conflict graphs?

T1 T2
T1 T2

T1 T2

Theorem: Schedule is conflict serializable if and
only if its conflict graph is acyclic

Simple!

Lecture 8 > Section 2 > Conflict Serializability

Let’s unpack this notion of acyclic
conflict graphs…

Lecture 8 > Section 2 > Conflict Serializability

DAGs & Topological Orderings

• A topological ordering of a directed graph is a linear ordering of its
vertices that respects all the directed edges

• A directed acyclic graph (DAG) always has one or more topological
orderings
• (And there exists a topological ordering if and only if there are no directed

cycles)

Lecture 8 > Section 2 > Topological orderings

DAGs & Topological Orderings

• Ex: What is one possible topological ordering here?

1

32

0
Ex: 0, 1, 2, 3 (or: 0, 1, 3, 2)

Lecture 8 > Section 2 > Topological orderings

DAGs & Topological Orderings

• Ex: What is one possible topological ordering here?

1

32

0

There is none!

Lecture 8 > Section 2 > Topological orderings

Connection to conflict serializability

• In the conflict graph, a topological ordering of nodes corresponds to a
serial ordering of TXNs

• Thus an acyclic conflict graph à conflict serializable!

Theorem: Schedule is conflict serializable if and
only if its conflict graph is acyclic

Lecture 8 > Section 2 > Topological orderings

Strict Two-Phase Locking

• We consider locking- specifically, strict two-phase locking- as a way to
deal with concurrency, because is guarantees conflict serializability
(if it completes- see upcoming…)

• Also (conceptually) straightforward to implement, and transparent to
the user!

Lecture 8 > Section 2 > Strict 2PL

Strict Two-phase Locking (Strict 2PL) Protocol:

TXNs obtain:

• An X (exclusive) lock on object before writing.

• If a TXN holds, no other TXN can get a lock (S or X) on that object.

• An S (shared) lock on object before reading

• If a TXN holds, no other TXN can get an X lock on that object

• All locks held by a TXN are released when TXN completes.

Note: Terminology
here- “exclusive”,
“shared”- meant to
be intuitive- no tricks!

Lecture 8 > Section 2 > Strict 2PL

Picture of 2-Phase Locking (2PL)

Time
Strict 2PL

0 locks

Locks
the TXN

has

Lock
Acquisition

Lock Release
On TXN commit!

Lecture 8 > Section 2 > Strict 2PL

Strict 2PL
Theorem: Strict 2PL allows only schedules whose
dependency graph is acyclic

Therefore, Strict 2PL only allows conflict
serializable ⇒ serializable schedules

Proof Intuition: In strict 2PL, if there is an edge Ti à Tj (i.e. Ti and Tj
conflict) then Tj needs to wait until Ti is finished – so cannot have an edge
Tj à Ti

Lecture 8 > Section 2 > Strict 2PL

Strict 2PL

• If a schedule follows strict 2PL and locking, it is conflict serializable…

• …and thus serializable
• …and thus maintains isolation & consistency!

• Not all serializable schedules are allowed by strict 2PL.

• So let’s use strict 2PL, what could go wrong?

Lecture 8 > Section 2 > Strict 2PL

Deadlock Detection: Example

First, T1 requests a shared lock
on A to read from it

T1

T2

S(A) R(A)

Waits-for graph:

T1 T2

Lecture 8 > Section 2 > Deadlocks

Deadlock Detection: Example

Next, T2 requests a shared lock
on B to read from it

T1

T2 S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

Lecture 8 > Section 2 > Deadlocks

Deadlock Detection: Example

T2 then requests an exclusive
lock on A to write to it- now T2
is waiting on T1…

T1

T2 X(A)S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

W(A)Waiting…

Lecture 8 > Section 2 > Deadlocks

Deadlock Detection: Example

Finally, T1 requests an exclusive
lock on B to write to it- now T1
is waiting on T2… DEADLOCK!

T1

T2

X(B)

X(A)S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

W(A)

W(B)

Cycle =
DEADLOCK

Waiting…

Waiting…

Lecture 8 > Section 2 > Deadlocks

ERROR: deadlock detected
DETAIL: Process 321 waits for ExclusiveLock on tuple of
relation 20 of database 12002; blocked by process 4924.
Process 404 waits for ShareLock on transaction 689; blocked
by process 552.
HINT: See server log for query details.

The problem?
Deadlock!??!

NB: Also movie called wedlock
(deadlock) set in a futuristic prison…
I haven’t seen either of them…

T1 T2

Lecture 8 > Section 2 > Deadlocks

Deadlocks

• Deadlock: Cycle of transactions waiting for locks to be released by
each other.

• Two ways of dealing with deadlocks:

1. Deadlock prevention

2. Deadlock detection

Lecture 8 > Section 2 > Deadlocks

Deadlock Detection

• Create the waits-for graph:

• Nodes are transactions

• There is an edge from Ti à Tj if Ti is waiting for Tj to release a lock

• Periodically check for (and break) cycles in the waits-for graph

Lecture 8 > Section 2 > Deadlocks

Summary

• Concurrency achieved by interleaving TXNs such that isolation &
consistency are maintained
• We formalized a notion of serializability that captured such a “good”

interleaving schedule

• We defined conflict serializability, which implies serializability

• Locking allows only conflict serializable schedules
• If the schedule completes… (it may deadlock!)

Lecture 8 > Section 2

