
Lectures 6:
Design Theory Part II

Lectures 5 & 6

Today’s Lecture

1. Boyce-Codd Normal Form
• ACTIVITY

2. Decompositions & 3NF
• ACTIVITY

3. MVDs
• ACTIVITY

2

Lecture 6

1. Boyce-Codd Normal Form

3

Lecture 6 > Section 1

What you will learn about in this section

1. Conceptual Design

2. Boyce-Codd Normal Form

3. The BCNF Decomposition Algorithm

4. ACTIVITY

4

Lecture 6 > Section 1

Conceptual Design

Lecture 6 > Section 1 > Conceptual Design

6

Back to Conceptual Design

Now that we know how to find FDs, it’s a straight-forward process:

1. Search for “bad” FDs

2. If there are any, then keep decomposing the table into sub-tables
until no more bad FDs

3. When done, the database schema is normalized

Recall: there are several normal forms…

Lecture 6 > Section 1 > Conceptual Design

Boyce-Codd Normal Form (BCNF)

• Main idea is that we define “good” and “bad” FDs as follows:

• X à A is a “good FD” if X is a (super)key
• In other words, if A is the set of all attributes

• X à A is a “bad FD” otherwise

•We will try to eliminate the “bad” FDs!

Lecture 6 > Section 1 > BCNF

Boyce-Codd Normal Form (BCNF)

• Why does this definition of “good” and “bad” FDs make sense?

• If X is not a (super)key, it functionally determines some of the
attributes; therefore, those other attributes can be duplicated

• Recall: this means there is redundancy
• And redundancy like this can lead to data anomalies!

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

Lecture 6 > Section 1 > BCNF

9

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

In other words: there are no “bad” FDs

A relation R is in BCNF if:

if {A1, ..., An} à B is a non-trivial FD in R

then {A1, ..., An} is a superkey for R

Equivalently: ∀ sets of attributes X, either (X+ = X) or (X+ = all attributes)

Lecture 6 > Section 1 > BCNF

10

Example

What is the key?
{SSN, PhoneNumber}

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

{SSN} à {Name,City}

⟹ Not in BCNF

This FD is bad
because it is not a
superkey

Lecture 6 > Section 1 > BCNF

11

Example

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Madison

SSN PhoneNumber

123-45-6789 206-555-1234

123-45-6789 206-555-6543

987-65-4321 908-555-2121
987-65-4321 908-555-1234

Let’s check anomalies:
• Redundancy ?
• Update ?
• Delete ?

{SSN} à {Name,City}

Now in BCNF!

This FD is now
good because it is
the key

Lecture 6 > Section 1 > BCNF

12

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find X s.t.: X+ ≠ X and X+ ≠ [all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Lecture 6 > Section 1 > BCNF

13

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Find a set of attributes X
which has non-trivial
“bad” FDs, i.e. is not a
superkey, using closures

Lecture 6 > Section 1 > BCNF

14

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

If no “bad” FDs found, in
BCNF!

Lecture 6 > Section 1 > BCNF

15

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Let Y be the attributes that
X functionally determines
(+ that are not in X)

And let Z be the
complement, the other
attributes that it doesn’t

Lecture 6 > Section 1 > BCNF

16

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

X ZY

R1 R2

Split into one relation (table)
with X plus the attributes
that X determines (Y)…

Lecture 6 > Section 1 > BCNF

17

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

X ZY

R1 R2

And one relation with X plus
the attributes it does not
determine (Z)

Lecture 6 > Section 1 > BCNF

18

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Proceed recursively until no
more “bad” FDs!

Lecture 6 > Section 1 > BCNF

R(A,B,C,D,E)BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Example

{A} à {B,C}
{C} à {D}

Lecture 6 > Section 1 > BCNF

20

Example

R(A,B,C,D,E)
{A}+ = {A,B,C,D} ≠ {A,B,C,D,E}

R1(A,B,C,D)
{C}+ = {C,D} ≠ {A,B,C,D}

R2(A,E)R11(C,D) R12(A,B,C)

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}

Lecture 6 > Section 1 > BCNF

DB-WS06a.ipynb

21

Lecture 6 > Section 1 > ACTIVITY

Lecture_1_1.ipynb

2. Decompositions

22

Lecture 6 > Section 2

Recap: Decompose to remove redundancies

1. We saw that redundancies in the data (“bad FDs”) can lead to data
anomalies

2. We developed mechanisms to detect and remove redundancies by
decomposing tables into BCNF
1. BCNF decomposition is standard practice- very powerful & widely used!

3. However, sometimes decompositions can lead to more subtle
unwanted effects…

23

Lecture 6 > Section 2 > Decompositions

When does this happen?

24

Decompositions in General

R1 = the projection of R on A1, ..., An, B1, ..., Bm

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

Lecture 6 > Section 2 > Decompositions

R2 = the projection of R on A1, ..., An, C1, ..., Cp

25

Theory of Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Price
Gizmo 19.99
OneClick 24.99
Gizmo 19.99

Name Category

Gizmo Gadget
OneClick Camera
Gizmo Camera

I.e. it is a Lossless
decomposition

Sometimes a
decomposition is
“correct”

Lecture 6 > Section 2 > Decompositions

26

Lossy Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

Price Category
19.99 Gadget
24.99 Camera
19.99 Camera

What’s wrong
here?

However
sometimes it isn’t

Lecture 6 > Section 2 > Decompositions

Lossless Decompositions

A decomposition R to (R1, R2) is lossless if R = R1 Join R2

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

Lecture 6 > Section 2 > Decompositions

Lossless Decompositions

29

BCNF decomposition is always lossless. Why?

Note: don’t need
{A1, ..., An} à {C1, ..., Cp}

If {A1, ..., An} à {B1, ..., Bm}
Then the decomposition is lossless

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

Lecture 6 > Section 2 > Decompositions

A problem with BCNF

Note: This is historically
inaccurate, but it makes
it easier to explain

Problem: To enforce a FD, must reconstruct
original relation—on each insert!

Lecture 6 > Section 2 > Decompositions

31

A Problem with BCNF
{Unit} à {Company}
{Company,Product} à {Unit}

We do a BCNF decomposition
on a “bad” FD:
{Unit}+ = {Unit, Company}

We lose the FD {Company,Product} à {Unit}!!

Unit Company Product

… … …

Unit Company
… …

Unit Product

… …

{Unit} à {Company}

Lecture 6 > Section 2 > Decompositions

32

So Why is that a Problem?

No problem so far.
All local FD’s are
satisfied.

Unit Company
Galaga99 UW
Bingo UW

Unit Product
Galaga99 Databases
Bingo Databases

Unit Company Product
Galaga99 UW Databases
Bingo UW Databases

Let’s put all the
data back into a
single table again:

{Unit} à {Company}

Violates the FD {Company,Product} à {Unit}!!

Lecture 6 > Section 2 > Decompositions

33

The Problem

• We started with a table R and FDs F

• We decomposed R into BCNF tables R1, R2, …
with their own FDs F1, F2, …

• We insert some tuples into each of the relations—which satisfy their
local FDs but when reconstruct it violates some FD across tables!

Practical Problem: To enforce FD, must reconstruct
R—on each insert!

Lecture 6 > Section 2 > Decompositions

34

Possible Solutions

• Various ways to handle so that decompositions are all lossless / no
FDs lost
• For example 3NF- stop short of full BCNF decompositions. See Bonus Activity!

• Usually a tradeoff between redundancy / data anomalies and FD
preservation…

BCNF still most common- with additional steps to
keep track of lost FDs…

Lecture 6 > Section 2 > Decompositions

3. MVDs

35

Lecture 6 > Section 3

What you will learn about in this section

1. MVDs

2. ACTIVITY

36

Lecture 6 > Section 3

Multi-Value Dependencies (MVDs)

• A multi-value dependency (MVD) is another type of dependency that
could hold in our data, which is not captured by FDs

• Formal definition:
• Given a relation R having attribute set A, and two sets of attributes !, # ⊆ %
• The multi-value dependency (MVD) & ↠ # holds on R if
• for any tuples (), (* ∈ , s.t. () & = (*[&], there exists a tuple t3 s.t.:

• t1[X] = t2[X] = t3[X]
• t1[Y] = t3[Y]
• t2[A\Y] = t3[A\Y]

• Where A \ B means “elements of set A not in set B”

Lecture 6 > Section 3 > MVDs

Multi-Value Dependencies (MVDs)

• One less formal, literal way to phrase the definition of an MVD:

• The MVD ! ↠ # holds on R if for any pair of tuples with the same X
values, the “swapped” pair of tuples with the same X values, but the
other permutations of Y and A\Y values, is also in R

Lecture 6 > Section 3 > MVDs

x y z
1 0 1

1 1 0

1 0 0

1 1 1

x y z
1 0 1

1 1 0
For ! ↠ # to
hold must have…

Note the
connection to a
local cross-
product…

Ex: X = {x}, Y = {y}:

Multi-Value Dependencies (MVDs)

• Another way to understand MVDs, in terms of conditional
independence:

• The MVD ! ↠ # holds on R if given X, Y is conditionally independent
of A \ Y and vice versa…

Lecture 6 > Section 3 > MVDs

x y z
1 0 1
1 1 0
1 0 0
1 1 1

x y z
1 0 1
1 1 0

Here, given x = 1, we
know for ex. that:
y = 0 à z = 1

I.e. z is conditionally
dependent on y given x

Here, this is not the
case!

I.e. z is conditionally
independent of y
given x

Multiple Value Dependencies (MVDs)

A “real life” example…

Grad student CA thinks:
“Hmm… what is real life??
Watching a movie over the

weekend?”

Lecture 6 > Section 3 > MVDs

MVDs: Movie Theatre Example
Are there any
functional
dependencies that
might hold here?

And yet it seems like there is some pattern / dependency…

No…

Lecture 6 > Section 3 > MVDs

Movie_theater film_name snack

Rains 216 Star Trek: The Wrath of Kahn Kale Chips

Rains 216 Star Trek: The Wrath of Kahn Burrito

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Kale Chips

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Burrito

Rains 218 Star Wars: The Boba Fett Prequel Ramen

Rains 218 Star Wars: The Boba Fett Prequel Plain Pasta

MVDs: Movie Theatre Example
For a given movie
theatre…

Lecture 6 > Section 3 > MVDs

Movie_theater film_name snack

Rains 216 Star Trek: The Wrath of Kahn Kale Chips

Rains 216 Star Trek: The Wrath of Kahn Burrito

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Kale Chips

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Burrito

Rains 218 Star Wars: The Boba Fett Prequel Ramen

Rains 218 Star Wars: The Boba Fett Prequel Plain Pasta

MVDs: Movie Theatre Example
Movie_theater film_name snack

Rains 216 Star Trek: The Wrath of Kahn Kale Chips

Rains 216 Star Trek: The Wrath of Kahn Burrito

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Kale Chips

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Burrito

Rains 218 Star Wars: The Boba Fett Prequel Ramen

Rains 218 Star Wars: The Boba Fett Prequel Plain Pasta

For a given movie
theatre…

Given a set of movies
and snacks…

Lecture 6 > Section 3 > MVDs

MVDs: Movie Theatre Example
Movie_theater film_name snack

Rains 216 Star Trek: The Wrath of Kahn Kale Chips

Rains 216 Star Trek: The Wrath of Kahn Burrito

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Kale Chips

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Burrito

Rains 218 Star Wars: The Boba Fett Prequel Ramen

Rains 218 Star Wars: The Boba Fett Prequel Plain Pasta

For a given movie
theatre…

Given a set of movies
and snacks…

Any movie / snack
combination is
possible!

Lecture 6 > Section 3 > MVDs

MVDs: Movie Theatre Example
Movie_theater (A) film_name (B) Snack (C)

Rains 216 Star Trek: The Wrath of Kahn Kale Chips

Rains 216 Star Trek: The Wrath of Kahn Burrito

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Kale Chips

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Burrito

Rains 218 Star Wars: The Boba Fett Prequel Ramen

Rains 218 Star Wars: The Boba Fett Prequel Plain Pasta

More formally, we write
{A} ↠ {B} if for any
tuples t1,t2 s.t. t1[A] =
t2[A]

t1

t2

Lecture 6 > Section 3 > MVDs

MVDs: Movie Theatre Example
Movie_theater (A) film_name (B) Snack (C)

Rains 216 Star Trek: The Wrath of Kahn Kale Chips

Rains 216 Star Trek: The Wrath of Kahn Burrito

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Kale Chips

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Burrito

Rains 218 Star Wars: The Boba Fett Prequel Ramen

Rains 218 Star Wars: The Boba Fett Prequel Plain Pasta

t1

t2

t3

More formally, we write
{A} ↠ {B} if for any
tuples t1,t2 s.t. t1[A] =
t2[A] there is a tuple t3
s.t.
• t3[A] = t1[A]

Lecture 6 > Section 3 > MVDs

MVDs: Movie Theatre Example
Movie_theater (A) film_name (B) Snack (C)

Rains 216 Star Trek: The Wrath of Kahn Kale Chips

Rains 216 Star Trek: The Wrath of Kahn Burrito

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Kale Chips

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Burrito

Rains 218 Star Wars: The Boba Fett Prequel Ramen

Rains 218 Star Wars: The Boba Fett Prequel Plain Pasta

More formally, we write
{A} ↠ {B} if for any
tuples t1,t2 s.t. t1[A] =
t2[A] there is a tuple t3
s.t.
• t3[A] = t1[A]
• t3[B] = t1[B]

t1

t2

t3

Lecture 6 > Section 3 > MVDs

MVDs: Movie Theatre Example
Movie_theater (A) film_name (B) Snack (C)

Rains 216 Star Trek: The Wrath of Kahn Kale Chips

Rains 216 Star Trek: The Wrath of Kahn Burrito

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Kale Chips

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Burrito

Rains 218 Star Wars: The Boba Fett Prequel Ramen

Rains 218 Star Wars: The Boba Fett Prequel Plain Pasta

More formally, we write
{A} ↠ {B} if for any
tuples t1,t2 s.t. t1[A] =
t2[A] there is a tuple t3
s.t.
• t3[A] = t1[A]
• t3[B] = t1[B]
• and t3[R\B] = t2[R\B]

Where R\B is “R minus
B” i.e. the attributes of
R not in B.

t1

t2

t3

Lecture 6 > Section 3 > MVDs

MVDs: Movie Theatre Example
Movie_theater (A) film_name (B) Snack (C)

Rains 216 Star Trek: The Wrath of Kahn Kale Chips

Rains 216 Star Trek: The Wrath of Kahn Burrito

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Kale Chips

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Burrito

Rains 218 Star Wars: The Boba Fett Prequel Ramen

Rains 218 Star Wars: The Boba Fett Prequel Plain Pasta

Note this also works!

Remember, an MVD
holds over a relation or
an instance, so defn.
must hold for every
applicable pair…

t2

t1

t3

Lecture 6 > Section 3 > MVDs

MVDs: Movie Theatre Example
Movie_theater (A) film_name (B) Snack (C)

Rains 216 Star Trek: The Wrath of Kahn Kale Chips

Rains 216 Star Trek: The Wrath of Kahn Burrito

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Kale Chips

Rains 216 Lord of the Rings: Concatenated &
Extended Edition

Burrito

Rains 218 Star Wars: The Boba Fett Prequel Ramen

Rains 218 Star Wars: The Boba Fett Prequel Plain Pasta

This expresses a sort of
dependency (= data
redundancy) that we
can’t express with FDs

t2

t1

t3

*Actually, it expresses
conditional independence
(between film and snack
given movie theatre)!

Lecture 6 > Section 3 > MVDs

Comments on MVDs

• For AI nerds: MVD is conditional independence in graphical models!

Lecture 6 > Section 3 > MVDs

See the MVDs IPython notebook
for more examples!

DB-WS07b.ipynb

52

Lecture 6 > Section 3 > ACTIVITY

Lecture_1_1.ipynb

Summary

• Constraints allow one to reason about redundancy in the data

• Normal forms describe how to remove this redundancy by
decomposing relations
• Elegant—by representing data appropriately certain errors are essentially

impossible
• For FDs, BCNF is the normal form.

• A tradeoff for insert performance: 3NF

Lectures 5,7 > SUMMARY

