
Lectures 3:
Introduction to SQL Part II

Announcements!

1. If you still have Jupyter trouble, let me know!

2. Problem Set #1 is released!

2

Lecture 2

A note on quality, not quantity:

We are following Chris Ré’s course material and format

(he revised this course in depth several years ago…

…I learned I’m now teaching this course as of three weeks ago)

We will follow Chris’s material but
I want to make sure you understand the big ideas in this course

So, from now on:

-- Please come with questions and/or post on Piazza before class to

begin lecture!

-- We may not cover everything that Chris did in one lecture; if we fall

behind, I will cut less essential material from the course (still in slides,

can come to OH, but not responsible for on exams, etc.)

Today’s Lecture

1. Set operators & nested queries
• ACTIVITY: Set operator subtleties

2. Aggregation & GROUP BY
• ACTIVITY: Fancy SQL Part I

3. Advanced SQL-izing
• ACTIVITY: Fancy SQL Part II

4

Lecture 3

1. Set Operators & Nested
Queries

5

Lecture 3 > Section 1

What you will learn about in this section

1. Multiset operators in SQL

2. Nested queries

3. ACTIVITY: Set operator subtleties

6

Lecture 3 > Section 1

7

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

What does it compute?

Lecture 3 > Section 1 > Set Operators

8

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

Computes R Ç (S È T)

But what if S = f?

Lecture 3 > Section 1 > Set Operators

S T

R

Go back to the semantics!

9

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

Lecture 3 > Section 1 > Set Operators

• Recall the semantics!
1. Take cross-product
2. Apply selections / conditions
3. Apply projection

• If S = {}, then the cross product of R, S, T = {}, and the query result = {}!

Must consider semantics here.
Are there more explicit way to do set operations like this?

10

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

What does this look like in Python?

Lecture 3 > Section 1 > Set Operators

• Semantics:
1. Take cross-product

2. Apply selections / conditions

3. Apply projection

Joins / cross-products are just nested for
loops (in simplest implementation)!

If-then statements!

R Ç (S È T)

S T

R

11

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

What does this look like in Python?

Lecture 3 > Section 1 > Set Operators

R Ç (S È T)

S T

R

output = {}

for r in R:
for s in S:

for t in T:
if r[‘A’] == s[‘A’] or r[‘A’] == t[‘A’]:

output.add(r[‘A’])
return list(output)

Can you see now what happens if S = []? See bonus activity on website!

Multiset Operations

12

Lecture 3 > Section 1 > Set Operators

Recall Multisets

13

Lecture 3 > Section 1 > Set Operators

Tuple

(1, a)

(1, a)

(1, b)

(2, c)

(2, c)

(2, c)

(1, d)

(1, d)

Tuple !(#)
(1, a) 2

(1, b) 1

(2, c) 3

(1, d) 2Equivalent
Representations

of a Multiset

Multiset X

Multiset X

Note: In a set all
counts are {0,1}.

! # = “Count of tuple in X”
(Items not listed have
implicit count 0)

Generalizing Set Operations to Multiset
Operations

14

Lecture 3 > Section 1 > Set Operators

Tuple !(#)
(1, a) 2

(1, b) 0

(2, c) 3

(1, d) 0

Multiset X

Tuple !(%)
(1, a) 5

(1, b) 1

(2, c) 2

(1, d) 2

Multiset Y

Tuple !(&)
(1, a) 2

(1, b) 0

(2, c) 2

(1, d) 0

Multiset Z

∩ =

! & =)*+(! # , ! %)
For sets, this is

intersection

15

Lecture 3 > Section 1 > Set Operators

Tuple !(#)
(1, a) 2

(1, b) 0

(2, c) 3

(1, d) 0

Multiset X

Tuple !(%)
(1, a) 5

(1, b) 1

(2, c) 2

(1, d) 2

Multiset Y

Tuple !(&)
(1, a) 7

(1, b) 1

(2, c) 5

(1, d) 2

Multiset Z

∪ =

! & = ! # + ! %
For sets,

this is union

Generalizing Set Operations to Multiset
Operations

Multiset Operations in SQL

16

Lecture 3 > Section 1 > Set Operators

Explicit Set Operators: INTERSECT

17

SELECT R.A
FROM R, S
WHERE R.A=S.A
INTERSECT
SELECT R.A
FROM R, T
WHERE R.A=T.A

Lecture 3 > Section 1 > Set Operators

Q1 Q2

!. # !. # = %. # ∩ !. # !. # = '. #}

UNION

18

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION
SELECT R.A
FROM R, T
WHERE R.A=T.A

Lecture 3 > Section 1 > Set Operators

Q1 Q2

!. # !. # = %. # ∪ !. # !. # = '. #}

Why aren’t there
duplicates?

By default:
SQL uses set
semantics!

What if we want
duplicates?

UNION ALL

19

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION ALL
SELECT R.A
FROM R, T
WHERE R.A=T.A

Lecture 3 > Section 1 > Set Operators

Q1 Q2

!. # !. # = %. # ∪ !. # !. # = '. #}

ALL indicates
Multiset
operations

EXCEPT

20

SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT
SELECT R.A
FROM R, T
WHERE R.A=T.A

Lecture 3 > Section 1 > Set Operators

Q1 Q2

!. # !. # = %. # \{!. #|!. # =). #}

What is the
multiset version?

INTERSECT: Still some subtle problems…

21

Company(name, hq_city)
Product(pname, maker, factory_loc)

SELECT hq_city
FROM Company, Product
WHERE maker = name

AND factory_loc = ‘US’
INTERSECT
SELECT hq_city
FROM Company, Product
WHERE maker = name

AND factory_loc = ‘China’

What if two companies have HQ in US: BUT one has factory in
China (but not US) and vice versa? What goes wrong?

“Headquarters of
companies which
make gizmos in US
AND China”

Lecture 3 > Section 1 > Set Operators

INTERSECT: Remember the semantics!

22

Company(name, hq_city) AS C
Product(pname, maker,
factory_loc) AS P

SELECT hq_city
FROM Company, Product
WHERE maker = name

AND factory_loc=‘US’
INTERSECT
SELECT hq_city
FROM Company, Product
WHERE maker = name
AND factory_loc=‘China’

Lecture 3 > Section 1 > Set Operators

Example: C JOIN P on maker = name
C.name C.hq_city P.pname P.maker P.factory_loc
X Co. Seattle X X Co. U.S.
Y Inc. Seattle X Y Inc. China

INTERSECT: Remember the semantics!

23

Company(name, hq_city) AS C
Product(pname, maker,
factory_loc) AS P

SELECT hq_city
FROM Company, Product
WHERE maker = name

AND factory_loc=‘US’
INTERSECT
SELECT hq_city
FROM Company, Product
WHERE maker = name
AND factory_loc=‘China’

Lecture 3 > Section 1 > Set Operators

Example: C JOIN P on maker = name
C.name C.hq_city P.pname P.maker P.factory_loc
X Co. Seattle X X Co. U.S.
Y Inc. Seattle X Y Inc. China

X Co has a factory in the US (but not China)
Y Inc. has a factory in China (but not US)

But Seattle is returned by the query!

We did the INTERSECT
on the wrong attributes!

One Solution: Nested Queries

24

Company(name, hq_city)
Product(pname, maker, factory_loc)

SELECT DISTINCT hq_city
FROM Company, Product
WHERE maker = name

AND name IN (
SELECT maker
FROM Product
WHERE factory_loc = ‘US’)

AND name IN (
SELECT maker
FROM Product
WHERE factory_loc = ‘China’)

Lecture 3 > Section 1 > Nested Queries

“Headquarters of
companies which
make gizmos in US
AND China”

Note: If we hadn’t
used DISTINCT here,
how many copies of
each hq_city would
have been returned?

High-level note on nested queries

• We can do nested queries because SQL is compositional:

• Everything (inputs / outputs) is represented as multisets- the output of one
query can thus be used as the input to another (nesting)!

• This is extremely powerful!

Lecture 3 > Section 1 > Nested Queries

26

Nested queries: Sub-queries Return Relations

SELECT c.city
FROM Company c
WHERE c.name IN (

SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.product = pr.name

AND p.buyer = ‘Joe Blow‘)

“Cities where one
can find
companies that
manufacture
products bought
by Joe Blow”

Company(name, city)
Product(name, maker)
Purchase(id, product, buyer)

Lecture 3 > Section 1 > Nested Queries

Another
example:

27

Nested Queries

SELECT c.city
FROM Company c,

Product pr,
Purchase p

WHERE c.name = pr.maker
AND pr.name = p.product
AND p.buyer = ‘Joe Blow’

Are these queries equivalent?

Beware of duplicates!

Lecture 3 > Section 1 > Nested Queries

SELECT c.city
FROM Company c
WHERE c.name IN (
SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.name = pr.product

AND p.buyer = ‘Joe Blow‘)

28

Nested Queries

SELECT DISTINCT c.city
FROM Company c,

Product pr,
Purchase p

WHERE c.name = pr.maker
AND pr.name = p.product
AND p.buyer = ‘Joe Blow’

Now they are equivalent (both use set semantics)

Lecture 3 > Section 1 > Nested Queries

SELECT DISTINCT c.city
FROM Company c
WHERE c.name IN (
SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.product = pr.name

AND p.buyer = ‘Joe Blow‘)

29

Subqueries Return Relations

SELECT name
FROM Product
WHERE price > ALL(

SELECT price
FROM Product
WHERE maker = ‘Gizmo-Works’)

Product(name, price, category, maker)

You can also use operations of the form:
• s > ALL R
• s < ANY R
• EXISTS R

Lecture 3 > Section 1 > Nested Queries

Find products that
are more expensive
than all those
produced by
“Gizmo-Works”

Ex:

ANY and ALL not supported by
SQLite.

30

Subqueries Returning Relations

SELECT p1.name
FROM Product p1
WHERE p1.maker = ‘Gizmo-Works’

AND EXISTS(
SELECT p2.name
FROM Product p2
WHERE p2.maker <> ‘Gizmo-Works’

AND p1.name = p2.name)

Product(name, price, category, maker)

You can also use operations of the form:
• s > ALL R
• s < ANY R
• EXISTS R

Lecture 3 > Section 1 > Nested Queries

Find ‘copycat’
products, i.e.
products made by
competitors with
the same names as
products made by
“Gizmo-Works”

Ex:

<> means !=

31

Nested queries as alternatives to INTERSECT
and EXCEPT

(SELECT R.A, R.B
FROM R)

INTERSECT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE EXISTS(

SELECT *
FROM S
WHERE R.A=S.A AND R.B=S.B)

SELECT R.A, R.B
FROM R
WHERE NOT EXISTS(

SELECT *
FROM S
WHERE R.A=S.A AND R.B=S.B)

Lecture 3 > Section 1 > Nested Queries

INTERSECT and EXCEPT not in
some DBMSs!

If R, S have no
duplicates, then
can write without
sub-queries
(HOW?)(SELECT R.A, R.B

FROM R)
EXCEPT
(SELECT S.A, S.B
FROM S)

32

Correlated Queries Using External Vars in Internal Subquery

SELECT DISTINCT title
FROM Movie AS m
WHERE year <> ANY(

SELECT year
FROM Movie
WHERE title = m.title)

Movie(title, year, director, length)

Note also: this can still be expressed as single SFW query…

Lecture 3 > Section 1 > Nested Queries

Find movies whose
title appears more
than once.

Note the scoping
of the variables!

33

Complex Correlated Query

SELECT DISTINCT x.name, x.maker
FROM Product AS x
WHERE x.price > ALL(

SELECT y.price
FROM Product AS y
WHERE x.maker = y.maker

AND y.year < 1972)

Lecture 3 > Section 1 > Nested Queries

Find products (and their
manufacturers) that are
more expensive than all
products made by the
same manufacturer
before 1972

Product(name, price, category, maker, year)

Can be very powerful (also much harder to optimize)

Basic SQL Summary

• SQL provides a high-level declarative language for manipulating data
(DML)

• The workhorse is the SFW block

• Set operators are powerful but have some subtleties

• Powerful, nested queries also allowed.

34

Lecture 3 > Section 1 > Summary

DB-WS03a.ipynb

35

Lecture 3 > Section 1 > ACTIVITY

Lecture_1_1.ipynb

2. Aggregation & GROUP BY

36

Lecture 3 > Section 2

What you will learn about in this section

1. Aggregation operators

2. GROUP BY

3. GROUP BY: with HAVING, semantics

4. ACTIVITY: Fancy SQL Pt. I

37

Lecture 3 > Section 2

38

Aggregation

SELECT COUNT(*)
FROM Product
WHERE year > 1995

Except COUNT, all aggregations
apply to a single attribute

SELECT AVG(price)
FROM Product
WHERE maker = “Toyota”

• SQL supports several aggregation operations:
• SUM, COUNT, MIN, MAX, AVG

Lecture 3 > Section 2 > Aggregation

39

• COUNT applies to duplicates, unless otherwise stated

SELECT COUNT(category)
FROM Product
WHERE year > 1995

Note: Same as COUNT(*).
Why?

We probably want:

SELECT COUNT(DISTINCT category)
FROM Product
WHERE year > 1995

Aggregation: COUNT

Lecture 3 > Section 2 > Aggregation

40

Purchase(product, date, price, quantity)

More Examples

SELECT SUM(price * quantity)
FROM Purchase

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

Lecture 3 > Section 2 > Aggregation

What do these mean?

41

Simple Aggregations
Purchase
Product Date Price Quantity

bagel 10/21 1 20

banana 10/3 0.5 10

banana 10/10 1 10

bagel 10/25 1.50 20

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

50 (= 1*20 + 1.50*20)

Lecture 3 > Section 2 > Aggregation

42

Grouping and Aggregation

SELECT product,
SUM(price * quantity) AS TotalSales

FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Let’s see what this means…

Find total sales
after 10/1/2005
per product.

Lecture 3 > Section 2 > GROUP BY

Purchase(product, date, price, quantity)

43

Grouping and Aggregation

1. Compute the FROM and WHERE clauses

2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause: grouped attributes and aggregates

Semantics of the query:

Lecture 3 > Section 2 > GROUP BY

44

1. Compute the FROM and WHERE clauses

Product Date Price Quantity
Bagel 10/21 1 20

Bagel 10/25 1.50 20

Banana 10/3 0.5 10
Banana 10/10 1 10

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Lecture 3 > Section 2 > GROUP BY

FROM

Product Date Price Quantity

Bagel 10/21 1 20

Bagel 10/25 1.50 20
Banana 10/3 0.5 10

Banana 10/10 1 10

45

2. Group by the attributes in the GROUP BY

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Lecture 3 > Section 2 > GROUP BY

GROUP BY Product Date Price Quantity

Bagel
10/21 1 20

10/25 1.50 20

Banana
10/3 0.5 10

10/10 1 10

46

3. Compute the SELECT clause: grouped
attributes and aggregates
SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Product TotalSales

Bagel 50

Banana 15

Lecture 3 > Section 2 > GROUP BY

SELECTProduct Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10

10/10 1 10

48

HAVING Clause

Same query as
before, except that
we consider only
products that have
more than
100 buyers

HAVING clauses contains conditions on aggregates

Lecture 3 > Section 2 > GROUP BY

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Whereas WHERE clauses condition on individual tuples…

49

General form of Grouping and Aggregation

• S = Can ONLY contain attributes a1,…,ak and/or aggregates over other attributes
• C1 = is any condition on the attributes in R1,…,Rn

• C2 = is any condition on the aggregate expressions

Lecture 3 > Section 2 > GROUP BY

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Why?

50

General form of Grouping and Aggregation

Lecture 3 > Section 2 > GROUP BY

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Evaluation steps:
1. Evaluate FROM-WHERE: apply condition C1 on the

attributes in R1,…,Rn

2. GROUP BY the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)
4. Compute aggregates in S and return the result

51

Group-by v.s. Nested Query

• Find authors who wrote ³ 10 documents:
• Attempt 1: with nested queries

SELECT DISTINCT Author.name
FROM Author
WHERE COUNT(

SELECT Wrote.url
FROM Wrote
WHERE Author.login = Wrote.login) > 10

Author(login, name)
Wrote(login, url)

Lecture 3 > Section 2 > GROUP BY

This is
SQL by
a novice

52

Group-by v.s. Nested Query

• Find all authors who wrote at least 10 documents:
• Attempt 2: SQL style (with GROUP BY)

SELECT Author.name
FROM Author, Wrote
WHERE Author.login = Wrote.login
GROUP BY Author.name
HAVING COUNT(Wrote.url) > 10

No need for DISTINCT: automatically from GROUP BY

Lecture 3 > Section 2 > GROUP BY

This is
SQL by
an expert

Group-by vs. Nested Query

Which way is more efficient?

• Attempt #1- With nested: How many times do we do a SFW query
over all of the Wrote relations?

• Attempt #2- With group-by: How about when written this way?

Lecture 3 > Section 2 > GROUP BY

With GROUP BY can be much more efficient!

DB-WS03b.ipynb

54

Lecture 3 > Section 2 > ACTIVITY

Lecture_1_1.ipynb

3. Advanced SQL-izing

55

Lecture 3 > Section 3

What you will learn about in this section

1. Quantifiers

2. NULLs

3. Outer Joins

4. ACTIVITY: Fancy SQL Pt. II

56

Lecture 3 > Section 3

57

Quantifiers
Product(name, price, company)
Company(name, city)

Find all companies
that make some
products with price
< 100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.name = Product.company

AND Product.price < 100

Existential: easy ! J

Lecture 3 > Section 3 > Quantifiers

An existential quantifier is a
logical quantifier (roughly)
of the form “there exists”

58

Quantifiers
Product(name, price, company)
Company(name, city)

Find all companies
with products all
having price < 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.name NOT IN(

SELECT Product.company
FROM Product.price >= 100)

Lecture 3 > Section 3 > Quantifiers

A universal quantifier is of
the form “for all” Universal: hard ! L

Find all companies
that make only
products with price
< 100

Equivalent

59

NULLS in SQL
• Whenever we don’t have a value, we can put a NULL

• Can mean many things:
• Value does not exists
• Value exists but is unknown
• Value not applicable
• Etc.

• The schema specifies for each attribute if can be null (nullable attribute) or
not

• How does SQL cope with tables that have NULLs?

Lecture 3 > Section 3 > NULLs

60

Null Values

• For numerical operations, NULL -> NULL:
• If x = NULL then 4*(3-x)/7 is still NULL

• For boolean operations, in SQL there are three values:

FALSE = 0
UNKNOWN = 0.5
TRUE = 1

• If x= NULL then x=“Joe” is UNKNOWN

Lecture 3 > Section 3 > NULLs

61

Null Values

• C1 AND C2 = min(C1, C2)
• C1 OR C2 = max(C1, C2)
• NOT C1 = 1 – C1

SELECT *
FROM Person
WHERE (age < 25)

AND (height > 6 AND weight > 190)

Won’t return e.g.
(age=20
height=NULL
weight=200)!

Lecture 3 > Section 3 > NULLs

Rule in SQL: include only tuples that yield TRUE (1.0)

62

Null Values

Unexpected behavior:

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

Lecture 3 > Section 3 > NULLs

Some Persons are not included !

63

Null Values

Can test for NULL explicitly:
• x IS NULL
• x IS NOT NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

OR age IS NULL

Lecture 3 > Section 3 > NULLs

Now it includes all Persons!

64

RECAP: Inner Joins
By default, joins in SQL are “inner joins”:

SELECT Product.name, Purchase.store
FROM Product
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Lecture 3 > Section 3 > Outer Joins

Product(name, category)
Purchase(prodName, store)

Both equivalent:
Both INNER JOINS!

65

Inner Joins + NULLS = Lost data?
By default, joins in SQL are “inner joins”:

However: Products that never sold (with no Purchase tuple) will be lost!

Lecture 3 > Section 3 > Outer Joins

SELECT Product.name, Purchase.store
FROM Product
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

66

Outer Joins

• An outer join returns tuples from the joined relations that don’t have a
corresponding tuple in the other relations
• I.e. If we join relations A and B on a.X = b.X, and there is an entry in A with X=5, but

none in B with X=5…
• A LEFT OUTER JOIN will return a tuple (a, NULL)!

• Left outer joins in SQL:

Lecture 3 > Section 3 > Outer Joins

SELECT Product.name, Purchase.store
FROM Product
LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Now we’ll get products even if they didn’t sell

67

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase
INNER JOIN:

Lecture 3 > Section 3 > Outer Joins

SELECT Product.name, Purchase.store
FROM Product

INNER JOIN Purchase
ON Product.name = Purchase.prodName

Note: another equivalent way to write an
INNER JOIN!

68

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase
LEFT OUTER JOIN:

Lecture 3 > Section 3 > Outer Joins

SELECT Product.name, Purchase.store
FROM Product

LEFT OUTER JOIN Purchase
ON Product.name = Purchase.prodName

69

Other Outer Joins

• Left outer join:
• Include the left tuple even if there’s no match

• Right outer join:
• Include the right tuple even if there’s no match

• Full outer join:
• Include the both left and right tuples even if there’s no match

Lecture 3 > Section 3 > Outer Joins

DB-WS03c.ipynb

70

Lecture 3 > Section 3 > ACTIVITY

Lecture_1_1.ipynb

Summary

SQL is a rich programming language
that handles the way data is processed

declaratively

71

Lecture 2 & 3 > SUMMARY

