
What is computation

Introduction to Programming Language 1



What Does A Computer Do 
• Fundamentally:

• performs calculations 계산이핵심기능

• a billion calculations per second!초당수억개의계산가능

• remembers results 저장공간에결과를저장가능

• 100s of gigabytes of storage! 

• What kinds of calculations? 연산의종류?

• built-in to the language 언어가정한명령

• ones that you define as the programmer 프로그래머가정의한명령

• Computers only know what you tell them 시킨일만할수있음

Introduction to Programming Language 2



Types Of Knowledge 
• declarative knowledge is statements of fact. 선언적지식은사실만말함

• imperative knowledge is a recipe or “how-to”. 명령형지식은방법을다룸

Introduction to Programming Language 3



A numerical Example
• square root of a number x is y such that y*y = x 제곱근의계산

• recipe for deducing square root of a number x (16) 제곱근계산의방법

1. Start with a guess, g 추측

2. If g*g is close enough to x, stop and say g is the answer 제곱이비슷하면종료

3. Otherwise make a new guess by averaging g and x/g 새로운추측값계산

4. Using the new guess, repeat process until close enough 비슷해질때까지반복

Introduction to Programming Language 4

g g*g x/g (g+x/g)/2

3 9 16/3 4.17

4.17 17.36 3.837 4.0035

4.0035 16.0277 3.997 4.000002



What is a recipe
1. Sequence of simple steps 단순한단계

2. flow of control process that specifies when each step is executed흐름
제어가필요

3. a means of determining when to stop종료조건이필요

1 + 2 + 3 = an algorithm !위 3개가알고리즘의정의

Introduction to Programming Language 5



Computers are machines
• How to capture a recipe in a mechanical process 기계적방법

1. fixed program computer: Calculator 고정형프로그램컴퓨터:계산기

2. Stored Program computer: machine stores and executes instructions
저장형프로그램컴퓨터:저장된명령어실행

Introduction to Programming Language 6



Basic Machine Architecture

Introduction to Programming Language 7

MEMORY

Control Unit Arithmetic 
Logic Unit

INPUT OUTPUT

program counter primitive operations



Stored Program Computer
• Sequence of instructions stored inside computer컴퓨터에저장된명령의

순서

• built from predefined set of primitive instructions 기본적명령의조합으로정의됨

1. arithmetic and logic 수식과논리계산

2. simple tests 간단한검사

3. moving data 데이터의이동

• special program (interpreter) executes each instruction in order 특별한
프로그램인해석기가각명령을실행함

• use tests to change flow of control through sequence검사를통해실행을제어함

• stop when done 다실행후종료

Introduction to Programming Language 8



Basic Primitives 
• Turing showed that you can compute anything using 6 primitives
튜링이 6가지기본명령이면어떤것이든계산할수있다고증명

• Move left, Move right, Print, Scan, Erase, Do nothing 

• if you are interested to learn more about it: reference or small video

• modern programming languages have more convenient set of primitives 
현대프로그래밍언어는좀더편한기본명령어들이있음

• can abstract methods to create new primitives 새기본명령만들기가능

• anything computable in one language is computable in any other 
programming language 한언어로연산가능한것은다른언어에서도

연산가능

Introduction to Programming Language 9

http://www.alanturing.net/turing_archive/pages/reference%20articles/Turing's%20O-Machines.html
https://youtu.be/gJQTFhkhwPA


Creating Recipes 
• a programming language provides a set of primitive operations 기본명령어

집합이제공됨

• expressions are complex but legal combinations of primitives in a 
programming language 표현식이복잡하더라도기본명령조합이면해석

가능

• expressions and computations have values and meanings in a programming 
language 표현식과연산에는값과의미가있음

Introduction to Programming Language 10



Aspects of Languages
• Primitive constructs: Syntax and Semantic문법과의미

• Syntax: Defines the grammar문법을정의

• Semantic: is the meaning associated with syntactically correct symbols with no 
semantic errors 사용된심볼들이의미에맞는지확인

• English/Korean: Words단어

• 아버지가방에들어가신다 – syntactically valid but semantically not correct

• 아기고기다리 – not syntactically valid

• Programming Language: Numbers, Strings, Simple operators숫자문자,연산자

• 3.14*8 – syntactically valid

• “hi”5 – not syntactically valid

Introduction to Programming Language 11



Aspects of Languages

Introduction to Programming Language 12

• Natural languages have 
many meanings
자연어는다중적의미를갖음

• Programming Languages have
only one meaning but may not
be what programmer intended
프로그래밍언어는유일한

의미만갖음



Where things go wrong
• syntactic errors 문법오류

• common and easily caught 쉽게고칠수있음

• static semantic errors 정적의미오류

• some languages check for these before running program 의미가맞는지미리

검사하기도함

• can cause unpredictable behavior 예측불가능한오류

• no semantic errors but different meaning than what programmer intended 
오류가없지만프로그래머의의도와다를수있음

• program crashes, stops running 오동작,멈춤

• program runs forever무한반복실행

• program gives an answer but different than expected 예상외의결과

Introduction to Programming Language 13


	What is computation
	What Does A Computer Do 
	Types Of Knowledge 
	A numerical Example
	What is a recipe
	Computers are machines
	Basic Machine Architecture
	Stored Program Computer
	Basic Primitives 
	Creating Recipes 
	Aspects of Languages
	Aspects of Languages
	Where things go wrong

