
Pointers
adopted from KNK C Programming : A Modern Approach

Pointer Variables
• The first step in understanding pointers is visualizing what they

represent at the machine level.
포인터를이해하는첫단계는기계레벨에서어떻게표현되는지가시화하는것

• In most modern computers, main memory is divided into bytes,
with each byte capable of storing eight bits of information:
메인메모리는바이트로구분되어있고각바이틑 8bit 정보를저장할수있음

• Each byte has a unique address.
각바이트는유일한주소를갖고있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 2

Pointer Variables
• If there are n bytes in memory, we can think of addresses as

numbers that range from 0 to n – 1:
n 바이트의메모리가있다면주소는 0부터 n-1까지라고가정

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 3

주소 내용

Pointer Variables
• Each variable in a program occupies one or more bytes of

memory. 각변수는 1 또는 2 바이트의메모리를차지함

• The address of the first byte is said to be the address of the
variable. 변수의주소는첫번째바이트의주소임

• In the following figure, the address of the variable i is 2000:
변수 i의주소는 2000

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 4

Pointer Variables
• Addresses can be stored in special pointer variables.
주소는포인터변수라는특별한변수에저장됨

• When we store the address of a variable i in the pointer variable
p, we say that p “points to” i.
변수 i의주소를포인터변수 p에저장한다면, p는 i를가리킨다(포인트한다)라고
표현함

• A graphical representation:도식화해보자

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 5

Declaring Pointer Variables
• When a pointer variable is declared, its name must be preceded

by an asterisk:
포인터변수를선언할때, 변수명앞에별표를해야함

int *p;
• p is a pointer variable capable of pointing to objects of type int.
해석하면포인터변수 p는 int 타입객체를포인트할수있다는의미임

• We use the term object instead of variable since p might point to
an area of memory that doesn’t belong to a variable.
변수대신객체라부르는이유는 p가변수가아닌다른메모리영역을가리킬수도
있기때문

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 6

Declaring Pointer Variables
• Pointer variables can appear in declarations along with other

variables: 포인터변수는다른변수들과같이선언될수있음

int i, j, a[10], b[20], *p, *q;

• C requires that every pointer variable point only to objects of
a particular type (the referenced type):
모든포인터변수는특정타입(참조타입)의객체만포인트할수있음

int *p; /* points only to integers */
double *q; /* points only to doubles */
char *r; /* points only to characters */

• There are no restrictions on what the referenced type may
be. 참조타입에대한제한조건은없음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 7

The Address and Indirection Operators
• C provides a pair of operators designed specifically for use with

pointers. 포인터에활용할수있는연산자를 c에서제공함

• To find the address of a variable, we use the & (address)
operator.
변수의주소는 &(주소) 연산자를통해얻음

• To gain access to the object that a pointer points to, we use the
* (indirection) operator.
포인터가포인트하는객체를접근하기위해서는 *(간접참조, 간접)연산자를씀

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 8

The Address Operator
• Declaring a pointer variable sets aside space for a pointer but

doesn’t make it point to an object:
포인터변수를선언하는것은변수자체를위한공간만할당; 객체참조안함

int *p; /* points nowhere in particular */

• It’s crucial to initialize p before we use it.
포인터변수 p를사용전에초기화하는것이중요!!

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 9

The Address Operator
• One way to initialize a pointer variable is to assign it the address

of a variable:
포인터변수를초기화하는방법중하나는다른변수의주소를할당하는것

int i, *p;
…
p = &i;

• Assigning the address of i to the variable p makes p point to i:
변수 i의주소를 (포인터)변수 p에저장하면 (포인터)변수 p가 i를포인팅함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 10

The Address Operator
• It’s also possible to initialize a pointer variable at the time it’s

declared:
또다른방법: 선언하면서포인터변수초기화

int i;
int *p = &i;

• The declaration of i can even be combined with the declaration
of p:
변수 i를선언하면서포인터변수 p를 i의주소를포인팅하도록초기화할수있음

int i, *p = &i;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 11

The Indirection Operator
• Once a pointer variable points to an object, we can use the *

(indirection) operator to access what’s stored in the object.
포인터변수가어떤객체를포인팅하면 * (간접참조) 연산자를사용해서객체에
저장된것에접근할수있음

• If p points to i, we can print the value of i as follows:
p가 i를가리킬때 i의값을다음처럼출력할수있음

printf("%d\n", *p);
• Applying & to a variable produces a pointer to the variable.

Applying * to the pointer takes us back to the original variable:
어떤변수에 &를쓰면그변수를가리킬수있는주소를알려줌
다시 *를쓰면주소에저장된값을알려줌

j = *&i; /* same as j = i; 서로 동치 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 12

The Indirection Operator
• As long as p points to i, *p is an alias for i.

p가 i를가리키는동안에는 *p는 i에대한또다른이름임

• *p has the same value as i. *p는 i와동일한값을갖음

• Changing the value of *p changes the value of i.
*p의값을변경하면 i의값도변경됨

• The example on the next slide illustrates the equivalence of *p
and i.
다음슬라이드의예제를살펴보자.

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 13

The Indirection Operator
p = &i;

i = 1;

printf("%d\n", i); /* prints 1 */
printf("%d\n", *p); /* prints 1 */

*p = 2;

printf("%d\n", i); /* prints 2 */
printf("%d\n", *p); /* prints 2 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 14

The Indirection Operator
• Applying the indirection operator to an uninitialized pointer

variable causes undefined behavior:
간접참조연산자를초기화하지않고사용하면오동작을일으킴

int *p;
printf("%d", *p); /*** WRONG ***/

• Assigning a value to *p is particularly dangerous:
포인터변수 *p에상수를저장하는것은특히위험!! 왜일까?

int *p;
*p = 1; /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 15

Pointer Assignment
• C allows the use of the assignment operator to copy pointers of

the same type.
할당연산자를통해동일한타입에대한포인터를복사가능

• Assume that the following declaration is in effect:
다음과같이선언했다고가정

int i, j, *p, *q;
• Example of pointer assignment: 포인터할당예제

p = &i;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 16

Pointer Assignment
• Another example of pointer assignment:
또다른포인터할당예제

q = p;
q now points to the same place as p:
q가이제 p가가리키는곳을똑같이가리킴

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 17

Pointer Assignment
• If p and q both point to i, we can change i by assigning a

new value to either *p or *q:
p와 q가 i를가리킨다면, *p 또는 *q의값변경으로 i의값을변경가능

*p = 1;

*q = 2;

• Any number of pointer variables may point to the same
object. 포인터변수가몇개든상관없이동일한객체를가리킬수있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 18

Pointer Assignment
• Be careful not to confuse
q = p;
with
*q = *p;
위의 두 문장이 서로 갖다고 생각하지 말것

• The first statement is a pointer assignment, but the second is not.
첫번째문장은포인터할당이지만, 두번째문장은아님

• The example on the next slide shows the effect of the second
statement. 다음슬라이드에서두번째문장의의미를살펴보자

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 19

Pointer Assignment
p = &i;
q = &j;
i = 1;

*q = *p;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 20

Pointers as Arguments
• In Chapter 9, we tried—and failed—to write a decompose

function that could modify its arguments.
9장에서 decompse 함수가실수부분과소수부분을분리하는것을실패하였음

• By passing a pointer to a variable instead of the value of the
variable, decompose can be fixed.
변수의값대신변수에대한포인터를전달하는것으로문제를해결할수있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 21

Pointers as Arguments
• New definition of decompose: 새로운 decompose 함수의정의

void decompose(double x, long *int_part,
double *frac_part)

{
*int_part = (long) x;
*frac_part = x - *int_part;

}

• Possible prototypes for decompose: 이함수의프로토타입

void decompose(double x, long *int_part,
double *frac_part);

void decompose(double, long *, double *);

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 22

Pointers as Arguments
• A call of decompose: 함수호출방법

decompose(3.14159, &i, &d);

• As a result of the call, int_part points to i and frac_part
points to d:
호출의결과로 int_part는 i를가리키고 frac_part는 d를가리킴

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 23

Pointers as Arguments
• The first assignment in the body of decompose converts the

value of x to type long and stores it in the object pointed to by
int_part:
decompse 함수의첫할당문은 x의값을 long 타입으로변경한후 int_part가
가리키는객체에저장함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 24

Pointers as Arguments
• The second assignment stores x - *int_part into the object

that frac_part points to:
두번째할당문은 x - *int_part 의계산결과를 frac_part가가리키는객체에저장함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 25

Pointers as Arguments
• Arguments in calls of scanf are pointers:

scanf 호출의인자에도포인터가포함되어있음

int i;
…
scanf("%d", &i);
Without the &, scanf would be supplied with the value of i.
& 없이는 scanf는 i의값을전달받게됨

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 26

Pointers as Arguments
• Although scanf’s arguments must be pointers, it’s not always

true that every argument needs the & operator:
scanf의인자가포인터야하지만, 모든인자값이 &연산자가있어야하는것은아님

int i, *p;
…
p = &i;
scanf("%d", p);

• Using the & operator in the call would be wrong:
이경우 & 연산자를호출하는것은잘못된것임

scanf("%d", &p); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 27

Pointers as Arguments
• Failing to pass a pointer to a function when one is expected can have

disastrous results.
함수에포인터전달이실패된다면결과가이상할수있다.

• A call of decompose in which the & operator is missing:
decompe의호출에 &연산자를안쓴다면

decompose(3.14159, i, d);

• When decompose stores values in *int_part and *frac_part, it
will attempt to change unknown memory locations instead of modifying
i and d.
decompose는 i 와 d의값을변경하는대신 *int_part와 *frac_part이가리는임의의
주소의값을변경함

• If we’ve provided a prototype for decompose, the compiler will detect
the error.
decompse의프로토타입을선언했었다면오류를검출했을것임

• In the case of scanf, however, failing to pass pointers may go
undetected.
단, scanf의경우포인터를사용안더라도검출안될수있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 28

Program: Finding the Largest and Smallest Elements in an Array

• The max_min.c program uses a function named max_min to
find the largest and smallest elements in an array.
max_min.c이라는프로그램은 max_min 함수를사용하여배열에서가장큰수와
작은수를찾음

• Prototype for max_min: 프로토타입은다음과같음

void max_min(int a[], int n, int *max, int *min);

• Example call of max_min: 호출예제

max_min(b, N, &big, &small);

• When max_min finds the largest element in b, it stores the value
in big by assigning it to *max. 이함수가배열 b에서가장큰요소를
찾으면 *max를통해서 big에할당

• max_min stores the smallest element of b in small by
assigning it to *min. 이함수가배열 b에서가장작은요소를찾으면 *min을
통해서 small에할당

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 29

Program: Finding the Largest and Smallest Elements in an Array

• max_min.c will read 10 numbers into an array, pass it to
the max_min function, and print the results:
사용자로부터 10개의수를받아들이고 max_min함수에전달함. 이후
결과를출력

Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31
Largest: 102
Smallest: 7

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 30

maxmin.c
/* Finds the largest and smallest elements in an array */

#include <stdio.h>

#define N 10

void max_min(int a[], int n, int *max, int *min);

int main(void)
{
int b[N], i, big, small;

printf("Enter %d numbers: ", N);
for (i = 0; i < N; i++)
scanf("%d", &b[i]);

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 31

max_min(b, N, &big, &small);

printf("Largest: %d\n", big);
printf("Smallest: %d\n", small);

return 0;
}

void max_min(int a[], int n, int *max, int *min)
{
int i;

*max = *min = a[0];
for (i = 1; i < n; i++) {
if (a[i] > *max)
*max = a[i];

else if (a[i] < *min)
*min = a[i];

}
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 32

Using const to Protect Arguments
• When an argument is a pointer to a variable x, we normally

assume that x will be modified:
어떤인자가변수 x에대한포인터라할때 x가변경될것을가정함

f(&x);

• It’s possible, though, that f merely needs to examine the value of
x, not change it.
때로는 x의값을변경하는것이아니라확인만하고자할수있음

• The reason for the pointer might be efficiency: passing the value
of a variable can waste time and space if the variable requires a
large amount of storage.
이때포인터를쓰는것은효율성때문임: 값으로전달하면변수를복사하는
과정에서공간과시간이낭비될수있음, 특히변수가많은저장공간을필요로
한다면문제는더심각함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 33

Using const to Protect Arguments
• We can use const to document that a function won’t change an

object whose address is passed to the function.
이경우 const라는키워드를사용하여함수가전달받은변수의주소가가리키는
객체가변경되지않을것을명시할수있음

• const goes in the parameter’s declaration, just before the
specification of its type:
const는매개변수를선언할때기록하고타입앞에붙여야함

void f(const int *p)
{

*p = 0; /*** WRONG ***/
}

Attempting to modify *p is an error that the compiler will detect.
*p를변경하려고시도하면컴파일러가해당오류를검출함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 34

Pointers as Return Values
• Functions are allowed to return pointers:
함수는포인터를리턴할수있음

int *max(int *a, int *b)
{

if (*a > *b)
return a;

else
return b;

}

• A call of the max function: max를호출하는방법

int *p, i, j;
…
p = max(&i, &j);

After the call, p points to either i or j. 호출결과, p는 I 또는 j를
가리킴

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 35

Pointers as Return Values
• Although max returns one of the pointers passed to it as an

argument, that’s not the only possibility.
max가인자로전달받은포인터중하나를리턴하지만다른것도가능함

• A function could also return a pointer to an external variable
or to a static local variable.
함수가 external 변수나정적지역변수에대한포인터도리턴할수있음

• Never return a pointer to an automatic local variable:
절대로자동지역변수에대한포인터를리턴하지말것
int *f(void)
{

int i;
…
return &i;

}

The variable i won’t exist after f returns.
변수 i는 f가리턴하면소멸됨

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 36

Pointers as Return Values
• Pointers can point to array elements.
포인터는배열의원소를포인트할수있음

• If a is an array, then &a[i] is a pointer to element i of a.
만약 a가배열이면 &a[i]는 a의 i번째요소에대한포인터임

• It’s sometimes useful for a function to return a pointer to one of
the elements in an array.
때로는배열의요소중하나에대한포인터를리턴하는데유용함

• A function that returns a pointer to the middle element of a,
assuming that a has n elements:
다음함수는배열 a의가운데요소에대한포인터를리턴함, a는 n개요소가있음

int *find_middle(int a[], int n) {
return &a[n/2];

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 37

