Pointers

adopted from KNK C Programming : A Modern Approach

Pointer Variables

* The first step in understanding pointers is visualizing what they
represent at the machine level.
ZOIEHZ O[5St A THA = 7| A R A HEA 7o E[=X| 7FA[2t5H= A
* In most modern computers, main memory is divided into bytes,

with each byte capable of storing eight bits of information:
HoIH22|= HIO0|[EZE 250 2 2} HIO|E 8hit HEE XML = U=

* Each byte has a unique address.

2L HO|ES AR FAE 2

Pointer Variables

* If there are n bytes in memory, we can think of addresses as

numbers that range fromOton—1:
n HIO|EQ| {2 2|7t RULCHH A= 05 H n-17HX[22 71

Z2 Address Contents L&

0 01010011
1 01110101
2 01110011
3 01100001
4 01101110
n-1 01000011

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Pointer Variables

e Each variable in a program occupies one or more bytes of
memory. Zt Ha= 1 £= 2 HO|EQ| K| 22| & A}t X| g

* The address of the first byte is said to be the address of the

variable. H=9| A= A K] HO|EQ| A&

* In the following figure, the address of the variable i is 2000:
H==iQ| A= 2000

2000

2001

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Pointer Variables

e Addresses can be stored in special pointer variables.
TAoe ZOIH Haypgts S80 B0 MEE

* When we store the address of a variable i in the pointer variable

p, we say that p “points to” 1.
H 0] TAF EQH B p0f| MYTHEHH, p= i 7I2(ZICHZE IESIT)E

T 1=

H3

* A graphical representation: =43} s 2 X}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Declaring Pointer Variables

* When a pointer variable is declared, its name must be preceded

by an asterisk:

ZOEH WS AU, B8 90| Ex *

Mot

off OF

M|

int *p;

* pis a pointer variable capable of pointing to objects of type int.
S AStH ZOIE B p=int B M| E 2 E & &= UCH= 90|

* We use the term object instead of variable since p might point to

an area of memory that doesn’t belong to a variable.

H O AN 2t RE2E= O|lfe p?l HZt OFH CHE M 22| SYs 72| ZE
ol7| [2

AN L

Declaring Pointer Variables

* Pointer variables can appear in declarations along with other
variables: ZQIH W= CHE HeS0E 20| Mo 2 5= US
int i, j, all0], b[20], *p, *q;

* Crequires that every pointer variable point only to objects of
a particular type (the referenced type):

DE EOIE| B4t S EFQI(AE B AN T EAES 4 US

-

int *p; /* points only to integers */
double *qg; /* points only to doubles */
char *r; /* points only to characters */

* There are no restrictions on what the referenced type may
be. &Z ErYO| et Mot =H2 SIS

The Address and Indirection Operators

* C provides a pair of operators designed specifically for use with
pointers. ZQIEOf Z8% = U= HLUXE oM XS
e To find the address of a variable, we use the & (address)

operator.
HO| A= &(FA) HUXE SOl €=

e To gain access to the object that a pointer points to, we use the
* (indirection) operator.

ZOAE 7} ZAESH=AME EZot7| ?loiN = (U&=, 2

Vi

—_——

H)ELAE &

— -

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

The Address Operator

* Declaring a pointer variable sets aside space for a pointer but
doesn’t make it point to an object:

O HpF MOStE A2 HE AN & et S0 E; 2N srxotet
int *p; /* points nowhere in particular */

* It’s crucial to initialize p before we use it.
HZOIH B pE AFET0| =7|2t0t= A0 S8

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

The Address Operator

* One way to initialize a pointer variable is to assign it the address

of a variable:
O H,E X7|210l= 2 S SlL= CHE HEo| A E

ot

st %

int 1, *p;

p = &1;

* Assigning the address of i to the variable p makes p point to i:
H o] TAF (EQUH)H= p0f| M YSHH (ZIH)Hxp/tig XA

Copyright © 2008 W. W. Norton & Company. 10
All rights reserved.

The Address Operator

* It’s also possible to initialize a pointer variable at the time it’s

declared:
CECHE . MASIHA LOIE Hay X7| 39}

int 1;
int *p = &1;

e The declaration of 1 can even be combined with the declaration

H S URUSIHAM 20 HpS i 25 Z2E

Copyright © 2008 W. W. Norton & Company.

All rights reserved.

11

The Indirection Operator

Once a pointer variable points to an object, we can use the *

(indirection) operator to access what’s stored in the object.
ZOIE 71 O K| E ZQIESH * (ZHH T X) ALUXE AFESHA 2| 0f
MEE Ao H2g += U2

If p points to i, we can print the value of i as follows:

p/tiE 7IE|Z2 I i Zt= CIENME 282 = US

printf ("%d\n", *p);

Applying & to a variable produces a pointer to the variable.

Applying * to the pointer takes us back to the original variable:
O O gEMAH A HSF /IE|ZE = /e T2E LAHT
ChAl *& 20 20| MY E 4= €8s

Jj = *&1i; /* same as j = 1i; M2 EX| */

12

The Indirection Operator

* Aslong as p points to i, *p is an alias for
p/tiE 7te|7|= S0 *p= 0l TSt £ CFE Ol & °'

= O
* *p hasthe samevalue as i. *»p= it Lot US A3

* Changing the value of *p changes the value of 1.
*nO| 742 HZASIH jo| Zt T HZAE

* The example on the next slide illustrates the equivalence of *p

and 1.
Ct= =2t0| E9| Of| K| & & 2 X}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

The Indirection Operator

p = &1;

1 = 1;

printf ("$d\n",
printf ("$d\n",

printf ("$d\n",
printf ("$d\n",

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

*/
*/

*/
*/

The Indirection Operator

* Applying the indirection operator to an uninitialized pointer
variable causes undefined behavior:

2 ER AMXE X7|9H5HE| 0 AL SIHH 2522 Yo
int *p;
printf ("$d", *p); /*** WRONG ***/

* Assigning a value to *p is particularly dangerous:
HEOIH B *p0f| =5 XM Yot= A2 50| f[&n ALt

int *p;
*p — 1; /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Pointer Assignment

* Callows the use of the assignment operator to copy pointers of
the same type.
2 AAMXE SO s ot ErRO| CHet ZQIHE SA s

—

* Assume that the following declaration is in effect:
Ct2af £0| dARMCn 7HE
int 1, 3, *p, *q;

* Example of pointer assignment: Z 2l & &k Of &

P = &1;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Pointer Assignment

 Another example of pointer assignment:
I COHE QI 2 oK

qd = Py

g now points to the same place as p:
q’F O| Al pZt 7t2|7|= X5 £&0| 7t2| &

-

Copyright © 2008 W. W. Norton & Company.

All rights reserved.

17

Pointer Assignment

If p and g both point to i, we can change i by assigning a

new value to either *p or *q:
p2tg/tiE 7IE|ZICHH, *p EE= *q2| 4k HE L2 9] ¢t HE 7=

o= 1
=1

q :l

* Any number of pointer variables may point to the same

object. ZQIE H7t H 7= G0l Yot 2K E 7122 = U=

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Pointer Assignment

* Be careful not to confuse

qa = p;
with
‘kq — *p;

o F 80| M2 L 4o A

* The first statement is a pointer assignment, but the second is not.
N HR 282 Z0H SYO[X[2 F B =22 O

* The example on the next slide shows the effect of the second
statement. Ct= 20| =0 N = HR| 22| 2|0| & & 2t

Copyright © 2008 W. W. Norton & Company. 19
All rights reserved.

Pointer Assignment

p = &1;
a = &J;
1 = 1;
*q: *p,
IR e

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Pointers as Arguments

* In Chapter 9, we tried—and failed—to write a decompose

function that could modify its arguments.
90| M decompse &7t 2 FE Ut &+ B2 S 2L[ots A= 2SR

0o

* By passing a pointer to a variable instead of the value of the

variable, decompose can be fixed.

H0| gL Ol H=Of Tt ZQHE MEStE A2 EMS ol E

Mot

o
=

$0

A
T

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Pointers as Arguments

* New definition of decompose: M2 decompose &2| 9|

vold decompose (double x, long *int part,
double *frac part)

*1int part = (long) x;
*frac part = X - *int part;
}
* Possible prototypes for decompose: 0| &0 T2 EEIY

vold decompose (double x, long *int part,
double *frac part);

vold decompose (double, long *, double *);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Pointers as Arguments

* Acallof decompose: g+ =& 4H
decompose (3.14159, &1, &d);

* Asaresultof thecall, int part pointsto i and frac part
points to d:

D=9 AU E int_part=iE 7t2|7| 1 frac_part= dE 72| &

X | 3.14159 |
> ? Ij_
? Id

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

int part

frac part

[Lo

Pointers as Arguments

* The first assignment in the body of decompose converts the
value of x to type 1ong and stores it in the object pointed to by
int part:

decompse & 2| K LHE2 x2| 22 long EFR 2 = HETH Z int_part/|
7te|7|= AA[0ff A Ee

3.14159

[

int part

frac part + I
Copyright © 2008 W. W. Norton & Company. 24
All rights reserved.

L

Pointers as Arguments

* The second assignment stores x — *int part into the object
that frac part points to:

FHR 2 E2 x- *int_part 2| A4 AOHE frac_part/t 7H2| 7| = 2 M| 0f M & &t

3.14159

3 Ii
.14159 Id

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

i

int part

frac part

Tt

25

Pointers as Arguments

* Arguments in calls of scanf are pointers:
scanf @ = 2| QXL = L QIE{ 7} L HE[O] RUF

int 1;

scanf ("%sd", &i);

Without the &, scanf would be supplied with the value of i.
& 10| = scanf= il 4/ UE A &

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Pointers as Arguments

e Although scanf’s arguments must be pointers, it’s not always
true that every argument needs the & operator:
scanf@| IAt7} & QIE{ Of StA|2F H = QIX; ££0] & HLEXZF [LO{OF St= A2 OF

int 1, *p;

p = &1;
scanf ("$d", p);

* Using the & operator in the call would be wrong:
O| 4% & AMAE 255t A2 HXE AY

—

scanf ("%d", &p); /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 21

Pointers as Arguments

Failing to pass a pointer to a function when one is expected can have
disastrous results.

eh=0f| QIR MEO| i EICHH A7) O] ofeh 4= UL

A call of decompose in which the & operator is missing:

decompel| 2 =0f| & HLALS QF ££CHH

decompose (3.14159, 1, d);

When decompose stores valuesin *int part and *frac part,it

will attempt to change unknown memory locations instead of modifying
i and d.

decomposet i 2t d2| 4f= HE
o —
_7|<__J|_O 7|- I:I:|7=|o|:||-

O}

= CHA *int_part@} *frac_partO| 7t2[= & 2| 9]

If we’ve provided a prototype for decompose, the compiler will detect
the error.

decompsel| ZEEEIQS MAMUCIH L7 E A== A

In the case of scanf, however, failing to pass pointers may go

undetected.
B scanfo] 2@ EOIE|S AFG QHEi2tE A% OHE 4 9IS

28

Program: Finding the Largest and Smallest Elements in an Array

* Themax min.c program uses a function named max min to

find the largest and smallest elements in an array.

max_min.cO|2f= Z 2 12 max_min &E ALESIY BE QA 7 2 =2}
XS L2 RS

* Prototype formax min: ZZEEIY2 LISt 2F

vold max min(int al], 1int n, int *max, int *min);
* Example call of max min: 2= ofX

max min (b, N, &big, &small);

* When max min finds the largest element in b, it stores the value
in big by assigning it to *max. Ol &7t HIE bOIM 71 E R4S
O H *maxE SOl M bighll 2

* max min stores the smallest element of b in small by

assigning it to *min. O &7t H{E b0 M 7Y 22 QAF H 2 M *min2
SHA smallOf] 2

29

Program: Finding the Largest and Smallest Elements in an Array

* max min.c will read 10 numbers into an array, pass it to

the max min function, and print the results:
AEXERE 10702 =& Ot S0[1 max_min®==0f ©Eg O|=

. = 0.
= o
ANE =4

Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31
Largest: 102

Smallest: 7

Copyright © 2008 W. W. Norton & Company. 30
All rights reserved.

maxmin.cC

/* Finds the largest and smallest elements in an array */
#include <stdio.h>
#define N 10
void max min(int al[], int n, 1int *max, 1int *min);
int main (void)
{
int b[N], i1, big, small;
printf ("Enter %$d numbers: ", N);

for (i = 0; i < N; i++)
scanf ("$d", &b[i]);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

max min (b, N, &big, é&small);

printf ("Largest: %d\n", big);
printf ("Smallest: %d\n", small);

return 0;

}

void max min(int al[], int n, 1int *max, 1int
{
int 1i;
*max = *min = a[0];
for (1 = 1; 1 < n; i++) |
if (a[i] > *max)
*max = al[i];
else 1f (a[i1] < *min)
*min = al[i];

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

*min)

32

Using const to Protect Arguments

* When an argument is a pointer to a variable x, we normally

assume that x will be modified:
O™ OIX}7F = xOf CHoF ZOIE 2t & [x7t HEE AZ 7}

f(&x);

F

o
Mok

* It’s possible, though, that £ merely needs to examine the value of
x, hot change it.
2= x2| 2tS HE5t= A0| OfL| 2} 2 RITSt X g == U

* The reason for the pointer might be efficiency: passing the value
of a variable can waste time and space if the variable requires a
large amount of storage.

Of i ZOIHE A= A2 2ad Y W= HEE HyZ FASH=
O A Z7HTt AlZHO] I-*HI = 4 = AT, S| BVt B2 ME U= 28R

SICHE 2RE o Mz

- -

33

Using const to Protect Arguments

We can use const to document that a function won’t change an

object whose address is passed to the function.
O] 2 constete= 7| R EE ArE0I0] &7t T T2 Ho AT 71| 7|
AR 7t HBE X S AE HAE = US

const goes in the parameter’s declaration, just before the
specification of its type:
const= Of7ff =5 Moie If 7[5t 0 Er e &40 =0{0F &

void f (const int *p)

*p — O; /*** WRONG ***/

Attempting to modify *p is an error that the compiler will detect.
*pE HEo D A|StH U7 7S A=

34

Pointers as Return Values

* Functions are allowed to return pointers:

SEAA - 77 = sE Ao o
ot-= HOIHE 2|8 = /UZ

int *max(int *a, 1nt *Db)

{
1if (*a > *Db)

return a;
else
return b;

}
e A call of the max function: maxS @ =5} = i

int *p, i, Jj;
p = max (&1, &7J);

After the call, p points to either 1 or j. @& Z1}, p= 1 £ &
72| &

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Pointers as Return Values

* Although max returns one of the pointers passed to it as an
argument, that’s not the only possibility.
max/f QIAIZ ME @2 ZQIH S otLtE S| B CHE AR 7tse
* A function could also return a pointer to an external variable
or to a static local variable.
2 =7t external Bl=Lt HX X[F H0f Cfot ZOIHE 2[HE = US
* Never return a pointer to an automatic local variable:
B2 X5 XY H=0f Ofot =8 & 2|E5HA| & A
int *f(void)
{

int 1i;

return &i;

}

The variable i won’t exist after £ returns.

n
Ha s f7) 2| EotH A2 E

36

Pointers as Return Values

Pointers can point to array elements.
ZOH= GO fAE XZAE L = US

If a is an array, then &a [i] is a pointer to element 1 of a.
2FOF a7t B HO|H galil= a2l i 240f CiSH ZOIH
It’s sometimes useful for a function to return a pointer to one of
the elements in an array.
2= HEO| @4 T StLtof Ciet ZQIHE 2[Hol=0 8¢
A function that returns a pointer to the middle element of a,
assuming that a has n elements:
Cre g i€ 28| 7120 240 Cfet ZIHE E|HE, ac n/ll 2247 US
int *find middle(int al],

return &aln/2];

int n) {

37

