
Data structure and algorithm in Python
Tree

Seongjin Lee

Dept of Aerospace and Software Engineering,
Gyeongsang National University

Table of contents

1. General Trees

2. Binary Tree

3. Implementing Trees

4. Tree Traversal Algorithms

5. Expression Tree

1

General Trees

General Trees

Tree is one of the most important nonlinear data structures.

• Tree structures are indeed a breakthrough in data organization, for
they allow us to implement a host of algorithms much faster than
when using linear data structures, such as array-based lists or linked
lists.

• Trees also provide a natural organization for data, and consequently
have become ubiquitous structures in file systems, graphical user
interfaces, databases, Web sites, and other computer systems.

2

General Trees

When we say that trees are “nonlinear”, we are referring to an
organizational relationship that is richer than the simple “before” and
“after” relationships between objects in sequences. The relationships in a
tree are hierarchical, with some objects being “above” and some “below”
others.

3

General Trees

Actually, the main terminology for tree data structures comes from family
trees, with the terms “parent”, “child”, “ancestor” and “descendant”
being the most common words used to describe rela- tionships.

4

General Trees
Tree Definitions and Properties

Tree Definitions and Properties

A tree is an abstract data type that stores elements hierarchically.

With the exception of the top element, each element in a tree has a
parent element and zero or more children elements.

We typically call the top element the root of the tree, but it is drawn as
the highest element, with the other elements being connected below.

5

Tree Definitions and Properties

6

Tree Definitions and Properties

Definition : Formal Tree Definition

A tree T is a set of nodes storing elements such that the nodes have
a parent-child relationship that satisfies the following properties:

• If T is nonempty, it has a special node, called the root of T ,
that has no parent.

• Each node v of T different from the root has a unique parent
node w ; every node with parent w is a child of w .

7

Tree Definitions and Properties

According to the definition, a tree can be empty, meaning that it does
not have any nodes. This convention also allows us to define a tree
recursively such that a tree T is either empty or consists of a node r ,
called the root of T , and a (possibly empty) set of subtrees whose roots
are the children of r .

8

Tree Definitions and Properties

• Two nodes that are children of the same parent are siblings.
• A node v is external if v has no children.
• A node v is internal if it has one or more children. External nodes

are also known as leaves.
• A node u is an ancestor of a node v if u = v or u is an ancestor of

the parent of v .
Conversely, we say that a node v is a descendant of a node u if u is
an ancestor of v .

• The subtree of T rooted at a node v is the tree consisting of all the
descendants of v in T (including v itself).

9

Tree Definitions and Properties

10

General Trees

• An edge of tree T is a pair of nodes (u,v) such that u is the parent
of v , or vice versa.

• A path of T is a sequence of nodes such that any two consecutive
nodes in the sequence form an edge.

11

Tree Definitions and Properties

12

Tree Definitions and Properties

13

Tree Definitions and Properties

Definition : Ordered Tree

A tree is ordered if there is a meaningful linear order among the
children of each node; that is, we purposefully identify the children
of a node as being the first, second, third, and so on. Such an order
is usually visualized by arranging siblings left to right, according to
their order.

14

Tree Definitions and Properties

15

General Trees
The Tree Abstract Data Type

The Tree Abstract Data Type

We define a tree ADT using the concept of a position as an abstraction
for a node of a tree. An element is stored at each position, and positions
satisfy parent-child relationships that define the tree structure.

A position object for a tree supports the method:

• p.element(): Return the element stored at position p.

16

The Tree Abstract Data Type

The tree ADT then supports the following accessor methods, allowing a
user to navigate the various positions of a tree:

• T.root(): Return the position of the root of tree T or None if T is
empty.

• T.is_root(p): Return True if position p is the root of tree T .
• T.parent(p): Return the position of the parent of position p, or

None if p is the root of T .
• T.num_chidren(p): Return the number of children of position p.
• T.children(p): Generate an iteration of the children of position p.
• T.is_leaf(): Return True if position p does not have any chidlren.

17

The Tree Abstract Data Type

• len(T): Return the number of positions (and hence elements) that
are contained in tree T .

• T.is_empty(): Return True if tree T does not contain any
positions.

• T.positions(): Generate an iteration of all positions of T .
• iter(T): Generate an iteration of all elements stored within T .

Any of the above methods that accepts a position as an argument should
generate a ValueError if that position is invalid for T .

18

The Tree Abstract Data Type

• len(T): Return the number of positions (and hence elements) that
are contained in tree T .

• T.is_empty(): Return True if tree T does not contain any
positions.

• T.positions(): Generate an iteration of all positions of T .
• iter(T): Generate an iteration of all elements stored within T .

Any of the above methods that accepts a position as an argument should
generate a ValueError if that position is invalid for T .

18

The Tree Abstract Data Type

• If T is ordered, then T.chidren(p) reports the chidren of p in the
natural order.

• If p is a leaf, then T.chidren(p) generates an empty iteration.
• If T is empty, then both T.positions() and and iter(T)

generate empty iterations.

19

The Tree Abstract Data Type

A formal mechanism to designate the relationships between different
implementations of the same abstraction is through the definition of one
class that serves as an abstract base class, via inheritance, for one or
more concrete classes.

We choose to define a Tree class that serves as an abstract base class
corresponding to the tree ADT.

20

The Tree Abstract Data Type

A formal mechanism to designate the relationships between different
implementations of the same abstraction is through the definition of one
class that serves as an abstract base class, via inheritance, for one or
more concrete classes.

We choose to define a Tree class that serves as an abstract base class
corresponding to the tree ADT.

20

The Tree Abstract Data Type

However, our Tree class does not define any internal representation for
storing a tree, and five of the methods given in that code fragment
remain abstract (root, parent, num_children, children, and
__len__); each of these methods raises a NotImplementedError.

The subclasses are responsible for overriding abstract methods, such as
children, to provide a working implementation for each behavior, based
on their chosen internal representation.

With the Tree class being abstract, there is no reason to create a direct
instance of it, nor would such an instance be useful. The class exists to
serve as a base for inheritance, and users will create instances of concrete
subclasses.

21

The Tree Abstract Data Type

However, our Tree class does not define any internal representation for
storing a tree, and five of the methods given in that code fragment
remain abstract (root, parent, num_children, children, and
__len__); each of these methods raises a NotImplementedError.

The subclasses are responsible for overriding abstract methods, such as
children, to provide a working implementation for each behavior, based
on their chosen internal representation.

With the Tree class being abstract, there is no reason to create a direct
instance of it, nor would such an instance be useful. The class exists to
serve as a base for inheritance, and users will create instances of concrete
subclasses.

21

The Tree Abstract Data Type

However, our Tree class does not define any internal representation for
storing a tree, and five of the methods given in that code fragment
remain abstract (root, parent, num_children, children, and
__len__); each of these methods raises a NotImplementedError.

The subclasses are responsible for overriding abstract methods, such as
children, to provide a working implementation for each behavior, based
on their chosen internal representation.

With the Tree class being abstract, there is no reason to create a direct
instance of it, nor would such an instance be useful. The class exists to
serve as a base for inheritance, and users will create instances of concrete
subclasses.

21

The Tree Abstract Data Type

class Tree:
class Position :

def element (self):
raise NotImplementedError (’must be
implemented by subclass ’)

def __eq__ (self , other):
raise NotImplementedError (’must be
implemented by subclass ’)

def __ne__ (self , other):
return not (self == other)

22

The Tree Abstract Data Type

def root(self):
raise NotImplementedError (’must be
implemented by subclass ’)

def parent (self , p):
raise NotImplementedError (’must be
implemented by subclass ’)

def num_children (self , p):
raise NotImplementedError (’must be
implemented by subclass ’)

def children (self , p):
raise NotImplementedError (’must be
implemented by subclass ’)

23

The Tree Abstract Data Type

def __len__ (self):
raise NotImplementedError (’must be
implemented by subclass ’)

def is_root (self , p):
return self.root () == p

def is_leaf (self , p):
return self. num_children (p) == 0

def is_empty (self):
return len(self) == 0

24

General Trees
Computing Depth and Height

Computing Depth and Height

Definition : Depth

Let p be the position of a node of T . The depth of p is the number
of ancestors of p, excluding p itself.

Note that this definition implies that the depth of the root of T is 0.

25

Computing Depth and Height

The depth of p can also be recursively defined as follows:

• If p is the root, then the depth of p is 0.
• Otherwise, the depth of p is one plus the depth of the pararent of p.

def depth(self , p):
if self. is_root (p):

return 0
else:

return 1 + self.depth(self. parent (p))

26

Computing Depth and Height

The depth of p can also be recursively defined as follows:

• If p is the root, then the depth of p is 0.
• Otherwise, the depth of p is one plus the depth of the pararent of p.

def depth (self , p):
if self. is_root (p):

return 0
else:

return 1 + self. depth(self. parent (p))

26

Computing Depth and Height

• The running time of T.depth(p) for a position p is O(dp +1),
where dp denotes the depth of p in T .

• T.depth(p) runs in O(n) worst-case time, where n is the total
number of positions of T , because a position of T may have depth
n−1 if all nodes form a single branch.

27

Computing Depth and Height

Definition : Height

The height of a position p in a tree T is also defined recursively:

• If p is a leaf,then the height of p is 0.
• Otherwise, the height of p is one more than the maximum of

the heights of p’s children.

The height of a nonempty tree T is the height of the root of T .

28

Computing Depth and Height

Property

The height of a nonempty tree T is equal to the maximum of the
depths of its leaf positions.

def _height1 (self): # O(n^2) worst -case time
return max(self.depth(p)

for p in self. positions ()
if self. is_leaf (p))

29

Computing Depth and Height

Property

The height of a nonempty tree T is equal to the maximum of the
depths of its leaf positions.

def _height1 (self): # O(n^2) worst -case time
return max(self.depth(p)

for p in self. positions ()
if self. is_leaf (p))

29

Computing Depth and Height

We can compute the height of a tree more efficiently, in O(n) worst-case
time, by relying instead on the original recursive definition. To do this,
we will parameterize a function based on a position within the tree, and
calculate the height of the subtree rooted at that position.

def _height2 (self , p): # time is linear in
size of subtree

if self. is_leaf (p):
return 0

else:
return 1 + max(self. _height2 (c)

for c in self. children (p))

30

Computing Depth and Height

We can compute the height of a tree more efficiently, in O(n) worst-case
time, by relying instead on the original recursive definition. To do this,
we will parameterize a function based on a position within the tree, and
calculate the height of the subtree rooted at that position.

def _height2 (self , p): # time is linear in
size of subtree

if self. is_leaf (p):
return 0

else:
return 1 + max(self. _height2 (c)

for c in self. children (p))

30

Computing Depth and Height

def height (self , p=None):
if p is None:

p = self.root ()
return self. _height2 (p)

31

Binary Tree

Binary Tree

Definition : Binary Tree

A binary tree is an ordered tree with following properties:

1. Every node has at most two children.
2. Each child node is labled as being either a left child or a right

child.
3. A left child precedes a right child in the order of children of a

node.

• The subtree rooted at a left or right child of an internal node v is
called a left subtree or right subtree, respectively, of v .

• A binary tree is proper if each node has either zero or two children.
Some people also refer to such trees as being full binary trees. Thus,
in a proper binary tree, every internal node has exactly two children.
A binary tree that is not proper is improper.

32

Binary Tree

Definition : Binary Tree

A binary tree is an ordered tree with following properties:

1. Every node has at most two children.
2. Each child node is labled as being either a left child or a right

child.
3. A left child precedes a right child in the order of children of a

node.

• The subtree rooted at a left or right child of an internal node v is
called a left subtree or right subtree, respectively, of v .

• A binary tree is proper if each node has either zero or two children.
Some people also refer to such trees as being full binary trees. Thus,
in a proper binary tree, every internal node has exactly two children.
A binary tree that is not proper is improper.

32

Binary Tree

33

Binary Tree

34

Binary Tree

Definition : A Recursive Binary Tree Definition

A binary tree is either empty or consists of

1. A node r , called the root of T , that stores an element
2. A binary tree (possibly empty), called the left subtree of T
3. A binary tree (possibly empty), called the right subtree of T

35

Binary Tree
The Binary Tree Abstract Data Type

The Binary Tree Abstract Data Type

As an abstract data type, a binary tree is a specialization of a tree that
supports three additional accessor methods:

• T.left(p): Return the position that represents the left child of p,
or None if p has no left child.

• T.right(p): Return the position that represents the right child of
p, or None if p has no right child.

• T.sibling(p): Return the position that represents the sibling of p,
or None if p has no sibling.

36

The Binary Tree Abstract Data Type

from tree import Tree
class BinaryTree (Tree):

def left(self , p):
raise NotImplementedError (’must be
implemented by subclass ’)

def right (self , p):
raise NotImplementedError (’must be
implemented by subclass ’)

37

The Binary Tree Abstract Data Type

def sibling (self , p):
parent = self. parent (p)
if parent is None:

return None
else:

if p == self.left(parent):
return self. right(parent)

else:
return self.left(parent)

38

The Binary Tree Abstract Data Type

def children (self , p):
if self.left(p) is not None:

yield self.left(p)
if self. right(p) is not None:

yield self.right(p)

39

Binary Tree
Properties of Binary Trees

Properties of Binary Trees

Binary trees have several interesting properties dealing with relationships
between their heights and number of nodes.

We denote the set of all nodes of a tree T at the same depth d as level d
of T . In a binary tree,

• level 0 has at most one node (the root),
• level 1 has at most two nodes (the children of the root),
• level 2 has at most four nodes,
• · · · · · ·

In general, level d has at most 2d nodes.

40

Properties of Binary Trees

41

Properties of Binary Trees

Property

Let T be a nonempty binary tree, and let n, nE , nI and h denote
the number of nodes, number of external nodes, number of internal
nodes, and height of T , respectively. Then T has the following
properties:

• h+1≤ n ≤ 2h+1 −1
• 1≤ nE ≤ 2h

• h ≤ nI ≤ 2h −1
• log(n+1)−1≤ h ≤ n−1

42

Properties of Binary Trees

Property : Continue

If T is proper, then T has the following properties:

• h+1≤ n ≤ 2h+1 −1
• 1≤ nE ≤ 2h

• h ≤ nI ≤ 2h −1
• log(n+1)−1≤ h ≤ n−1

43

Properties of Binary Trees

Property

In a nonempty proper binary tree T , with nE external nodes and nI
internal nodes, we have nE = nI +1.

44

Implementing Trees

Implementing Trees

The Tree and BinaryTree classes that we have defined are both formally
abstract base classes.

• Neither of them can be directly instantiated.
• Have not yet defined key implementation details for how a tree will

be represented internally, and how we can effectively navigate
between parents and children.

• A concrete implementation of a tree must provide methods
• root
• parent
• num_children
• children
• __len__

and in the case of BinaryTree, the additional accessors
• left
• right

45

Implementing Trees
Linked Structure for Binary Trees

Linked Structure for Binary Trees

46

Linked Structure for Binary Trees

A natural way to realize a binary tree T is to use a linked structure, with
a node that maintains references

• to the element stored at a position p
• to the nodes associated with the children and parent of p.

47

Linked Structure for Binary Trees

• If p is the root of T , then the parent field of p is None.
• If p does not have a left child (respectively, right child), the

associated field is None.

48

Linked Structure for Binary Trees

The tree itself maintains

• an instance variable storing a reference to the root node (if any),
• a variable size that represents the overall number of nodes of T.

49

Operations for Updating a Linked Binary Tree

• T.add_root(e):
Create a root for an empty tree, storing e as the element, and return
the position of that root; an error occurs if the tree is not empty.

• T.add_left(p, e):
Create a new node storing element e, link the node as the left child
of position p, and return the resulting position; an error occurs if p
already has a left child.

• T.add_right(p, e):
Create a new node storing element e, link the node as the right child
of position p, and return the resulting position; an error occurs if p
already has a right child.

50

Operations for Updating a Linked Binary Tree

• T.replace(p, e):
Replace the element stored at position p with element e, and return
the previously stored element.

• T.delete(p):
Remove the node at position p, replacing it with its child, if any, and
return the element that had been stored at p; an error occurs if p
has two children.

• T.attach(p, T1, T2):
Attach the internal structure of trees T1 and T2, respec- tively, as
the left and right subtrees of leaf position p of T, and reset T1 and
T2 to empty trees; an error condition occurs if p is not a leaf.

51

Linked Structure for Binary Trees

from binary_tree import BinaryTree
class LinkedBinaryTree (BinaryTree):

class _Node:
__slots__ = ’_element ’, ’_parent ’, ’_left ’,
’_right ’
def __init__ (self , element , parent =None ,
left=None , right=None):

self. _element = element
self. _parent = parent
self._left = left
self. _right = right

52

Linked Structure for Binary Trees

class Position (BinaryTree . Position):
def __init__ (self , container , node):

self. _container = container
self._node = node

def element (self):
return self._node. _element

def __eq__ (self , other):
return type(other) is type(self) and other
._node is self. _node

53

Linked Structure for Binary Trees

def _validate (self , p):
if not isinstance (p, self. Position):

raise TypeError (’p must be proper Position
type ’)

if p. _container is not self:
raise ValueError (’p does not belong to
this container ’)

if p. _node. _parent is p._node:
raise ValueError (’p is no longer valid ’)

return p. _node

def _make_position (self , node):
return self. Position (self , node) if node is
not None else None

54

Linked Structure for Binary Trees

def __init__ (self):
self._root = None
self._size = 0

def __len__ (self):
return self._size

def root(self):
return self. _make_position (self._root)

def parent (self , p):
node = self. _validate (p)
return self. _make_position (node. _parent)

55

Linked Structure for Binary Trees

def left(self , p):
node = self. _validate (p)
return self. _make_position (node._left)

def right (self , p):
node = self. _validate (p)
return self. _make_position (node. _right)

56

Linked Structure for Binary Trees

def num_children (self , p):
node = self. _validate (p)
count = 0
if node. _left is not None:

count += 1
if node. _right is not None:

count += 1
return count

57

Linked Structure for Binary Trees

def _add_root (self , e):
if self. _root is not None:

raise ValueError (’Root exists ’)
self._size = 1
self._root = self. _Node(e)
return self. _make_position (self._root)

58

Linked Structure for Binary Trees

def _add_left (self , p, e):
node = self. _validate (p)
if node. _left is not None:

raise ValueError (’Left child exists ’)
self._size += 1
node._left = self. _Node(e, node)
return self. _make_position (node._left)

59

Linked Structure for Binary Trees

def _add_right (self , p, e):
node = self. _validate (p)
if node. _right is not None:

raise ValueError (’Right child exists ’)
self._size += 1
node. _right = self._Node(e, node)
return self. _make_position (node. _right)

60

Linked Structure for Binary Trees

def _replace (self , p, e):
node = self. _validate (p)
old = node. _element
node. _element = e
return old

61

Linked Structure for Binary Trees

def _delete (self , p):
node = self. _validate (p)
if self. num_children (p) == 2:

raise ValueError (’Position has two
children ’)

child = node. _left if node._left else node.
_right
if child is not None:

child . _parent = node. _parent

62

Linked Structure for Binary Trees

if node is self. _root:
self._root = child

else:
parent = node. _parent
if node is parent ._left:

parent . _left = child
else:

parent . _right = child

63

Linked Structure for Binary Trees

def _attach (self , p, t1 , t2):
node = self. _validate (p)
if not self. is_leaf (p):

raise ValueError (’position must be leaf ’)
if not type(self) is type(t1) is type(t2):

raise TypeError (’Tree types must match ’)
self._size += len(t1) + len(t2)
if not t1. is_empty ():

t1._root . _parent = node
node._left = t1._root
t1._root = None
t1._size = 0

if not t2. is_empty ():
t2._root . _parent = node
node. _right = t2. _root
t2._root = None
t2._size = 0 64

Implementing Trees
Linked Structure for General Trees

Linked Structure for General Trees

When representing a binary tree with a linked structure, each node
explicitly maintains fields left and right as references to individual
children.

For a general tree, there is no a priori limit on the number of children
that a node may have.

A natural way to realize a general tree T as a linked structure is to have
each node store a single container of references to its children.

65

Linked Structure for General Trees

When representing a binary tree with a linked structure, each node
explicitly maintains fields left and right as references to individual
children.

For a general tree, there is no a priori limit on the number of children
that a node may have.

A natural way to realize a general tree T as a linked structure is to have
each node store a single container of references to its children.

65

Linked Structure for General Trees

66

Linked Structure for General Trees

67

Tree Traversal Algorithms

Tree Traversal Algorithms

A traversal of a tree T is a systematic way of accessing, or “visiting”, all
the positions of T .

The specific action associated with the “visit” of a position p depends on
the application of this traversal, and could involve anything from
increment- ing a counter to performing some complex computation for p.

68

Tree Traversal Algorithms
Preorder and Postorder Traversals of General Trees

Preorder and Postorder Traversals of General Trees

In a preorder traversal of a tree T, the root of T is visited first and then
the subtrees rooted at its children are traversed recursively. If the tree is
ordered, then the subtrees are traversed according to the order of the
children.

69

Preorder and Postorder Traversals of General Trees

class Tree:

def preorder (self):
if not self. is_empty ():

for p in self. _subtree_preorder (self.root
()):

yield p

def _subtree_preorder (self , p):
yield p
for c in self. children (p):

for other in self. _subtree_preorder (c):
yield other

70

Preorder and Postorder Traversals of General Trees

class Tree:

def postorder (self):
if not self. is_empty ():

for p in self. _subtree_postorder (self.root
()):

yield p

def _subtree_postorder (self , p):
for c in self. children (p):

for other in self. _subtree_postorder (c):
yield other

yield p

71

Preorder and Postorder Traversals of General Trees

Both preorder and postorder traversal algorithms are efficient ways to
access all the positions of a tree.

At each position p, the nonrecursive part of the traversal algorithm
requires time O(cp +1), where cp is the number of children of p, under
the assumption that the “visit” itself takes O(1) time.

The overall running time for the traversal of tree T is O(n), where n is
the number of positions in the tree. This running time is asymptotically
optimal since the traversal must visit all the n positions of the tree.

72

Preorder and Postorder Traversals of General Trees

Both preorder and postorder traversal algorithms are efficient ways to
access all the positions of a tree.

At each position p, the nonrecursive part of the traversal algorithm
requires time O(cp +1), where cp is the number of children of p, under
the assumption that the “visit” itself takes O(1) time.

The overall running time for the traversal of tree T is O(n), where n is
the number of positions in the tree. This running time is asymptotically
optimal since the traversal must visit all the n positions of the tree.

72

Preorder and Postorder Traversals of General Trees

Both preorder and postorder traversal algorithms are efficient ways to
access all the positions of a tree.

At each position p, the nonrecursive part of the traversal algorithm
requires time O(cp +1), where cp is the number of children of p, under
the assumption that the “visit” itself takes O(1) time.

The overall running time for the traversal of tree T is O(n), where n is
the number of positions in the tree. This running time is asymptotically
optimal since the traversal must visit all the n positions of the tree.

72

Tree Traversal Algorithms
Breadth-First Tree Traversal

Breadth-First Tree Traversal

Definition : Breadth-First Tree Traversal

Although the preorder and postorder traversals are common ways
of visiting the positions of a tree, another common approach is to
traverse a tree so that we visit all the positions at depth d before we
visit the positions at depth d +1. Such an algorithm is known as a
breadth-first traversal.

73

Breadth-First Tree Traversal

74

Breadth-First Tree Traversal

class Tree:

def breadthfirst (self):
if not self. is_empty ():

fringe = LinkedQueue ()
fringe . enqueue (self.root ())
while not fringe . is_empty ():

p = fringe . dequeue ()
yield p
for c in self. children (p):

fringe . enqueue (c)

75

Tree Traversal Algorithms
Inorder Traversal of a Binary Tree

Inorder Traversal of a Binary Tree

During an inorder traversal, we visit a position between the recursive
traversals of its left and right subtrees. The inorder traversal of a binary
tree T can be informally viewed as visiting the nodes of T “from left to
right”.

Indeed, for every position p, the inorder traversal visits p after all the
positions in the left subtree of p and before all the positions in the right
subtree of p.

76

Inorder Traversal of a Binary Tree

During an inorder traversal, we visit a position between the recursive
traversals of its left and right subtrees. The inorder traversal of a binary
tree T can be informally viewed as visiting the nodes of T “from left to
right”.

Indeed, for every position p, the inorder traversal visits p after all the
positions in the left subtree of p and before all the positions in the right
subtree of p.

76

Inorder Traversal of a Binary Tree

77

Inorder Traversal of a Binary Tree

class BinaryTree (Tree):

def inorder (self):
if not self. is_empty ():

for p in self. _subtree_inorder (self.root ()
):

yield p

def _subtree_inorder (self , p):
if self.left(p) is not None:

for other in self. _subtree_inorder (self.
left(p)):

yield other
yield p
if self. right(p) is not None:

for other in self. _subtree_inorder (self.
right (p)):

yield other
78

Expression Tree

Expression Tree

from linked_binary_tree import LinkedBinaryTree

class ExpressionTree (LinkedBinaryTree):
def __init__ (self , token , left=None , right=
None):

super (). __init__ ()
if not isinstance (token , str):

raise TypeError (’Token must be a string ’)
self. _add_root (token)
if left is not None:

if token not in ’+-*x/’:
raise ValueError (’token must be valid
operator ’)

self. _attach (self.root (), left , right)

79

Expression Tree

def _parenthesize_recur (self , p, result):
if self. is_leaf (p):

result . append (str(p. element ()))
else:

result . append (’(’)
self. _parenthesize_recur (self.left(p),
result)
result . append (p. element ())
self. _parenthesize_recur (self.right(p),
result)
result . append (’)’)

80

Expression Tree

def __str__ (self):
pieces = []
self. _parenthesize_recur (self.root (), pieces
)
return ’’.join(pieces)

81

Expression Tree

def evaluate (self):
return self. _evaluate_recur (self.root ())

82

Expression Tree

def _evaluate_recur (self , p):
if self. is_leaf (p):

return float (p. element ())
else:

op = p. element ()
left_val = self. _evaluate_recur (self.left(
p))
right_val = self. _evaluate_recur (self.
right (p))
if op == ’+’:

return left_val + right_val
elif op == ’-’:

return left_val - right_val
elif op == ’/’:

return left_val / right_val
else:

return left_val * right_val 83

Expression Tree

def tokenize (raw):
SYMBOLS = set(’+-x*/() ’)
mark = 0
tokens = []
n = len(raw)
for j in range (n):

if raw[j] in SYMBOLS :
if mark != j:

tokens . append (raw[mark:j])
if raw[j] != ’ ’:

tokens . append (raw[j])
mark = j+1

if mark != n:
tokens . append (raw[mark:n])

return tokens

84

Expression Tree

def build_expression_tree (tokens):
S = []
for t in tokens :

if t in ’+-x*/ ’:
S. append (t)

elif t not in ’() ’:
S. append (ExpressionTree (t))

elif t == ’)’:
right = S.pop ()
op = S.pop ()
left = S.pop ()
S. append (ExpressionTree (op , left , right))

return S.pop ()

85

Expression Tree

if __name__ == ’__main__ ’:
big = build_expression_tree (tokenize (’((((3 +
1) * 3) /((9 -5) +2)) -((3x(7 -4))+6))’))
print (big , ’=’, big. evaluate ())

86

	General Trees
	Tree Definitions and Properties
	The Tree Abstract Data Type
	Computing Depth and Height

	Binary Tree
	The Binary Tree Abstract Data Type
	Properties of Binary Trees

	Implementing Trees
	Linked Structure for Binary Trees
	Linked Structure for General Trees

	Tree Traversal Algorithms
	Preorder and Postorder Traversals of General Trees
	Breadth-First Tree Traversal
	Inorder Traversal of a Binary Tree

	Expression Tree

