
Data structure and algorithm in Python
Linked Lists

Seongjin Lee

Dept of Aerospace and Software Engineering,
Gyeongsang National University

Table of contents

1. Singly Linked Lists

2. Circularly Linked Lists

3. Doubly Linked Lists

4. The Positional List ADT

5. Sorting a Positional List

6. Favorite List

1

Python’s list class is highly optimized, and often a great choice for
storage. With that said, there are some notable disadvantages:

1. The length of a dynamic array might be longer than the actual
number of elements that it stores.

2. Amortized bounds for operations may be unacceptable in real-time
systems.

3. Insertions and deletions at interior positions of an array are
expensive.

In this lecture, we introduce a data structure known as a linked list,
which provides an alternative to an array-based sequence (such as a
Python list).

2

Both array-based sequences and linked lists keep elements in a certain
order, but using a very different style.

• An array provides the more centralized representation, with one large
chunk of memory capable of accommodating references to many
elements.

• A linked list, in contrast, relies on a more distributed representation
in which a lightweight object, known as a node, is allocated for each
element.
Each node maintains a reference to its element and one or more
references to neighboring nodes in order to collectively represent the
linear order of the sequence.

3

Singly Linked Lists

Singly Linked Lists

Definition

A singly linked list, in its simplest form, is a collection of nodes that
collectively form a linear sequence. Each node stores a reference to
an object that is an element of the sequence, as well as a reference
to the next node of the list

4

Singly Linked Lists

Definition : head and tail

The first and last node of a linked list are known as the head and
tail of the list, respectively.

Definition : traverse

By starting at the head, and moving from one node to another by
following each node’s next reference, we can reach the tail of the
list. We can identify the tail as the node having None as its next
reference. This process is commonly known as traversing the linked
list.

5

Singly Linked Lists

6

Singly Linked Lists

7

Singly Linked Lists
Inserting an Element at the Head of a Singly Linked

List

Inserting an Element at the Head of a Singly Linked List

An important property of a linked list is that it does not have a
predetermined fixed size; it uses space proportionally to its current
number of elements.

8

Inserting an Element at the Head of a Singly Linked List

How to insert an element at the head of the list?

9

Inserting an Element at the Head of a Singly Linked List

How to insert an element at the head of the list?

9

Inserting an Element at the Head of a Singly Linked List

1. create a new node,
set its element to the new element,
set its next link to the current head;

2. set the list’s head to point to the new node.

10

Inserting an Element at the Head of a Singly Linked List

11

Singly Linked Lists
Inserting an Element at the tail of a Singly Linked List

Inserting an Element at the tail of a Singly Linked List

We can also easily insert an element at the tail of the list, provided we
keep a reference to the tail node.

12

Inserting an Element at the tail of a Singly Linked List

13

Singly Linked Lists
Removing an Element at the head of a Singly Linked

List

Removing an Element at the head of a Singly Linked List

Removing an element from the head of a singly linked list is essentially
the reverse operation of inserting a new element at the head.

14

Removing an Element at the head of a Singly Linked List

Removing an element from the head of a singly linked list is essentially
the reverse operation of inserting a new element at the head.

14

Removing an Element at the head of a Singly Linked List

Unfortunately, we cannot easily delete the last node of a singly linked list.

• Even if we maintain a tail reference directly to the last node of the
list, we must be able to access the node before the last node in order
to remove the last node.

• But we cannot reach the node before the tail by following next links
from the tail.

• The only way to access this node is to start from the head of the list
and search all the way through the list. But such a sequence of
link-hopping operations could take a long time.

If we want to support such an operation efficiently, we will need to make
our list doubly linked.

15

Removing an Element at the head of a Singly Linked List

Unfortunately, we cannot easily delete the last node of a singly linked list.

• Even if we maintain a tail reference directly to the last node of the
list, we must be able to access the node before the last node in order
to remove the last node.

• But we cannot reach the node before the tail by following next links
from the tail.

• The only way to access this node is to start from the head of the list
and search all the way through the list. But such a sequence of
link-hopping operations could take a long time.

If we want to support such an operation efficiently, we will need to make
our list doubly linked.

15

Singly Linked Lists
Implementing a Stack with a Singly Linked List

Implementing a Stack with a Singly Linked List

To implement a stack with singly linked list, we need to decide whether
to model the top of stack at the head or at the tail of the list.

We can orient the top of the stack at the head because we can efficiently
insert and delete elements in constant time only at the head as well as all
stack operations affect the top.

16

Implementing a Stack with a Singly Linked List

To implement a stack with singly linked list, we need to decide whether
to model the top of stack at the head or at the tail of the list.

We can orient the top of the stack at the head because we can efficiently
insert and delete elements in constant time only at the head as well as all
stack operations affect the top.

16

Implementing a Stack with a Singly Linked List

from exceptions import Empty

class LinkedStack :
class _Node:

__slots__ = ’_element ’, ’_next ’

def __init__ (self , element , next):
self. _element = element
self._next = next

def __init__ (self):
self._head = None
self._size = 0

17

Implementing a Stack with a Singly Linked List

def __len__ (self):
return self._size

def is_empty (self):
return self._size == 0

def push(self , e):
self._head = self. _Node(e, self._head)
self._size += 1

def top(self):
if self. is_empty ():

raise Empty(’Stack is empty ’)
return self._head . _element

18

Implementing a Stack with a Singly Linked List

def pop(self):
if self. is_empty ():

raise Empty(’Stack is empty ’)
answer = self._head. _element
self._head = self. _head._next
self._size -= 1
return answer

19

Implementing a Stack with a Singly Linked List

20

Singly Linked Lists
Implementing a Queue with a Singly Linked List

Implementing a Queue with a Singly Linked List

Because we need to perform operations on both ends of the queue, we
will explicitly maintain both a head reference and a tail reference as
instance variables for each queue.

The natural orientation for a queue is to align the front of the queue with
the head of the list, and the back of the queue with the tail of the list,
because we must be able to enqueue elements at the back, and dequeue
them from the front.

21

Implementing a Queue with a Singly Linked List

from exceptions import Empty
class LinkedQueue :

class _Node:
__slots__ = ’_element ’, ’_next ’

def __init__ (self , element , next):
self. _element = element
self._next = next

def __init__ (self):
self._head = None
self._tail = None
self._size = 0

22

Implementing a Queue with a Singly Linked List

def __len__ (self):
return self._size

def is_empty (self):
return self._size == 0

def first (self):
if self. is_empty ():

raise Empty(’Queue is empty ’)
return self._head . _element

23

Implementing a Queue with a Singly Linked List

def dequeue (self):
if self. is_empty ():

raise Empty(’Queue is empty ’)
answer = self._head. _element
self._head = self. _head._next
self._size -= 1
if self. is_empty ():

self._tail = None
return answer

24

Implementing a Queue with a Singly Linked List

def enqueue (self , e):
newest = self._Node(e, None)
if self. is_empty ():

self._head = newest
else:

self._tail._next = newest
self._tail = newest
self._size += 1

25

Implementing a Queue with a Singly Linked List

In terms of performance, the LinkedQueue is similar to the LinkedStack
in that all operations run in worst-case constant time, and the space
usage is linear in the current number of elements.

26

Circularly Linked Lists

Circularly Linked Lists

Definition : Circularly Linked Lists

A circularly linked list is a linked list that its tail use its next reference
to point back to the head of the list.

27

Circularly Linked Lists

A circularly linked list provides a more general model than a standard
linked list for data sets that are cyclic, that is, which do not have any
particular notion of a beginning and end.

28

Circularly Linked Lists

Even though a circularly linked list has no beginning or end, per se, we
must maintain a reference to a particular node in order to make use of
the list. We use the identifier current to describe such a designated
node. By setting current = current.next, we can effectively advance
through the nodes of the list.

29

Circularly Linked Lists
Implementing a Queue with a Circularly Linked List

Implementing a Queue with a Circularly Linked List

from exceptions import Empty
class CircularQueue :

class _Node:
__slots__ = ’_element ’, ’_next ’

def __init__ (self , element , next):
self. _element = element
self._next = next

def __init__ (self):
self._tail = None
self._size = 0

30

Implementing a Queue with a Circularly Linked List

def __len__ (self):
return self._size

def is_empty (self):
return self._size == 0

def first (self):
if self. is_empty ():

raise Empty(’Queue is empty ’)
head = self. _tail._next
return head. _element

31

Implementing a Queue with a Circularly Linked List

def dequeue (self):
if self. is_empty ():

raise Empty(’Queue is empty ’)
oldhead = self. _tail._next
if self. _size == 1:

self._tail = None
else:

self._tail._next = oldhead ._next
self._size -= 1
return oldhead . _element

32

Implementing a Queue with a Circularly Linked List

def enqueue (self , e):
newest = self._Node(e, None)
if self. is_empty ():

newest ._next = newest
else:

newest ._next = self._tail._next
self._tail._next = newest

self._tail = newest
self._size += 1

def rotate (self):
if self. _size > 0:

self._tail = self._tail._next

33

Doubly Linked Lists

Doubly Linked Lists

Definition : Doubly Linked Lists

A doubly linked list is a linked list in which each node keeps an
explicit reference to the node before it and a reference to the node
after it.

These lists allow a greater variety of O(1)-time update operations,
including insertions and deletions at arbitrary positions within the list.

34

Doubly Linked Lists

Definition : Doubly Linked Lists

A doubly linked list is a linked list in which each node keeps an
explicit reference to the node before it and a reference to the node
after it.

These lists allow a greater variety of O(1)-time update operations,
including insertions and deletions at arbitrary positions within the list.

34

Doubly Linked Lists

We continue to use the term “next” for the reference to the node that
follows another, and we introduce the term “prev” for the reference to
the node that precedes it.

35

Doubly Linked Lists
Header and Trailer Sentinels

Header and Trailer Sentinels

In order to avoid some special cases when operating near the boundaries
of a doubly linked list, it helps to add special nodes at both ends of the
list: a header node at the beginning of the list, and a trailer node at the
end of the list.

These “dummy” nodes are known as sentinels (or guards), and they do
not store elements of the primary sequence.

36

Header and Trailer Sentinels

37

Header and Trailer Sentinels

When using sentinel nodes,

• an empty list is initialized so that the next field of the header points
to the trailer, and the prev field of the trailer points to the header;
the remaining fields of the sentinels are set None;

• for a nonempty list, the header’s next will refer to a node containing
the first real element of a sequence, just as the trailer’s prev
references the node containing the last element of a sequence.

38

Doubly Linked Lists
Advantage of Using Sentinels

Advantage of Using Sentinels

• Although we could implement a doubly linked list without sentinel
nodes, the slight extra space devoted to the sentinels greatly
simplifies the logic of our operations.
Most notably, the header and trailer nodes never change - only the
nodes between them change.

• We can treat all insertions in a unified manner, because a new node
will always be placed between a pair of existing nodes.
In similar fashion, every element that is to be deleted is guaranteed
to be stored in a node that has neighbors on each side.

39

Doubly Linked Lists
Inserting and Deleting with a Doubly Linked List

Inserting and Deleting with a Doubly Linked List

40

Inserting and Deleting with a Doubly Linked List

41

Inserting and Deleting with a Doubly Linked List

42

Doubly Linked Lists
Basic Implementation of a Doubly Linked List

Basic Implementation of a Doubly Linked List

class _DoublyLinkedBase :
class _Node:

__slots__ = ’_element ’, ’_prev ’, ’_next ’

def __init__ (self , element , prev , next):
self. _element = element
self._prev = prev
self._next = next

def __init__ (self):
self. _header = self. _Node(None , None , None)
self. _trailer = self._Node(None , None , None)
self. _header ._next = self. _trailer
self. _trailer . _prev = self. _header
self._size = 0

43

Basic Implementation of a Doubly Linked List

def __len__ (self):
return self._size

def is_empty (self):
return self._size == 0

def _insert_between (self , e, predecessor ,
successor):

newest = self._Node(e, predecessor ,
successor)
predecessor ._next = newest
successor ._prev = newest
self._size += 1
return newest

44

Basic Implementation of a Doubly Linked List

def _delete_node (self , node):
predecessor = node._prev
successor = node._next
predecessor ._next = successor
successor ._prev = predecessor
self._size -= 1
element = node. _element
node._prev = node. _next = node. _element =
None
return element

45

Doubly Linked Lists
Implementing a Deque with a Doubly Linked List

For double-ended queue (deque),

• with an array-based implementation, we achieve all operations in
amortized O(1) time, due to the occasional need to resize the array;

• with an implementation based upon a doubly linked list, we can
achieve all deque operation in worst-case O(1) time.

46

Implementing a Deque with a Doubly Linked List

class LinkedDeque (_DoublyLinkedBase):

def first (self):
if self. is_empty ():

raise Empty(" Deque is empty")
return self. _header ._next. _element

def last(self):
if self. is_empty ():

raise Empty(" Deque is empty")
return self. _trailer ._prev. _element

def insert_first (self , e):
self. _insert_between (e, self._header , self.
_header . _next)

47

Implementing a Deque with a Doubly Linked List

def insert_last (self , e):
self. _insert_between (e, self. _trailer ._prev ,

self. _trailer)

def delete_first (self):
if self. is_empty ():

raise Empty(" Deque is empty")
return self. _delete_node (self. _header ._next)

def delete_last (self):
if self. is_empty ():

raise Empty(" Deque is empty")
return self. _delete_node (self. _trailer ._prev
)

48

The Positional List ADT

The Positional List ADT

The abstract data types that we have considered thus far, namely stacks,
queues, and double-ended queues, only allow update operations that
occur at one end of a sequence or the other.

We wish to have a more general abstraction.

49

The Positional List ADT

The abstract data types that we have considered thus far, namely stacks,
queues, and double-ended queues, only allow update operations that
occur at one end of a sequence or the other.

We wish to have a more general abstraction.

49

The Positional List ADT

Example

Although we motivated the FIFO semantics of a queue as a model
for customers who are waiting to speak with a customer service rep-
resentative, or fans who are waiting in line to buy tickets to a show,
the queue ADT is too limiting.

What if a waiting customer decides to hang up before reaching the
front of the customer service queue? Or what if someone who is
waiting in line to buy tickets allows a friend to “cut” into line at that
position?

50

The Positional List ADT

Example

Although we motivated the FIFO semantics of a queue as a model
for customers who are waiting to speak with a customer service rep-
resentative, or fans who are waiting in line to buy tickets to a show,
the queue ADT is too limiting.

What if a waiting customer decides to hang up before reaching the
front of the customer service queue? Or what if someone who is
waiting in line to buy tickets allows a friend to “cut” into line at that
position?

50

The Positional List ADT

We would like to design an abstract data type that provides a user a way
to refer to elements anywhere in a sequence, and to perform arbitrary
insertions and deletions.

51

The Positional List ADT

When working with array-based sequences, integer indices provide an
excellent means for describing the location of an element, or the location
at which an insertion or deletion should take place.

However, numeric indices are not a good choice for describing positions
within a linked list because we cannot efficiently access an entry knowing
only its index; finding an element at a given index within a linked list
requires traversing the list incrementally from its beginning or end,
counting elements as we go.

52

The Positional List ADT

When working with array-based sequences, integer indices provide an
excellent means for describing the location of an element, or the location
at which an insertion or deletion should take place.

However, numeric indices are not a good choice for describing positions
within a linked list because we cannot efficiently access an entry knowing
only its index; finding an element at a given index within a linked list
requires traversing the list incrementally from its beginning or end,
counting elements as we go.

52

The Positional List ADT

Furthermore, indices are not a good abstraction for describing a local
position in some applications, because the index of an entry changes over
time due to insertions or deletions that happen earlier in the sequence.

Example

It may not be convenient to describe the location of a person waiting
in line by knowing precisely how far away that person is from the front
of the line.

53

The Positional List ADT

We wish to model situations such as when an identified person leaves the
line before reaching the front, or in which a new person is added to a line
immediately behind another identified person.

54

The Positional List ADT

We wish to model situations such as when an identified person leaves the
line before reaching the front, or in which a new person is added to a line
immediately behind another identified person.

54

The Positional List ADT

Example

A text document can be viewed as a long sequence of characters. A
word processor uses the abstraction of a cursor to describe a position
within the document without explicit use of an integer index, allow
operations such as “delete the character at the cursor” or “insert a
new character just after the cursor”.

55

The Positional List ADT

One of the great benefits of a linked list structure is that it is possible to
perform O(1)-time insertions and deletions at arbitrary positions of the
list, as long as we are given a reference to a relevant node of the list.

It is therefore very tempting to develop an ADT in which a node
references serves as the mechanism for describing a position.

56

The Positional List ADT

One of the great benefits of a linked list structure is that it is possible to
perform O(1)-time insertions and deletions at arbitrary positions of the
list, as long as we are given a reference to a relevant node of the list.

It is therefore very tempting to develop an ADT in which a node
references serves as the mechanism for describing a position.

56

The Positional List ADT
The Positional List Abstract Data Type

The Positional List Abstract Data Type

To provide for a general abstraction of a sequence of elements with the
ability to indetify the location of an element, we define a positional list
ADT as well as a simple position ADT to describe a location within a
list.

• A position acts as a marker or token within the broader positional
list.

• A position p is unaffected by changes elsewhere in a list; the only
way in which a position becomes invalid is if an exlicit command is
issued to delete it.

57

The Positional List Abstract Data Type

A position instance is a simple object, supporting only the following
method:

• p.element(): Return the element stored at position p.

In the context of the positional list ADT, positions serve as parameters to
some methods and as return values from other methods.

58

The Positional List Abstract Data Type

A position instance is a simple object, supporting only the following
method:

• p.element(): Return the element stored at position p.

In the context of the positional list ADT, positions serve as parameters to
some methods and as return values from other methods.

58

The Positional List Abstract Data Type

In describing the behaviors of a positional list, we being by presenting the
accssor methods supported by a list L:

• L.first(): Return the position of the first element of L, or None if
L is empty.

• L.last(): Return the position of the last element of L, or None if L
is empty.

• L.before(p): Return the position of L immediately before position
p, or None if p is the first position.

• L.after(p): Return the position of L immediately after position p,
or None if p is the last position.

• L.is_empty(): Return true if list L does not contain any elements.
• len(L): Return the number of elements in the list.
• iter(L): Return a forward iterator for the elements of the list.

59

The Positional List Abstract Data Type

The positional list ADT also includes the following update methods:

• L.add_firt(e): Insert a new element e at the front of L, returning
the position of the new element.

• L.add_last(e): Insert a new element e at the back of L, returning
the position of the new element.

• L.add_before(p, e): Insert a new element e just before position p
in L, returning the position of the new element.

• L.add_after(p, e): Insert a new element e just after position p in
L, returning the position of the new element.

• L.replace(p, e): Replace the element at position p with element
e, returning the element formerly at position p.

• L.delete(p): Remove and return the element at position p in L,
invalidating the position.

60

The Positional List Abstract Data Type

61

The Positional List ADT
Doubly Linked List Implementation

Doubly Linked List Implementation

We now present a complete implementation of a PositionalList class using
a doubly linked list that satisfies the following important proposition.

Property 4.1

Each method of the positional list ADT runs in worst-case O(1) time
when implemented with a doubly linked list.

62

Doubly Linked List Implementation

from doubly_linked_base import _DoublyLinkedBase
class PositionalList (_DoublyLinkedBase):

class Position :
def __init__ (self , container , node):

self. _container = container
self._node = node

def element (self):
return self._node. _element

def __eq__ (self , other):
return type(other) is type(self) and other
._node is self. _node

def __ne__ (self , other):
return not (self == other) 63

The Positional List ADT

def _validate (self , p):
if not isinstance (p, self. Position):

raise TypeError (’p must be proper Position
type ’)

if p. _container is not self:
raise ValueError (’p does not belong to
this container ’)

if p. _node. _next is None:
raise ValueError (’p is no longer valid ’)

return p. _node

def _make_position (self , node):
if node is self. _header or node is self.
_trailer :

return None
else:

return self. Position (self , node) 64

The Positional List ADT

def first (self):
return self. _make_position (self. _header .
_next)

def last(self):
return self. _make_position (self. _trailer .
_prev)

def before (self , p):
node = self. _validate (p)
return self. _make_position (node._prev)

def after (self , p):
node = self. _validate (p)
return self. _make_position (node._next)

65

The Positional List ADT

def __iter__ (self):
cursor = self.first ()
while cursor is not None:

yield cursor . element ()
cursor = self.after(cursor)

def _insert_between (self , e, predecessor ,
successor):

node = super (). _insert_between (e,
predecessor , successor)
return self. _make_position (node)

66

The Positional List ADT

def add_first (self , e):
return self. _insert_between (e, self._header ,

self. _header . _next)

def add_last (self , e):
return self. _insert_between (e, self. _trailer
._prev , self. _trailer)

67

The Positional List ADT

def add_before (self , p, e):
original = self. _validate (p)
return self. _insert_between (e, original .
_prev , original)

def add_after (self , p, e):
original = self. _validate (p)
return self. _insert_between (e, original ,
original ._next)

def delete (self , p):
original = self. _validate (p)
return self. _delete_node (original)

68

The Positional List ADT

def replace (self , p, e):
original = self. _validate (p)
old_value = original . _element
original . _element = e
return old_value

69

Sorting a Positional List

Sorting a Positional List

70

Sorting a Positional List

71

Sorting a Positional List

def insertion_sort (L):
if len(L) > 1:

marker = L. first ()
while marker != L.last ():

pivot = L. after(marker)
value = pivot. element ()
if value > marker . element ():

marker = pivot
else:

walk = marker
while walk != L.first () and L. before (
walk). element () > value:

walk = L. before (walk)
L. delete (pivot)
L. add_before (walk , value)

72

Favorite List

Favorite List

Consider maintaining a collection of elements while keeping track of the
number of times each element is accessed. Keeping such access counts
allows us to know which elements are among the most popular.

Example

• A Web browser keeps track of a user’s most accessed URLs,
• A music collection maintains a list of the most frequently

played songs for a user.
• · · · · · ·

73

Favorite List

We model this with a new favorites list ADT that support the len and
is_empty methods as well as the following

• access(e): Access the element e, incrementing its access count,
and adding it to the favorites list if it is not already present.

• remove(e): Remove element e from the favorites list, if present.
• top(k): Return an iteration of the k most accessed elements.

74

Favorite List

An approach for managing a list of favorites is to store elements in a
linked list, keeping them in nonincreasing order of access counts.

• We access or remove an element by searching the list from the most
frequently acessed to the least frequently accessed.

• Reporting the top k accessed elements is easy, as they are the first k
entries of the list.

75

Favorite List

We implement a favorites list by making use of a PositionalList for
storage.

We define a nonpublic class _Item to store the element and its access
count as a single instance, and then maintain our favorites list as a
PositionalList of item instances, so that the access count for a user’s
element is embedded alongside it in our representation.

76

Favorite List

from positional_list import PositionalList
class FavoritesList :

class _Item:
__slots__ = ’_value ’, ’_count ’
def __init__ (self , e):

self. _value = e
self. _count = 0

77

Favorite List

def __init__ (self):
self._data = PositionalList ()

def __len__ (self):
return len(self._data)

def is_empty (self):
return len(self._data) == 0

78

Favorite List

def _find_position (self , e):
walk = self. _data.first ()
while walk is not None and walk. element ().
_value != e:

walk = self._data.after(walk)
return walk

79

Favorite List

def _move_up (self , p):
if p != self._data.first ():

cnt = p. element (). _count
walk = self._data. before (p)
if cnt > walk. element (). _count :

while (walk != self._data.first () and
cnt > self._data. before (walk).
element (). _count):

walk = self. _data. before (walk)
self._data. add_before (walk , self._data.
delete (p))

80

Favorite List

def access (self , e):
p = self. _find_position (e)
if p is None:

p = self._data. add_last (self._Item(e))
p. element (). _count += 1
self. _move_up (p)

def remove (self , e):
p = self. _find_position (e)
if p is not None:

self._data. delete (p)

81

Favorite List

def top(self , k):
if not 1 <= k <= len(self):

raise ValueError (’Illegal value for k’)
walk = self. _data.first ()
for j in range (k):

item = walk. element ()
yield item. _value
walk = self._data.after(walk)

82

Favorite List

def __repr__ (self):
return ’, ’.join(’({0}:{1}) ’. format (i._value
, i. _count) for i in self._data)

if __name__ == ’__main__ ’:
fav = FavoritesList ()
for c in ’hello . this is a test of mtf ’:

fav. access (c)
k = min (5, len(fav))
print (’Top {0}) {1:25} {2} ’. format (k, [x for

x in fav.top(k)], fav))

83

	Singly Linked Lists
	Inserting an Element at the Head of a Singly Linked List
	Inserting an Element at the tail of a Singly Linked List
	Removing an Element at the head of a Singly Linked List
	Implementing a Stack with a Singly Linked List
	Implementing a Queue with a Singly Linked List

	Circularly Linked Lists
	Implementing a Queue with a Circularly Linked List

	Doubly Linked Lists
	Header and Trailer Sentinels
	Advantage of Using Sentinels
	Inserting and Deleting with a Doubly Linked List
	Basic Implementation of a Doubly Linked List
	Implementing a Deque with a Doubly Linked List

	The Positional List ADT
	The Positional List Abstract Data Type
	Doubly Linked List Implementation

	Sorting a Positional List
	Favorite List

