
Data structure and algorithm in Python
Stacks, Queues and Deques

Seongjin Lee

Dept of Aerospace and Software Engineering,
Gyeongsang National University

Table of contents

1. Stacks

2. Queue

3. Double-Ended Queues

1

Stacks

Stacks

Definition

A stack is a collection of objects that are inserted and removed ac-
cording to the last-in, first-out (LIFO) principle.

A user may insert objects into a stack at any time, but may only access
or remove the most recently inserted object that remains (at the so-called
“top”of the stack).

2

Stacks

Example

Internet Web browsers store the addresses of recently visited sites
in a stack. Each time a user visits a new site, that site’s address
is “pushed” onto the stack of addresses. The browser then allows
the user to “pop” back to previously visited sites using the “back”
button.

3

Stacks

Example

Text editors usually provide an“undo”mechanism that cancels re-
cent editing operations and reverts to former states of a document.
This undo oper- ation can be accomplished by keeping text changes
in a stack.

4

Stacks
The Stack Abstract Data Type

The Stack Abstract Data Type

Stacks are the simplest of all data structures, yet they are also among the
most important.

Formally, a stack is an abstract data type (ADT) such that an instance S
supports the following two methods:

• S.push(e): Add element e to the top of stack S.
• S.pop(): Remove and return the top element from the stack S; an

error occurs if the stack is empty.

5

The Stack Abstract Data Type

Additionally, define the following accessor methods for convenience:

• S.top(): Return a reference to the top element of stack S, without
removing it; an error occurs if the stack is empty.

• S.is_empty(): Return True if stack S does not contain any
elements.

• len(S): Return the number of elements in stack S; in Python, we
implement this with the special method __len__.

6

The Stack Abstract Data Type

7

Stacks
Simple Array-Based Stack Implementation

Simple Array-Based Stack Implementation

We can implement a stack quite easily by storing its elements in a
Python list.

The list class already supports

• adding an element to the end with the append method,
• removing the last element with the pop method,

so it is natural to align the top of the stack at the end of the list, as
shown in

8

Simple Array-Based Stack Implementation

Although a programmer could directly use the list class in place of a
formal stack class,

• lists also include behaviors (e.g., adding or removing elements from
arbitrary positions) that would break the abstraction that the stack
ADT represents.

• the terminology used by the list class does not precisely align with
traditional nomenclature for a stack ADT, in particular the
distinction between append and push.

9

Simple Array-Based Stack Implementation: The Adapter Pat-
tern

Definition

The adapter design pattern applies to any context where we effec-
tively want to modify an existing class so that its methods match
those of a related, but different, class or interface.

One general way to apply the adapter pattern is to define a new class in
such a way that it contains an instance of the existing class as a hidden
field, and then to implement each method of the new class using
methods of this hidden instance variable.

10

Simple Array-Based Stack Implementation: The Adapter Pat-
tern

Definition

The adapter design pattern applies to any context where we effec-
tively want to modify an existing class so that its methods match
those of a related, but different, class or interface.

One general way to apply the adapter pattern is to define a new class in
such a way that it contains an instance of the existing class as a hidden
field, and then to implement each method of the new class using
methods of this hidden instance variable.

10

Simple Array-Based Stack Implementation: The Adapter Pat-
tern

11

Implementing a Stack Using a Python List

We use the adapter design pattern to define an ArrayStack class that
uses an underlying Python list for storage.

12

Implementing a Stack Using a Python List

One question that remains is what our code should do if a user calls pop
or top when the stack is empty. Our ADT suggests that an error occurs,
but we must decide what type of error.

class Empty (Exception):
pass

13

Implementing a Stack Using a Python List

from exceptions import Empty
class ArrayStack :

def __init__ (self):
self._data = []

def __len__ (self):
return len(self. _data)

def is_empty (self):
return len(self. _data) == 0

def push(self , e):
self._data. append (e)

14

Implementing a Stack Using a Python List

def pop(self):
if self. is_empty ():

raise Empty(’Stack is empty!’)
return self. _data.pop ()

def top(self):
if self. is_empty ():

raise Empty(’Stack is empty ’)
return self. _data [-1]

15

Implementing a Stack Using a Python List

if __name__ == " __main__ ":
S = ArrayStack ()
S.push (5)
S.push (3)
print (S._data)
print (S.pop ())
print (S. is_empty ())
print (S.pop ())
print (S. is_empty ())
S.push (7)
S.push (9)
S.push (4)
print (S.pop ())
S.push (6)
S.push (8)
print (S._data)

16

Implementing a Stack Using a Python List

[5, 3]
3
False
5
True
4
[7, 9, 6, 8]

17

Analyzing the Array-Based Stack Implementation

18

Analyzing the Array-Based Stack Implementation

The O(1) time for push and pop are amortized bounds.

• A typical call to either of these methods uses constant time;
• But there is occasionally an O(n)-time worst case, where n is the

current number of elements in the stack, when an operation causes
the list to resize its internal array.

19

Stacks
Application

Reversing Data Using a Stack

As a consequence of the LIFO protocol, a stack can be used as a general
tool to reverse a data sequence.

Example

If the values 1, 2, and 3 are pushed onto a stack in that order, they
will be popped from the stack in the order 3, 2, and then 1.

20

Reversing Data Using a Stack

Example

We might wish to print lines of a file in reverse order in order to
display a data set in decreasing order rather than increasing order.

21

Application

from array_stack import ArrayStack
def reverse_file (filename):

S = ArrayStack ()

original = open(filename)
for line in original :

S.push(line. rstrip (’\n’))
original .close

output = open(filename , ’w’)
while not S. is_empty ():

output . write(S.pop () + ’\n’)
output .close ()

if __name__ == " __main__ ":
reverse_file (’111. txt ’)

22

Application

111.txt
eeeeeeee
dddddddd
cccccccc
bbbbbbbb
aaaaaaaa

>>> ./ reverse_file .py

111.txt
eeeeeeee
dddddddd
cccccccc
bbbbbbbb
aaaaaaaa

23

Application

111.txt
eeeeeeee
dddddddd
cccccccc
bbbbbbbb
aaaaaaaa

>>> ./ reverse_file .py

111.txt
eeeeeeee
dddddddd
cccccccc
bbbbbbbb
aaaaaaaa

23

Application

111.txt
eeeeeeee
dddddddd
cccccccc
bbbbbbbb
aaaaaaaa

>>> ./ reverse_file .py

111.txt
eeeeeeee
dddddddd
cccccccc
bbbbbbbb
aaaaaaaa

23

Matching Parentheses

Consider arithmetic expressions that may contain various pairs of
grouping symbols, such as

• Parentheses: ’(’ and ’)’
• Braces: ’{’| and lstinline |’}’
• Brackets: ‘[’ and ’]’

Each opening symbol must match its corresponding closing symbol. For
example, a left bracket, ’[’, must match a corresponding right bracket, ’]’,
as in the expression [(5+x)-(y+z)].

The following examples further illustrate this concept:

• Correct: ()(()){([()])}
• Correct: ((()(()){([()])}))
• Incorrect:)(()){([()])}
• Incorrect: ({[])}
• Incorrect: (

24

Matching Parentheses

from array_stack import ArrayStack
def is_matched (expr):

left = ’({[’
right = ’)}]’
S = ArrayStack ()
for c in expr:

if c in left:
S.push(c)

elif c in right:
if S. is_empty ():

return False
if right.index(c) != left.index(S.
pop ()):

return False
return S. is_empty ()

25

Matching Parentheses

if __name__ == " __main__ ":
expr = ’[(5+x) - (y+z)]’
if is_matched (expr):

print ("In %s: delimiters is matched " %
expr)

else:
print ("In %s: delimiters is NOT matched "

% expr)

26

Matching Tags in HTML

Another application of matching delimiters is in the validation of markup
languages such as HTML or XML.

HTML is the standard format for hyperlinked documents on the Internet
and XML is an extensible markup language used for a variety of
structured data sets.

27

Matching Tags in HTML

28

Matching Tags in HTML

In an HTML document, portions of text are delimited by HTML tags. A
simple opening HTML tag has the form “<name>” and the
corresponding closing tag has the form “</name>”.

Other commonly used HTML tags that are used in this example include:

• body: document body
• h1: section header
• center: center justify
• p: paragraph
• ol: numbered (ordered) list
• li: list item

29

Matching Tags in HTML

from array_stack import ArrayStack

def is_matched_html (raw):
S = ArrayStack ()

30

Matching Tags in HTML

while j != -1:
k = raw.find(’>’, j+1)
if k == -1:

return False
tag = raw[j+1:k]
if not tag. startswith (’/’):

S.push(tag)
else:

if S. is_empty ():
return False

if tag [1:] != S.pop ():
return False

j = raw.find(’<’, k+1)
return S. is_empty ()

31

Matching Tags in HTML

if __name__ == " __main__ ":
raw = "<a> "
if(is_matched_html (raw)):

print (" Matched ")
else:

32

Queue

Queue

Definition

A queue is a collection of objects that are inserted and removed
according to the first-in, first-out (FIFO) principle.

Elements can be inserted at any time, but only the element that has been
in the queue the longest can be next removed.

33

Queue

34

Queue
The Queue Abstract Data Type

The Queue Abstract Data Type

Formally, the queue abstract data type defines a collection that keeps
objects in a sequence, where

• element access and deletion are restricted to the first element in the
queue;

• and element insertion is restricted to the back of the sequence.

35

The queue abstract data type (ADT) supports the following two
fundamental methods for a queue Q:

• Q.enqueue(e): Add element e to the back of queue Q.
• Q.dequeue(e): Remove and return the first element from queue Q;

an error occurs if the queue is empty.

The queue ADT also includes the following supporting methods

• Q.first(): Return a reference to the element at the front of queue
Q, without removing it; an error occurs if the queue is empty.

• Q.is_empty(): Return True if queue Q does not contain any
elements.

• len(Q): Return the number of elements in queue Q; in Python, we
implement this with the special method __len__.

36

The Queue Abstract Data Type

By convention, we assume that a newly created queue is empty, and that
there is no a priori bound on the capacity of the queue. Elements added
to the queue can have arbitrary type.

37

The Queue Abstract Data Type

38

Queue
Array-Based Queue Implementation

Array-Based Queue Implementation

For the stack ADT, we created a very simple adapter class that used a
Python list as the underlying storage. It may be very tempting to use a
similar approach for supporting the queue ADT.

• We could enqueue element e by calling append(e) to add it to the
end of the list.

• We could use the syntax pop(0), as opposed to pop(), to
intentionally remove the first element from the list when dequeuing.

As easy as this would be to implement, it is tragically inefficient.

39

Array-Based Queue Implementation

For the stack ADT, we created a very simple adapter class that used a
Python list as the underlying storage. It may be very tempting to use a
similar approach for supporting the queue ADT.

• We could enqueue element e by calling append(e) to add it to the
end of the list.

• We could use the syntax pop(0), as opposed to pop(), to
intentionally remove the first element from the list when dequeuing.

As easy as this would be to implement, it is tragically inefficient.

39

Array-Based Queue Implementation

As discussed before, when pop is called on a list with a non-default index,
a loop is executed to shift all elements beyond the specified index to the
left, so as to fill the hole in the sequence caused by the pop. Therefore, a
call to pop(0) always causes the worst-case behavior of O(n) time.

40

Array-Based Queue Implementation

We can improve on the above strategy by avoiding the call to pop(0)
entirely.

We can

• replace the dequeued entry in the array with a reference to None,
and

• maintain an explicit variable f to store the index of the element that
is currently at the front of the queue.

Such an algorithm for dequeue would run in O(1) time.

41

Array-Based Queue Implementation

We can improve on the above strategy by avoiding the call to pop(0)
entirely.

We can

• replace the dequeued entry in the array with a reference to None,
and

• maintain an explicit variable f to store the index of the element that
is currently at the front of the queue.

Such an algorithm for dequeue would run in O(1) time.

41

Matching Tags in HTML

After several dequeue operations, this approach might lead to

42

Matching Tags in HTML

Unfortunately, there remains a drawback to the revised approach.

We can build a queue that has relatively few elements, yet which are
stored in an arbitrarily large list. This occurs, for example, if we
repeatedly enqueue a new element and then dequeue another (allowing
the front to drift rightward). Over time, the size of the underlying list
would grow to O(m) where m is the total number of enqueue operations
since the creation of the queue, rather than the current number of
elements in the queue.

43

Matching Tags in HTML

Unfortunately, there remains a drawback to the revised approach.

We can build a queue that has relatively few elements, yet which are
stored in an arbitrarily large list. This occurs, for example, if we
repeatedly enqueue a new element and then dequeue another (allowing
the front to drift rightward). Over time, the size of the underlying list
would grow to O(m) where m is the total number of enqueue operations
since the creation of the queue, rather than the current number of
elements in the queue.

43

Using an Array Circularly

In developing a more robust queue implementation, we allow

• the front of the queue to drift rightward,
• the contents of the queue to “wrap around”the end of an

underlying array.

44

Using an Array Circularly

We assume that our underlying array has fixed length N that is greater
that the actual number of elements in the queue.

New elements are enqueued toward the “end” of the current queue,
progressing from the front to index N −1 and continuing at index 0, then
1.

45

Using an Array Circularly

We assume that our underlying array has fixed length N that is greater
that the actual number of elements in the queue.

New elements are enqueued toward the “end” of the current queue,
progressing from the front to index N −1 and continuing at index 0, then
1.

45

Using an Array Circularly

Implementing this circular view is not difficult.

• When we dequeue an element and want to “advance” the front
index, we use the arithmetic f = (f + 1)% N.

46

A Python Queue Implementation

Internally, the queue class maintains the following three instance
variables:

• _data: is a reference to a list instance with a fixed capacity.
• _size: is an integer representing the current number of elements

stored in the queue (as opposed to the length of the data list).
• _front: is an integer that represents the index within data of the

first element of the queue (assuming the queue is not empty).

47

A Python Queue Implementation

from exceptions import Empty

class ArrayQueue :
DEFAULT_CAPACITY = 10

def __init__ (self):
self._data = [None] * ArrayQueue .
DEFAULT_CAPACITY
self._size = 0
self. _front = 0

def __len__ (self):
return self. _size

def is_empty (self):
return self. _size == 0

48

A Python Queue Implementation

def first(self):
if self. is_empty ():

raise Empty(’Queue is empty ’)
return self. _data[self. _front]

def dequeue (self):
if self. is_empty ():

raise Empty(’Queue is empty ’)
result = self._data[self. _front]
self. _front = (self. _front + 1) % len(
self._data)
self._size -= 1
return result

49

A Python Queue Implementation

def dequeue (self):
if self. is_empty ():

raise Empty(’Queue is empty ’)
result = self._data[self. _front]
self. _front = (self. _front + 1) % len(
self._data)
self._size -= 1
return result

50

Resizing the Queue

When enqueue is called at a time when the size of the queue equals the
size of the underlying list, we rely on a standard technique of doubling
the storage capacity of the underlying list.

51

Resizing the Queue

After creating a temporary reference to the old list of values, we allocate
a new list that is twice the size and copy references from the old list to
the new list. While transferring the contents, we intentionally realign the
front of the queue with index 0 in the new array, as shown in

52

Analyzing the Array-Based Queue Implementation

With the exception of the resize utility, all of the methods rely on a
constant number of statements involving arithmetic operations,
comparisons, and assignments. Therefore, each method runs in
worst-case O(1) time, except for enqueue and dequeue, which have
amortized bounds of O(1) time

53

Analyzing the Array-Based Queue Implementation

54

Double-Ended Queues

Double-Ended Queues

Definition

A dequeue (i.e., double-ended queue) is a queue-like data structure
that supports insertion and deletion at both the front and the back
of the queue.

Deque is usually pronounced “deck” to avoid confusion with the dequeue
method of the regular queue ADT, which is pronounced like the
abbreviation “D.Q.”.

55

Double-Ended Queues

The deque abstract data type is more general than both the stack and
the queue ADTs.

Example

A restaurant using a queue to maintain a waitlist.

• Occassionally, the first person might be removed from the
queue only to find that a table was not available; typically, the
restaurant will re-insert the person at the first position in the
queue.

• It may also be that a customer at the end of the queue may
grow impatient and leave the restaurant.

56

Double-Ended Queues
The Deque Abstract Data Type

The Deque Abstract Data Type

To provide a symmetrical abstraction, the deque ADT is defined so that
deque D supports the following methods:

• D.add_first(e): Add element e to the front of deque D.
• D.add_last(e): Add element e to the back of deque D.
• D.delete_first(): Remove and return the first element from

deque D; an error occurs if the deque is empty.
• D.delete_last(): Remove and return the last element from deque

D; an error occurs if the deque is empty.

57

The Deque Abstract Data Type

Additionally, the deque ADT will include the following accessors:

• D.first(): Return (but do not remove) the first element of deque
D; an error occurs if the deque is empty.

• D.last(): Return (but do not remove) the last element of deque D;
an error occurs if the deque is empty.

• D.is_empty(): Return True if deque D does not contain any
elements.

• len(D): Return the number of elements in deque D; in Python, we
implement this with the special method __len__.

58

The Deque Abstract Data Type

59

Double-Ended Queues
Implementing a Deque with a Circular Array

Implementing a Deque with a Circular Array

We can implement the deque ADT in much the same way as the
ArrayQueue class.

• We recommend maintaining the same three instance variables:
_data, _size, and _front.

• Whenever we need to know the index of the back of the deque, or
the first available slot beyond the back of the deque, we use modular
arithmetic for the computation.

• in last() method, uses the index

back = (self. _front + self._size - 1) % len(
self._data)

• in add_first() method, circularly decrement the index

self. _front = (self. _front - 1) % len(self.
_data)

60

Double-Ended Queues
Deques in the Python Collections Module

Deques in the Python Collections Module

An implementation of a deque class is available in Python’s standard
collections module. A summary of the most commonly used behaviors of
the collections.deque class is given in

61

	Stacks
	The Stack Abstract Data Type
	Simple Array-Based Stack Implementation
	Application

	Queue
	The Queue Abstract Data Type
	Array-Based Queue Implementation

	Double-Ended Queues
	The Deque Abstract Data Type
	Implementing a Deque with a Circular Array
	Deques in the Python Collections Module

