
Data structure and algorithm in Python
Array-Based Sequences

Seongjin Lee

Dept of Aerospace and Software Engineering,
Gyeongsang National University

Table of contents

1. Python’s Sequence Types

2. Low-Level’s Arrays

3. Dynamic Arrays

4. Efficiency of Python’s Sequence Types

5. Using Array-Based Sequences

1

Python’s Sequence Types

Python’s Sequence Types

In this chapter, we explore Python’s various “sequence” classes, namely
the built-in list, tuple, and str classes.

Commonality
• supports indexing to access an individual element of a sequence,

using a syntax such as seq[k];
• uses a low-level concept known as an array to represent the

sequence.

Differences
• the abstractions that these classes represent
• the way that instances of these classes are represented internally by

Python

2

Python’s Sequence Types

In this chapter, we explore Python’s various “sequence” classes, namely
the built-in list, tuple, and str classes.

Commonality
• supports indexing to access an individual element of a sequence,

using a syntax such as seq[k];
• uses a low-level concept known as an array to represent the

sequence.

Differences
• the abstractions that these classes represent
• the way that instances of these classes are represented internally by

Python

2

Python’s Sequence Types

In this chapter, we explore Python’s various “sequence” classes, namely
the built-in list, tuple, and str classes.

Commonality
• supports indexing to access an individual element of a sequence,

using a syntax such as seq[k];
• uses a low-level concept known as an array to represent the

sequence.

Differences
• the abstractions that these classes represent
• the way that instances of these classes are represented internally by

Python

2

Python’s Sequence Types

Because these classes are used so widely in Python programs, and
because they will become building blocks upon which we will develop
more complex data structures, it is imperative that we establish a clear
understanding of both the public behavior and inner workings of these
classes.

3

Low-Level’s Arrays

Low-Level’s Arrays

Memory Address

Each byte of memory is associated with a unique number that serves as
its address.

Memory addresses are typically coordinated with the physical layout of
the memory system, and so we often portray the numbers in sequential
fashion.

4

Low-Level’s Arrays

Definition : Array

A group of related variables can be stored one after another in a
contiguous portion of the computer’s memory. Such a representation
is denoted as array.

5

Low-Level’s Arrays

Example

A text string is stored as an ordered sequence of individual characters.
We describe this as an array of six characters, even though it requires
12 bytes of memory. We will refer to each location within an array
as a cell, and will use an integer index to describe its location within
the array, with cells numbered starting with 0, 1, 2, and so on.

6

Low-Level’s Arrays

Each cell of an array must use the same number of bytes. This
requirement is what allows an arbitrary cell of the array to be accessed in
constant time based on its index.

Example

Given the memory address at which an array starts, the number of
bytes per element, and a disired index within the array, the appropri-
ate memory address can be computed using start + cellsize * index.

7

Low-Level’s Arrays
Referential Arrays

Referential Arrays

In Python, each cell of the array must use the same number of bytes.

Given a list of names:

[’Rene ’, ’Joseph ’, ’Janet ’, ’Jonas ’, ’Helen ’, ’
Virginia ’]

How to represent such a list within an array?
Way 1: Reserve enough space for each cell to hold the maximum length
string, but that would be wastfull.

8

Referential Arrays

In Python, each cell of the array must use the same number of bytes.

Given a list of names:

[’Rene ’, ’Joseph ’, ’Janet ’, ’Jonas ’, ’Helen ’, ’
Virginia ’]

How to represent such a list within an array?

Way 1: Reserve enough space for each cell to hold the maximum length
string, but that would be wastfull.

8

Referential Arrays

In Python, each cell of the array must use the same number of bytes.

Given a list of names:

[’Rene ’, ’Joseph ’, ’Janet ’, ’Jonas ’, ’Helen ’, ’
Virginia ’]

How to represent such a list within an array?
Way 1: Reserve enough space for each cell to hold the maximum length
string, but that would be wastfull.

8

Referential Arrays

Way 2: Python represents a list or tuple instance using an internal
storage mechanism of an array of object references. At the lowest level,
what is stored is a consecutive sequence of memory addresses at which
the elements of the sequence reside.

9

Referential Arrays

Although the relative size of the individual elements may vary, the
number of bits used to store the memory address of each element is
fixed. In this way, Python can support constant-time access to a list or
tuple element based on its index.

10

Referential Arrays

A single list instance may include multiple references to the same object
as elements of the list, and it is possible for a single object to be an
element of two or more lists, as those lists simply store references back to
that object.

11

Referential Arrays

Example

When you compute a slice of a list, the result is a new list instance,
but that new list has references to the same elements that are in the
original list.

12

Referential Arrays

13

Referential Arrays

>>> data = [0] * 8

produces a list of length 8, with all 8 elements being the value 0.
Technically, all 8 cells of the list reference the same object.

14

Referential Arrays

>>> data [2] += 1

Due to the fact that the referenced integer is immutable, the above
command does not change the value of the existing integer instance.

15

Referential Arrays

>>> primes = [2 ,3 ,5 ,7 ,11 ,13 ,17 ,19]
>>> extras = [23 ,29 ,31]
>>> primes . extend (extras)

The extend command is used to add all elements from one list to the
end of another list.

The extended list does not receive copies of those elements, it receives
references to those elements.

16

Referential Arrays

>>> primes = [2 ,3 ,5 ,7 ,11 ,13 ,17 ,19]
>>> extras = [23 ,29 ,31]
>>> primes . extend (extras)

The extend command is used to add all elements from one list to the
end of another list.

The extended list does not receive copies of those elements, it receives
references to those elements. 16

Low-Level’s Arrays
Compact Arrays in Python

Compact Arrays in Python

Strings are represented using an array of characters (NOT an array of
references).

We will refer to this more direct representation as a compact array
because the array is storing the bits that represent the primary data
(characters, in the case of strings).

17

Compact Arrays in Python

Compact arrays have several advantages over referential structures in
terms of computing performance.

• overall memory usage will be much lower
• the primary data are stored consecutively in memory

18

Compact Arrays in Python

Primary support for compact arrays is in a module named array. That
module defines a class, also named array, providing compact storage for
arrays of primitive data types.

19

Compact Arrays in Python

>>> from array import array
>>> print (array(’i’, [1 ,2 ,3 ,4 ,5]))
array(’i’, [1, 2, 3, 4])
>>> print (array(’f’, [1 ,2 ,3 ,4 ,5]))
array(’f’, [1.0 , 2.0, 3.0, 4.0])
>>> print (array(’d’, [1 ,2 ,3 ,4 ,5]))
array(’d’, [1.0 , 2.0, 3.0, 4.0])

20

Compact Arrays in Python

21

Dynamic Arrays

Dynamic Arrays

When creating a low-level array in a computer system, the precise size of
that array must be explicitly declared in order for the system to properly
allocate a consecutive piece of memory for its storage.

22

Dynamic Arrays

Because the system might dedicate neighboring memory locations to
store other data, the capacity of an array cannot trivially be increased by
expanding into subsequent cells. In the context of representing a Python
tuple or str instance, this constraint is no problem.

23

Dynamic Arrays

Python’s list class presents a more interesting abstraction.

Although a list has a particular length when constructed, the class allows
us to add elements to the list, with no apparent limit on the overall
capacity of the list.

To provide this abstraction, Python relies on an algorithmic sleight of
hand known as a dynamic array.

24

Dynamic Arrays

A list instance maintains an underlying array that often has greater
capacity than the current length of the list.

This extra capacity makes it easy to append a new element to the list by
using the next available cell of the array.

25

Dynamic Arrays

If a user continues to append elements to a list, any reserved capacity
will eventually be exhausted.

• In that case, the class requests a new, larger array from the system,
and initializes the new array so that its prefix matches that of the
existing smaller array.

• At that point in time, the old array is no longer needed, so it is
reclaimed by the system.

Like hermit crab

26

Dynamic Arrays

If a user continues to append elements to a list, any reserved capacity
will eventually be exhausted.

• In that case, the class requests a new, larger array from the system,
and initializes the new array so that its prefix matches that of the
existing smaller array.

• At that point in time, the old array is no longer needed, so it is
reclaimed by the system.

Like hermit crab

26

Dynamic Arrays

listsize.py
import sys
try:

n = int(sys.argv [1])
except :

n = 100
data = []
for k in range (n): # NOTE: must fix choice of n

a = len(data) # number of elements
b = sys. getsizeof (data) # actual size in bytes
print (’Length : {0:3d}; Size in bytes: {1:4d}’.
format (a, b))
data. append (None) # increase length by one

27

Dynamic Arrays

$ python listsize .py 6
Length : 0; Size in bytes: 64
Length : 1; Size in bytes: 96
Length : 2; Size in bytes: 96
Length : 3; Size in bytes: 96
Length : 4; Size in bytes: 96
Length : 5; Size in bytes: 128

28

Dynamic Arrays
Implementing a Dynamic Array

Implementing a Dynamic Array

Although the Python list class provides a highly optimized
implementation of dynamic arrays, upon which we rely for the remainder
of this book, it is instructive to see how such a class might be
implemented.

The key is to provide means to grow the array A that stores the elements
of a list. Of course, we cannot actually grow that array, as its capacity is
fixed.

29

Implementing a Dynamic Array

Although the Python list class provides a highly optimized
implementation of dynamic arrays, upon which we rely for the remainder
of this book, it is instructive to see how such a class might be
implemented.

The key is to provide means to grow the array A that stores the elements
of a list. Of course, we cannot actually grow that array, as its capacity is
fixed.

29

Implementing a Dynamic Array

If an element is appended to a list at a time when the underlying array is
full, we perform the following steps:

• Allocate a new array B with larger capacity.
• Set B[i]=A[i], for i = 0, ...,n1, where n denotes current number of

items.
• Set A=B, that is, we henceforth use B as the array supporting the

list.
• Insert the new element in the new array.

30

Implementing a Dynamic Array

31

Implementing a Dynamic Array

The remaining issue to consider is how large of a new array to create. A
commonly used rule is for the new array to have twice the capacity of the
existing array that has been filled.

32

Implementing a Dynamic Array

import ctypes

class DynamicArray :
"""A dynamic array class akin to a simplified
Python list."""
def __init__ (self):

""" Create an empty array ."""
self._n = 0
self. _capacity = 1
self._A = self. _make_array (self. _capacity)

def _make_array (self , c):
""" Return new array with capacity c."""
return (c * ctypes . py_object)()

33

Implementing a Dynamic Array

def __len__ (self):
""" Return number of elements stored in the
array ."""
return self._n

def __getitem__ (self , k):
""" Return element at index k."""
if not 0 <= k < self._n:

raise IndexError (’invalid index ’)
return self._A[k]

34

Implementing a Dynamic Array

def _resize (self , c):
""" Resize internal array to capacity c."""
B = self. _make_array (c)
for k in range (self._n):

B[k] = self._A[k]
self._A = B
self. _capacity = c

35

Implementing a Dynamic Array

def append (self , obj):
""" Add object to end of the array ."""
if self._n == self. _capacity :

self. _resize (2 * self. _capacity)
self._A[self._n] = obj
self._n += 1

36

Efficiency of Python’s Sequence Types

Efficiency of Python’s Sequence Types
Python’s List and Tuple Classes

Efficiency of Python’s Sequence Types

37

Constant Operation

• len(data)

• data[j]

38

Searching for Occurrences of a Value

• count

the loop for computing the count must proceed through the entire
sequence,

• index, __contains__

the loops for checking containment of an element or determining the
index of an element immediately exit once they find the leftmost
occurrence of the desired value, if one exists.

39

Searching for Occurrences of a Value

Example

data = list(range(10000000))

• 5 in data: Best
• 9999995 in data: Middle
• -5 in data: Worst

40

Creating New Instances

The asymptotic behavior is proportional to the length of the result.

Example

• The slice data[6000000:6000008] can be constructed almost
immediately because it has only eight elements;

• the slice data[6000000:7000000] has one million elements,
and thus is more time-consuming to create

41

Mutating Behaviors

42

Mutating Behaviors

The simplest of those behaviors has syntax data[j] = val, and is
supported by the special __setitem__ method. This operation has
worst-case O(1) running time because

• it simply replaces one element of a list with a new value;
• no other elements are affected and the size of the underlying array

does not change.

43

Adding Elements to a List

• The append method
requires O(n) time because the underlying array is resized, but uses
O(1) time in the amortized sense.

44

Adding Elements to a List

• The insert method
insert(k, value) inserts a given value into the list at index
0≤ k ≤ n while shifting all subsequent elements back one slot to
make room.

45

Adding Elements to a List

def insert (self , k, value):
""" Insert value at index k, shifting
subsequent values rightward ."""
(for simplicity , we assume 0 <= k <= n in
this verion)
if self._n == self. _capacity :

self. _resize (2 * self. _capacity)
for j in range (self._n , k, -1):

self._A[j] = self._A[j -1]
self._A[k] = value
self._n += 1

46

Adding Elements to a List

• Inserting at the beginning of a list is most expensive, requiring linear
time per operation;

• Inserting at the middle requires about half the time as inserting at
the beginning, yet is still O(n) time;

• Inserting at the end displays O(1) behavior, akin to append.

47

Adding Elements to a List

• Inserting at the beginning of a list is most expensive, requiring linear
time per operation;

• Inserting at the middle requires about half the time as inserting at
the beginning, yet is still O(n) time;

• Inserting at the end displays O(1) behavior, akin to append.

47

Removing Elements from a List

• pop(): removes the last element from a list.
This is most efficient, because all other elements remain in their
original location. This is effectively an O(1) operation, but the
bound is amortized because Python will occasionally shrink the
underlying dynamic array to conserve memory.

48

Removing Elements from a List

• pop(k): removes the element that is at index k < n of a list, shifting
all subsequent elements leftward to fill the gap that results from the
removal.
The efficiency of this operation is O(nk), as the amount of shifting
depends upon the choice of index k.

49

Removing Elements from a List

• The remove method
remove(value) allows the caller to specify the value that should be
removed.
The efficiency of this operation is O(n). One part of the process
searches from the beginning until finding the value at index k, while
the rest iterates from k to the end in order to shift elements leftward.

50

Removing Elements from a List

def remove (self , value):
""" Remove first occurrence of value (or
raise ValueError)."""
note: we do not consider shrinking the
dynamic array in this version
for k in range (self._n):

if self._A[k] == value:
for j in range (k, self._n - 1):

self._A[j] = self._A[j+1]
self._A[self._n - 1] = None
self._n -= 1 # we have one less item
return # exit immediately

raise ValueError (’value not found ’)

51

Extending a List

• The extend method
• add all elements of one list to the end of a second list
• A call to data.extend(other) produces the same outcome as the

code,

for element in other:
data. append (element)

In either case, the running time is proportional to the length of the
other list, and amortized because the underlying array for the first
list may be resized to accommodate the additional elements.

52

Extending a List

In practice, the extend method is preferable to repeated calls to append
because the constant factors hidden in the asymptotic analysis are
significantly smaller.

53

Extending a List

The greater efficiency of extend is threefold.

1. There is always some advantage to using an appropriate Python
method, because those methods are often implemented natively in a
compiled language (rather than as interpreted Python code).

2. There is less overhead to a single function call that accomplishes all
the work, versus many individual function calls.

3. Increased efficiency of extend comes from the fact that the resulting
size of the updated list can be calculated in advance. If the second
data set is quite large, there is some risk that the underlying
dynamic array might be resized multiple times when using repeated
calls to append. With a single call to extend, at most one resize
operation will be performed.

54

Constructing New Lists

• List Comprehension

squares = [k*k for k in range (1, n+1)]

• Loop

squares = []
for k in range (1, n+1):

squares . append (k*k)

The list comprehension syntax is significantly faster than building
the list by repeatedly appending.

55

Constructing New Lists

Initialize a list of constant values using the multiplication operator, as in
[0] * n to produce a list of length n with all values equal to zero. It is
more efficient than building such a list incrementally.

56

Using Array-Based Sequences

Using Array-Based Sequences
Storing High Scores for a Game

Storing High Scores for a Game

class GameEntry :
""" Represents one entry of a list of high
scores ."""

def __init__ (self , name , score):
self._name = name
self. _score = score

def get_name (self):
return self._name

def get_score (self):
return self. _score

def __str__ (self):
return ’({0} , {1}) ’. format (self._name , self.
_score) # e.g., ’(Bob , 98) ’ 57

Storing High Scores for a Game

58

Storing High Scores for a Game

class Scoreboard :
""" Fixed - length sequence of high scores in
nondecreasing order ."""
def __init__ (self , capacity =10):

""" Initialize scoreboard with given maximum
capacity .
All entries are initially None.
"""
self. _board = [None] * capacity
self._n = 0

def __getitem__ (self , k):
return self. _board [k]

def __str__ (self):
return ’\n’.join(str(self. _board [j]) for j
in range (self._n)) 59

Storing High Scores for a Game

60

Storing High Scores for a Game

def add(self , entry):
score = entry. get_score ()
good = self._n < len(self. _board) or score >

self. _board [-1]. get_score ()

if good:
if self._n < len(self. _board):

self._n += 1
j = self._n - 1
while j > 0 and self. _board [j -1]. get_score
() < score:

self. _board [j] = self. _board [j -1]
j -= 1

self. _board [j] = entry

61

Storing High Scores for a Game

if __name__ == ’__main__ ’:
board = Scoreboard (5)
for e in (

(’Rob ’, 750) , (’Mike ’ ,1105) , (’Rose ’, 590) ,
(’Jill ’, 740) ,(’Jack ’, 510) , (’Anna ’, 660) ,
(’Paul ’, 720) , (’Bob ’, 400) ,

):
ge = GameEntry (e[0] , e[1])
board.add(ge)
print (’After considering {0}, scoreboard is:
’. format (ge))
print (board)
print ()

62

Using Array-Based Sequences
Sorting a Sequence

Sorting a Sequence

Starting with an unordered sequence of elements and rearranging them
into nondecreasing order.

63

Insert-Sorting

• First start with the first element in the array. One element by itself
is already sorted.

• Then consider the next element in the array. If it is smaller than the
first, we swap them.

• Next consider the third element in the array. Swap it leftward until it
is in its proper order with the first two elements.

• Then consider the fourth element, and swap it leftward until it is in
the proper order with the first three.

• Continue in this manner with the fifth element, the sixth, and so on,
until the whole array is sorted.

64

Insert-Sorting

65

Insert-Sorting

66

Insert-Sorting

def insertion_sort (A):
""" Sort list of comparable elements into
nondecreasing order ."""
for k in range (1, len(A)): # from 1 to

n-1
cur = A[k] # current
element to be inserted
j = k # find
correct index j for current
while j > 0 and A[j -1] > cur: # element A
[j -1] must be after current

A[j] = A[j -1]
j -= 1

A[j] = cur # cur is
now in the right place

67

	Python's Sequence Types
	Low-Level's Arrays
	Referential Arrays
	Compact Arrays in Python

	Dynamic Arrays
	Implementing a Dynamic Array

	Efficiency of Python's Sequence Types
	Python's List and Tuple Classes

	Using Array-Based Sequences
	Storing High Scores for a Game
	Sorting a Sequence

