
Data structure and algorithm in Python
Recursion

Seongjin Lee

Dept of Aerospace and Software Engineering,
Gyeongsang National University

Table of contents

1. Illustrative Examples

2. Poor Implementation of Recursion

3. Further Examples of Recursion

4. Designing Recursive Algorithms

5. Eliminating Tail Recursion

1

One way to describe repetition within a computer program is the use of
loops, such as Python’s while-loop and for-loop constructs. An entirely
different way to achieve repetition is through a process known as
recursion.

2

Definition : Recusion

Recursion is a technique by which a function makes one or more calls
to itself during execution, or by which a data structure relies upon
smaller instances of the very same type of structure in its represen-
tation.

3

4

5

In computing, recursion provides an elegant and powerful alternative for
performing repetitive tasks.

Most modern programming languages support functional recursion using
the identical mechanism that is used to support traditional forms of
function calls. When one invocation of the function make a recursive call,
that invocation is suspended until the recursive call completes.

6

Recursion is an important technique in the study of data structures and
algorithms.

Four illustrative examples of the use of recursion:

1. Factorial function
2. English ruler
3. Binary search
4. File system

7

Illustrative Examples

Illustrative Examples
The Factorial Function

The Factorial Function

Definition : Formal

n!=
{

1, n = 0,

n · (n−1) · · ·2 ·1, n ≥ 1.

Definition : Recursive

n!=
{

1, n = 0,

n · (n−1)!, n ≥ 1.

Recursive definition

• contains one or more base cases
• contains one or more recursive cases

8

The Factorial Function

def factorial (n):
if n == 0:

return 1
else:

return n * factorial (n -1)

9

The Factorial Function

10

The Factorial Function

A recursion trace closely mirrors the programming language’s execution
of the recursion.

• In Python, each time a function is called, a structure known as an
activation record or frame is created to store information about the
progress of that invocation of the function.

• This activation record includes a namespace for storing the function
call’s parameters and local variables, and information about which
command in the body of the function is currently executing.

11

The Factorial Function

When the execution of a function leads to a nested function call, the
execution of the former call is suspended and its activation record stores
the place in the source code at which the flow of control should continue
upon return of the nested call. This process is used both in the standard
case of one function calling a different function, or in the recursive case
in which a function invokes itself. The key point is that there is a
different activation record for each active call.

12

The Factorial Function: Algorithm Analysis

• a total of n+1 activations;
• each individual activation executes a constant number of operations.

The overall number of operations for computing factorial(n) is O(n).

13

Illustrative Examples
English Ruler

English Ruler

14

English Ruler

An interval with a central tick length L≥ 1 is composed of:

• An interval with a central tick length L−1
• A single tick of length L
• An interval with a central tick length L−1

15

English Ruler I

def draw_line (tick_length , tick_label =’’):
line = ’-’ * tick_length
if tick_label :

line += ’ ’ + tick_label
print (line)

16

English Ruler I

def draw_interval (center_length):
if center_length > 0: # stop

when length drops to 0
draw_interval (center_length - 1) #
recursively draw top ticks
draw_line (center_length) # draw

center tick
draw_interval (center_length - 1) #
recursively draw bottom ticks

17

English Ruler I

def draw_ruler (num_inches , major_length):
draw_line (major_length , ’0’) # draw

inch 0 line
for j in range (1, 1 + num_inches):

draw_interval (major_length - 1) # draw
interior ticks for inch

draw_line (major_length , str(j)) # draw
inch j line and label

18

English Ruler

19

English Ruler: Algorithm Analysis

Question

How many total lines of output are generated by an initial call to
draw_interval(c)? (c denotes the center length).

A call to draw_interval(c) for c > 0 spawns two calls to
draw_interval(c1) and a single call to draw_line.

Proposition

For c ≥ 0, a call to draw_interval(c) results in precisely 2c − 1
lines of output.

20

Illustrative Examples
Binary Search

Binary Search

Binary Search is used to efficiently locate a target value within a sorted
sequence of n elements.

This is among the most important of computer algorithms, and it is the
reason that we so often store data in sorted order.

21

Binary Search

When the sequence is unsorted, the standard approach to search for a
target value is to use a loop to examine every element, until either
finding the target or exhausting the data set. This is known as the
“sequential search” algorithm. This algorithm runs in O(n) time (i.e.,
linear time) since every element is inspected in the worst case.

22

Binary Search

Binary Search maintains two parameters, low and high, such that all the
candidate entries have index at least low and at most high.

• Initially, low = 0 and high = n - 1.
• Then, compare the target value to the median candidate:

data[mid] with mid = ⌊(low +high)/2⌋
• Consider three cases:

• If target == data[mid], success;
• If target < data[mid], recur on the left half of the sequence;
• If target < data[mid], recur on the right half of the sequence.

An unsuccessful search occurs if low > high, as the interval
[low,high] is empty.

23

Binary Search I

def binary_search (data , target , low , high):
interval is empty ; no match
if low > high:

return False
else:

mid = (low + high) // 2
if target == data[mid]:

return True
elif target < data[mid]:

return binary_search (data , target , low ,
mid - 1)

else:
return binary_search (data , target , mid +
1, high)

24

Binary Search

25

Binary Search: Algorithm Analysis

Proposition

The binary search algorithm runs in O(logn) time for a sorted se-
quence with n elements.

Proof

From the definition of mid, the number of remaining candidates is
either

(mid −1)− low +1=
⌊ low +high

2

⌋
− low ≤ high− low +1

2
or

high− (mid +1)+1= high−
⌊ low +high

2

⌋
≤ high− low +1

2

So the maximum number of recursive calls performed is the smallest
integer r such that n

2r < 1, i.e., r > logn.

26

Illustrative Examples
File Systems

File Systems

Modern operating systems define file-system directories in a recursive
way.

• Namely, a file system consists of a top-level directory, and the
contents of this directory consists of files and other directories,
which in turn can contain files and other directories, and so on.

• The operating system allows directories to be nested arbitrarily deep
(as long as there is enough space in memory), although there must
necessarily be some base directories that contain only files, not
further subdirectories.

27

File Systems

28

File Systems

29

File Systems

The cumulative disk space for an entry can be computed with a simple
recursive algorithm. It is equal to the immediate disk space used by the
entry plus the sum of the cumulative disk space usage of any entries that
are stored directly within the entry. (See the cumulative disk space for
cs016)

30

File Systems

31

Python’s os Module

Python’s os module, which provides robust tools for interacting with the
operating system during the execution of a program.

• os.path.getsize(path)
Return the immediate disk usage (measured in bytes) for the file or
directory that is identified by the string path (e.g., /user/rt/courses).

• os.path.isdir(path)
Return True if entry designated by string path is a directory; False
otherwise.

• os.listdir(path)
Return a list of strings that are the names of all entries within a
directory designated by string path.

• os.path.join(path, filename)
Compose the path string and filename string using an appropriate
operating system separator between the two. Return the string that
represents the full path to the file.

32

File Systems

import os

def disk_usage (path):
total = os.path. getsize (path)

account for direct usage
if os.path.isdir (path):

if this is a
directory ,

for filename in os. listdir (path):
then for each child :

childpath = os.path.join(path , filename)
compose full path to child

total += disk_usage (childpath)
add child ’s usage to total

print (’{0: <7} ’. format (total), path)
descriptive output (optional)

return total
return the

grand total

33

File Systems: Algorithm Analysis

Let n be the number of file-system entries in the portion of the file
system.

To characterize the cumulative time spent for an initial call to the disk
usage function, we must analyze

• the total number of recursive invocations,
• the number of operations that are executed within those invocations.

34

Poor Implementation of Recursion

Poor Implementation of Recursion

• Although recursion is a very powerful tool, it can easily be misused
in various ways.

• A poorly implemented recursion will cause drastic inefficiency.
• Should learn some strategies for recognizing and avoid such pitfalls.

35

Poor Implementation of Recursion
Element uniqueness problem

Poor Implementation of Recursion

Question : element uniqueness problem

Determine if all n elements of a sequence are unique.

36

Element uniqueness problem

def unique1 (S):
for j in range (len(S)):

for k in range (j+1, len(S)):
if S[j] == S[k]:

return False # found
duplicate pair

return True # if we reach
this , elements were unique

37

Element uniqueness problem

def unique2 (S):
temp = sorted (S) # create a
sorted copy of S
for j in range (1, len(temp)):

if S[j -1] == S[j]:
return False # found
duplicate pair

return True # if we reach
this , elements were unique

38

Poor Implementation of Recursion

• If n = 1, the elements are trivially unique.
• For n ≥ 2, the elements are unique if and only if the first n−1

elements are unique, the last n−1 items are unique, and the first
and last elements are different.

39

Element uniqueness problem

def unique3 (S, start , stop):
if stop - start <= 1:

return True # at most one item
elif not unique (S, start , stop -1):

return False # first part has duplicate
elif not unique (S, start +1, stop):

return False # second part has duplicate
else:

return S[start] != S[stop -1] # do first and
last differ ?

This is a terribly insufficient use of recursion.

40

Element uniqueness problem

def unique3 (S, start , stop):
if stop - start <= 1:

return True # at most one item
elif not unique (S, start , stop -1):

return False # first part has duplicate
elif not unique (S, start +1, stop):

return False # second part has duplicate
else:

return S[start] != S[stop -1] # do first and
last differ ?

This is a terribly insufficient use of recursion.

40

Element uniqueness problem

Let n denote the number of entries – i.e., n = stop - start.

• If n = 1, the running time of unique3 is O(1), since there are no
recursive calls for this case.

• If n > 1, a single call to unique3 for a problem of size n may result in
two recursive calls on problems of size n−1.

Thus, in the worst case, the total number of function calls is given by

1+2+22 +·· ·+2n−1 = 2n −1,

which means the running time of unique3 is O(2n).

41

Poor Implementation of Recursion
Computing Fibonacci Numbers

Computing Fibonacci Numbers

Question : Fibonacci series

F0 = 0,

F1 = 1,

Fn =Fn−1 +Fn−2, n > 1.

42

Computing Fibonacci Numbers: An Inefficient Recursion

def bad_fibonacci (n):
if n <= 1:

return n
else:

return bad_fibonacci (n -2) + bad_fibonacci (n
-1)

Such a direct implementation of the Fibonacci formula results in a
terribly inefficient function.

43

Computing Fibonacci Numbers: An Inefficient Recursion

def bad_fibonacci (n):
if n <= 1:

return n
else:

return bad_fibonacci (n -2) + bad_fibonacci (n
-1)

Such a direct implementation of the Fibonacci formula results in a
terribly inefficient function.

43

Computing Fibonacci Numbers: An Inefficient Recursion

Let cn be the number of calls performed in the execution of
bad_fibonacci(n), then

c0 = 1
c1 = 1
c2 = 1+c0 +c1 = 3
c3 = 1+c1 +c2 = 5
c4 = 1+c2 +c3 = 9
c5 = 1+c3 +c4 = 15
c6 = 1+c4 +c5 = 25
c7 = 1+c5 +c6 = 41
c8 = 1+c6 +c7 = 67

So,
cn > 2n/2,

which means that bad_fibonacci(n) makes a number of calls that is
exponential in n.

44

Computing Fibonacci Numbers: An Efficient Recursion

In bad recursion formulation, Fn depends on Fn−2 and Fn−1. But notice
that after computing Fn−2, the call to compute Fn−1 requires its own
recursive call to compute Fn−2, as it does not have knowledge of the
value of Fn−2 that was computed at the earlier level of recursion.

45

Computing Fibonacci Numbers: An Efficient Recursion

def good_fibonacci (n):
if n <= 1:

return (n ,0)
else:

(a, b) = good_fibonacci (n -1)
return (a+b, a)

The execuion of good_fibonacci(n) takes O(n) time.

46

Poor Implementation of Recursion
Maximum Recursive Depth in Python

Maximum Recursive Depth in Python

Another danger in the misuse of recursion is known as infinite recursion.

• If each recursive call makes another recursive call, without ever
reaching a base case, then we have an infinite series of such calls.
This is a fatal error.

• An infinite recursion can quickly swamp computing resources, not
only due to rapid use of the CPU, but because each successive call
creates an activation record requiring additional memory.

47

Maximum Recursive Depth in Python

Example : Infinite recursion

def fib(n):
return fib(n)

A programmer should ensure that each recursive call is in some way
progressing toward a base case.

48

Maximum Recursive Depth in Python

Example : Infinite recursion

def fib(n):
return fib(n)

A programmer should ensure that each recursive call is in some way
progressing toward a base case.

48

Maximum Recursive Depth in Python

To combat against infinite recursions, the designers of Python made an
intentional decision to limit the overall number of function activations
that can be simultaneously active.

• The precise value of this limit depends upon the Python distribution,
but a typical default value is 1000.

• If this limit is reached, the Python interpreter raises a RuntimeError
with a message, maximum recursion depth exceeded.

49

Maximum Recursive Depth in Python

Fortunately, the Python interpreter can be dynamically reconfigured to
change the default recursive limit.

import sys
old = sys. getrecursionlimit ()
sys. setresursionlimit (1000000)

50

Further Examples of Recursion

Further Examples of Recursion
Linear Recursion

Further Examples of Recursion

Definition : Linear Recursion

If a recursive function is designed so that each invocation of the body
makes at most one new recursive call, this is know as linear recursion.

Example : Linear Recursion

• factorial function
• good fibnacci function
• binary search algorithm

It includes a case analysis with two branches that lead to
recursive calls, but only one of those calls can be reached
during a particular execution of the body.

51

Further Examples of Recursion

Definition : Linear Recursion

If a recursive function is designed so that each invocation of the body
makes at most one new recursive call, this is know as linear recursion.

Example : Linear Recursion

• factorial function
• good fibnacci function
• binary search algorithm

It includes a case analysis with two branches that lead to
recursive calls, but only one of those calls can be reached
during a particular execution of the body.

51

Linear Recursion

A consequence of the definition of linear recursion is that any recursion
trace will appear as a single sequence of calls.

52

Linear Recursion: Summing the Elements of a Sequence

Example : Summing the Elements of a Sequence Recursively

Compute the sum of a sequence S of n integers.

Let s be the sum of all n integers in S, then

• if n = 0, s = 0
• if n > 0, s equals the sum of the first n−1 integers in S plus the last

element in S.

53

Linear Recursion: Summing the Elements of a Sequence

54

Linear Recursion: Summing the Elements of a Sequence

def linear_sum (S, n):
if n == 0:

return 0
else:

return linear_sum (S, n -1) + S[n -1]

55

Linear Recursion: Summing the Elements of a Sequence

56

Linear Recursion: Summing the Elements of a Sequence

Algorithm Analysis
• Run time

• n+1 function calls
• each call use O(1) operations

so it takes O(n) time;
• Memory space

• because it uses a constant amount of memory space for each of the
n+1 activation records, so its memory usage is O(n).

57

Linear Recursion: Reversing a Sequence

Example : Reversing a Sequence with Recursion

Reverse the n elements of a sequence S, so that the first element
becomes the last, the second element becomes second to the last,
and so on.

The reversal of a sequence can be achieved by swapping the first and last
elements and then recursively reversing the remaining elements.

58

Linear Recursion: Reversing a Sequence

Example : Reversing a Sequence with Recursion

Reverse the n elements of a sequence S, so that the first element
becomes the last, the second element becomes second to the last,
and so on.

The reversal of a sequence can be achieved by swapping the first and last
elements and then recursively reversing the remaining elements.

58

Linear Recursion: Reversing a Sequence

def reverse (S, start , stop):
if start < stop - 1: #

if at least 2 elements :
S[start], S[stop -1] = S[stop -1], S[start] #

swap first and last
reverse (S, start +1, stop -1) #

recur on rest

59

Linear Recursion: Reversing a Sequence

60

Linear Recursion: Reversing a Sequence

• There are two implicit base case scenarios:
• if start == stop, the range is empty;
• if start == stop-1, the range has only one element.

In either of these cases, there is no need for action.
• When invoking recursion, we are guaranteed to make progress

towards a base case, as the difference stop - start decreases by
two with each call.

The above argument implies that the recursive algorithm is guaranteed to
terminate after a total of 1+⌊n

2
⌋

recursive calls. Since each call involves
a constant amount of work, the entire process runs in O(n) time.

61

Linear Recursion: Reversing a Sequence

• There are two implicit base case scenarios:
• if start == stop, the range is empty;
• if start == stop-1, the range has only one element.

In either of these cases, there is no need for action.
• When invoking recursion, we are guaranteed to make progress

towards a base case, as the difference stop - start decreases by
two with each call.

The above argument implies that the recursive algorithm is guaranteed to
terminate after a total of 1+⌊n

2
⌋

recursive calls. Since each call involves
a constant amount of work, the entire process runs in O(n) time.

61

Linear Recursion: Computing Powers

Example : Recursive Algorithms for Computing Powers

Raising a number x to an arbitrary nonnegative integer n, — i.e.,
computing the power function power(x ,n)= xn.

We will consider two different recursive formulations for the problem that
lead to algorithms with very different performance.

62

Linear Recursion: Computing Powers

Example : Recursive Algorithms for Computing Powers

Raising a number x to an arbitrary nonnegative integer n, — i.e.,
computing the power function power(x ,n)= xn.

We will consider two different recursive formulations for the problem that
lead to algorithms with very different performance.

62

Linear Recursion: Computing Powers

Definition

power(x ,n)=
{

1 if n = 0
x ·power(x ,n−1) otherwise.

def power(x, n):
if n == 0:

return 1
else:

return x * power(x, n -1)

A recursive call to this version of power(x, n) runs in O(n) time. Its
recursion trace has structure very similar to that of factorial(n).

63

Linear Recursion: Computing Powers

Definition

power(x ,n)=
{

1 if n = 0
x ·power(x ,n−1) otherwise.

def power(x, n):
if n == 0:

return 1
else:

return x * power(x, n -1)

A recursive call to this version of power(x, n) runs in O(n) time. Its
recursion trace has structure very similar to that of factorial(n).

63

Linear Recursion: Computing Powers

Definition

power(x ,n)=
{

1 if n = 0
x ·power(x ,n−1) otherwise.

def power(x, n):
if n == 0:

return 1
else:

return x * power(x, n -1)

A recursive call to this version of power(x, n) runs in O(n) time. Its
recursion trace has structure very similar to that of factorial(n).

63

Linear Recursion: Computing Powers

Definition

power(x ,n)=



1 if n = 0

x ·power
(
x ,

⌊n
2

⌋)2
if n > 0 is odd

power
(
x ,

⌊n
2

⌋)2
if n > 0 is even

64

Linear Recursion: Computing Powers

def power(x, n):
if n == 0:

return 1
else:

partial = power(x, n // 2) # rely
on truncated division
result = partial * partial
if n % 2 == 1: # if n
odd , include extra factor of x

result *= x
return result

65

Linear Recursion: Computing Powers

66

Linear Recursion: Computing Powers

Algorithm Analysis
• Run time

• O(logn) recursive calls
• each individual activation of the function uses O(1) operations

So the total number of operations is O(logn)
• Memory usage

• Since the recursive depth is O(logn), its memory usages is O(logn)
as well.

67

Further Examples of Recursion
Binary Recursion

Binary Recursion

Definition : Binary Recursion

When a function makes two recursive calls, we say that it uses binary
recursion.

Example : Binary Recursion

• English ruler
• Bad fibonacci function

68

Binary Recursion

Example : Sum of elements

Sum the n elements of a sequence S of numbers.

• Computing the sum of one or zero elements is trivial.
• With two or more elements, we can recursively compute the sum of

the first half, and the sum of the second half, and add these sums
together.

69

Binary Recursion

Example : Sum of elements

Sum the n elements of a sequence S of numbers.

• Computing the sum of one or zero elements is trivial.
• With two or more elements, we can recursively compute the sum of

the first half, and the sum of the second half, and add these sums
together.

69

Binary Recursion

def binary_sum (S, start , stop):
if start >= stop: # zero
elements in slice

return 0
elif start == stop -1: # one
element in slice

return S[start]
else: # two
or more elements in slice

mid = (start + stop) // 2
return binary_sum (S, start , mid) +
binary_sum (S, mid , stop)

70

Binary Recursion

71

Binary Recursion

Algorithm Analysis
For simplicity, consider the case where n is a power of two.

• Running time
• 2n−1 functions calls,
• each call requires O(1) operations,

so the running time is O(n).
• Memory usage

• The size of the range is divided in half at each recursive call, and
thus the depth of the recursion is 1+ log2 n,

so its memory usage is O(logn), which is a big improvement over
the O(n) space used by the linear_sum function.

72

Further Examples of Recursion
Multiple Recursion

Multiple Recursion

Definition : Multiple recursion

Multiple recursion is a process in which a function may make more
than two recursive calls.

Example : Multiple recursion

• Disk space usage of a file system
the number of recursive calls made during one invocation
equals the number of entries within a given directory of the file
system.

73

Designing Recursive Algorithms

Designing Recursive Algorithms

In general, an algorithm that uses recursion typically has the following
form:

• Test for base cases
We begin by testing for a set of base cases (there should be at least
one). These base cases should be defined so that every possible
chain of recursive calls will eventually reach a base case, and the
handling of each base case should not use recursion.

• Recur
If not a base case, we perform one or more recursive calls. This
recur- sive step may involve a test that decides which of several
possible recursive calls to make. We should define each possible
recursive call so that it makes progress towards a base case.

74

Parameterizing a Recursion

To design a recursive algorithm for a given problem,

• it is useful to think of the different ways we might define
subproblems that have the same general structure as the original
problem.

• If one has difficulty finding the repetitive structure needed to design
a recursive algorithm, it is sometimes useful to work out the problem
on a few concrete examples to see how the subproblems should be
defined.

75

Parameterizing a Recursion

A successful recursive design sometimes requires that we redefine the
original problem to facilitate similar-looking subproblems. Often, this
involved reparameterizing the signature of the function.

Example : Binary search

• A natural function signature for a caller would appear as
binary_search(data, target)

• In recursive version, we use
binary_search(data, target, low, high), using the
additional parameters to demarcate sublists.

If we had insisted on binary_search(data, target), the only way to
invoke a search on half the list would have been to make a new list
instance with only those elements to send as the first parameter.
However, making a copy of half the list would already take O(n) time,
negating the whole benefit of the binary search algorithm.

76

Parameterizing a Recursion

A successful recursive design sometimes requires that we redefine the
original problem to facilitate similar-looking subproblems. Often, this
involved reparameterizing the signature of the function.

Example : Binary search

• A natural function signature for a caller would appear as
binary_search(data, target)

• In recursive version, we use
binary_search(data, target, low, high), using the
additional parameters to demarcate sublists.

If we had insisted on binary_search(data, target), the only way to
invoke a search on half the list would have been to make a new list
instance with only those elements to send as the first parameter.
However, making a copy of half the list would already take O(n) time,
negating the whole benefit of the binary search algorithm.

76

Parameterizing a Recursion

If we wished to provide a cleaner public interface to an algorithm like
binary search, without bothering a user with the extra parameters, a
standard technique is to make one function for public use with the
cleaner interface, such as binary_search(data, target), and then
having its body invoke a nonpublic utility function having the desired
recursive parameters.

77

Parameterizing a Recursion

def binary_search_recur (data , target , low , high)
:

if low > high:
return False

else:
mid = (low + high) // 2
if target == data[mid]:

return True
elif target < data[mid]:

return binary_search_recur (data , target ,
low , mid - 1)

else:
return binary_search_recur (data , target ,
mid + 1, high)

78

Parameterizing a Recursion

def binary_search (data , target):
return binary_search_recur (data , target , 0,
len(data))

79

Eliminating Tail Recursion

Eliminating Tail Recursion

The main benefit of a recursive approach to algorithm design is that it
allows us to succinctly take advantage of a repetitive structure present in
many problems. By making our algorithm description exploit the
repetitive structure in a recursive way, we can often avoid complex case
analyses and nested loops. This approach can lead to more readable
algorithm descriptions, while still being quite efficient.

80

Eliminating Tail Recursion

However, the usefulness of recursion comes at a modest cost. In
particular, the Python interpreter must maintain activation records that
keep track of the state of each nested call. When computer memory is at
a premium, it is useful in some cases to be able to derive nonrecursive
algorithms from recursive ones.

81

Eliminating Tail Recursion

In general, we can use the stack data structure, to convert a recursive
algorithm into a nonrecursive algorithm by managing the nesting of the
recursive structure ourselves, rather than relying on the interpreter to do
so. Although this only shifts the memory usage from the interpreter to
our stack, we may be able to reduce the memory usage by storing only
the minimal information necessary.

82

Eliminating Tail Recursion

Some forms of recursion can be eliminated without any use of axillary
memory. A notable such form is known as tail recursion.

Definition : Tail Recursion

A recursion is a tail recursion if any recursive call that is made from
one context is the very last operation in that context, with the re-
turn value of the recursive call (if any) immediately returned by the
enclosing recursion.

By necessity, a tail recursion must be a linear recursion.

83

Eliminating Tail Recursion

Some forms of recursion can be eliminated without any use of axillary
memory. A notable such form is known as tail recursion.

Definition : Tail Recursion

A recursion is a tail recursion if any recursive call that is made from
one context is the very last operation in that context, with the re-
turn value of the recursive call (if any) immediately returned by the
enclosing recursion.

By necessity, a tail recursion must be a linear recursion.

83

Eliminating Tail Recursion

Some forms of recursion can be eliminated without any use of axillary
memory. A notable such form is known as tail recursion.

Definition : Tail Recursion

A recursion is a tail recursion if any recursive call that is made from
one context is the very last operation in that context, with the re-
turn value of the recursive call (if any) immediately returned by the
enclosing recursion.

By necessity, a tail recursion must be a linear recursion.

83

Eliminating Tail Recursion

Example

• The functions binary_search and reverse are tail
recursions.

• The functions factorial, linear_sum and good_fibonacci
are not tail functions.

84

Eliminating Tail Recursion

Any tail recursion can be reimplemented nonrecursively by enclosing the
body in a loop for repetition, and replacing a recursive call with new
parameters by a reassignment of the existing parameters to those values.

85

Eliminating Tail Recursion

def binary_search_iterative (data , target):
low = 0
high = len(data) -1
while low <= high:

mid = (low + high) // 2
if target == data[mid]:

return True
elif target < data[mid]:

high = mid - 1
else:

low = mid + 1
return False

86

Eliminating Tail Recursion

def reverse_iterative (S):
start , stop = 0, len(S)
while start < stop - 1:

S[start], S[stop -1] = S[stop -1], S[start] #
swap first and last

start , stop = start + 1, stop - 1 #
narrow the range

87

	Illustrative Examples
	The Factorial Function
	English Ruler
	Binary Search
	File Systems

	Poor Implementation of Recursion
	Element uniqueness problem
	Computing Fibonacci Numbers
	Maximum Recursive Depth in Python

	Further Examples of Recursion
	Linear Recursion
	Binary Recursion
	Multiple Recursion

	Designing Recursive Algorithms
	Eliminating Tail Recursion

