
Data structure and algorithm in Python
Algorithm Analysis

Seongjin Lee

Dept of Aerospace and Software Engineering, 
Gyeongsang National University



Table of contents

1. Experimental studies

2. The Seven Functions used in the analysis of algorithms

3. Asymptotic Analysis

1



• data structure is a systematic way of organizing and accessing dat;
• algorithm is a step-by-step procedure for performing some task in a

finite amout of time.

The primary analysis tool involves characterizing the running time of
algorithms and data structure algorithms, with space usage also being of
interest.

2



Running time is a natural measure of “goodness”, since time is a precious
time - computer solutions should run as fast as possible.

• increases with the input size
• be affected by the hardware environment (e.g., the processor, clock

rate, memory, disk) and software environment (e.g., the operating
system, programming language).

3



Experimental studies



Experimental studies

Elapsed time

from time import time
start_time = time ()
run algorithm
end_time = time ()
elapsed = end_time - start_time

4



Experimental studies

• The time function in time module
• The clock function in time module
• The module timeit

5



Challenges of Experimental Analysis

• Experiments should be performed in the same hardware and software
environments.

• Experiments can be done only on a limited set of test inputs; hence,
they leave out the running times of inputs not included in the
experiment (and these inputs may be important).

• An algorithm must be fully implemented in order to execute it to
study its running time experimentally.

6



Experimental studies
Moving Beyond Experimental Analysis



Moving Beyond Experimental Analysis

Our goal is to develop an approach to analyzing the efficiency of
algorithms that:

• Allows us to evaluate the relative efficiency of any two algorithms in
a way that is independent of the hardware and software environment.

• Is performed by studying a high-level description of the algorithm
without need for implementation.

• Takes into account all possible inputs.

7



Counting Primitive Operations

Define a set of primitive operations:

• Assigning an identifier to an object
• Determining the object associated with an identifier
• Performing an arithmetic operation (for example, adding two

numbers)
• Comparing two numbers
• Accessing a single element of a Python list by index
• Calling a function (excluding operations executed within the

function)
• Returning from a function.

Formally, a primitive operation corresponds to a low-level instruction with
an execution time that is constant.

8



Counting Primitive Operations

Instead of trying to determine the specific execution time of each
primitive operation, we will simply count how many primitive operations
are executed, and use this number t as a measure of the running time of
the algorithm.

The implicit assumption of “operation count” is the running times of
different primitive operations will be fairly similar. Thus, the number, t,
of primitive operations an algorithm performs will be proportional to the
actual running time of that algorithm.

9



Measuring Operations as a Function of Input Size

To capture the order of growth of an algorithm’s running time, we will
associate, with each algorithm, a function f (n) that characterizes the
number of primitive operations that are performed as a function of the
input size n.

10



Focusing on the Worst-Case Input

• Average-case analysis
• quite challenging
• requires to define a probability distribution on the set of inputs

• Worst-case analysis
• much easier
• requires only the ability to identify the worst-case input, which is

often simple
• typically leads to better algorithms

11



The Seven Functions used in the analysis of
algorithms



The Seven Functions used in the analysis of algorithms

constant logarithm linear n-log-n quadratic cubic exponetial
1 logn n n logn n2 n3 an

12



The Seven Functions used in the analysis of algorithms

• Ideally, we would like data structure operations to run in times
proportional to the constant or logarithm function, and we would
like our algorithms to run in linear or n-log-n time;

• Algorithms with quadratic or cubic running times are less practical;
• Algorithms with exponential running times are infeasible for all but

the smallest sized inputs.

13



The Seven Functions used in the analysis of algorithms

14



Asymptotic Analysis



Asymptotic Analysis

In algorithm analysis, we focus on the growth rate of the running time as
a function of the input size n, taking a “big-picture”approach.

def find_max (data):
""" Return the maximum element from a nonempty
Python list."""
biggest = data [0]
for val in data:

if val > biggest
biggest = val

return biggest

15



Asymptotic Analysis
The “Big-Oh” Notation



The “Big-Oh” Notation

Definition

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is O(g(n)) if there is a real constant
c > 0 and an integer constant n0 ≥ 1 such that

f (n)≤ cg(n), for n ≥ n0.

This definition is often referred to as the “big-Oh”notation, for it
is sometimes pronounced as “f (n) is big-Oh of g(n)".

16



The “Big-Oh” Notation

17



Some Properties of the Big-Oh Notation

The big-Oh notation allows us to ignore constant factors and lower-order
terms and focus on the main components of a function that affect its
growth.

Example

5n4 +3n3 +2n2 +4n+1 is O(n4).

Proposition

If f (n) is a polynomial of degree d , that is,

f (n)= a0 +a1n+·· ·+adnd ,

and ad > 0, then f (n) is O(nd ).

18



Some Properties of the Big-Oh Notation

Example

5n2 +3n logn+2n+5 is O(n2).

Example

20n3 +10n logn+5 is O(n3).

Example

3logn+2 is O(logn).

Example

2n+2 is O(2n).

Example

2n+100logn is O(n).

19



Asymptotic Analysis
Comparative Analysis



Comparative Analysis

20



Comparative Analysis

21



Asymptotic Analysis
Examples of Algorithm Analysis



Constant-Time Operations

Example

Given an instance, named data, of the Python list class, a call to the
function, len(data), is evaluated in constant time.

This is a very simple algorithm because the list class maintains, for each
list, an instance variable that records the current length of the list.

22



Constant-Time Operations

Example

The expression data[j] is evaluated in O(1) time for a Python list.

Because Python’s lists are implemented as “array-based sequences”,
references to a list’s elements are stored in a consecutive block of
memory. The jth element of the list can be found, not by iterating
through the list one element at a time, but by validating the index, and
using it as an offset into the underlying array. In turn, computer hardware
supports constant-time access to an element based on its memory
address.

23



Linear-Time Operations

the Problem of Finding the Maximum of a Sequence

def find_max (data):
""" Return the maximum element from a nonempty
Python list."""
biggest = data [0]
for val in data:

if val > biggest
biggest = val

return biggest

• Initialization uses O(1) time
• The loop executes n times, and within each iteration, it performs

one comparison and possibly one assignment statement (as well as
maintenance of the loop variable).

• Enacting a return statement in Python uses O(1) time.

24



Prefix Average

Example : Prefix Average

Given a sequence S consisting of n numbers, we want to compute
a sequence A such that A[j] is the average of elements S[0], ...,S[j],
for j = 0, ...,n1, that is,

A[j]=
∑j

i=0 S[i ]
j +1

25



Prefix Average: Quadratic-Time Algorithm

def prefix_average1 (S):
""" Return list such that , for all j, A[j]
equals average of S[0], ..., S[j]. """
n = len(S)
A = [0] * n
for j in range (n):

total = 0
for i in range (j + 1):

total += S[i]
A[j] = total / (j+1)

return A

The running time of prefix_average1 is O(n2)

26



Prefix Average: Another Quadratic-Time Algorithm

def prefix_average2 (S):
""" Return list such that , for all j, A[j]
equals average of S[0], ..., S[j]. """
n = len(S)
A = [0] * n
for j in range (n):

A[j] = sum(S[0:j+1]) / (j+1)
return A

The running time of prefix_average2 is O(n2)

27



Prefix Average: A Linear-Time Algorithm

def prefix_average3 (S):
""" Return list such that , for all j, A[j]
equals average of S[0], ..., S[j]. """
n = len(S)
A = [0] * n
total = 0
for j in range (n):

total += S[j]
A[j] = total / (j+1)

return A

The running time of prefix_average3 is O(n)

28



Three-Way Set Disjointness

Definition : Three-Way Set Disjointness

Given three sequences of numbers: A, B, and C . Assume that no
individual sequence contains duplicate values, but that there may be
some numbers that are in two or three of the sequences. The three-
way set disjointness problem is to determine if the intersection of the
three sequences is empty, namely, that there is no element x such
that x ∈A,x ∈B, and x ∈C .

29



Three-Way Set Disjointness

def disjoint1 (A, B, C):
""" Return True if there is no element common
to all three lists ."""
for a in A:

for b in B:
for c in C:

if a == b == c:
return False

return True

If each of the original sets has size n, then the worst-case running time of
this function is O(n3).

30



Three-Way Set Disjointness

def disjoint2 (A, B, C):
""" Return True if there is no element common
to all three lists ."""
for a in A:

for b in B:
if a == b:

for c in C:
if a == c

return False
return True

The running time of disjoint2 is O(n2)

31



Element Uniqueness

Definition : Element Uniqueness

Given a single sequence S with n elements, whether all elements of
that collection are distinct from each other?

32



Element Uniqueness

def unique1 (S):
""" Return True if there are no duplicate
elements in sequence S."""
for j in range (len(S)):

for k in range (j+1, len(S)):
if S[j] == S[k]:

return False
return True

The running time of unique1 is O(n2)

33



Element Uniqueness

def unique2 (S):
""" Return True if there are no duplicate
elements in sequence S."""
temp = sorted (S)
for j in range (1, len(temp)):

if S[j -1] == S[j]:
return False

return True

The running time of unique2 is O(n logn)

34


	Experimental studies
	Moving Beyond Experimental Analysis

	The Seven Functions used in the analysis of algorithms
	Asymptotic Analysis
	The ``Big-Oh'' Notation
	Comparative Analysis
	Examples of Algorithm Analysis


