
Data structure and algorithm in Python

Object-Oriented Programming

.

Seongjin Lee

Dept of Aerospace and Software Engineering,
Gyeongsang National University

Table of contents

1. Goals, Principles, and Patterns

2. Software Development

3. Class Definitions

1

Goals, Principles, and Patterns

Goals, Principles, and Patterns

The main “actors” in the object-oriented paradigm are called objects.

• Each object is an instance of a class.

• The class definition specifies instance variables (data members)
that the object contains, as well as the methods (member
functions), that the object can execute.

2

Goals, Principles, and Patterns
Object-Oriented Design Goals

Object-Oriented Design Goals

Software implementations should achieve robustness, adaptability, and
reusability.

3

Object-Oriented Design Goals: Robustness

..

..Definition 1.1: Robustness

A software is capable of handling unexpected inputs that are not
explicitly defined for its application.

..

..Example 1.1

If a program is expecting a positive integer and instead is given a neg-
ative integer, then the program should be able to recover gracefully
from this error.

4

Object-Oriented Design Goals: Robustness

..

..Example 1.2

In life-critical applications, where a software error can lead to injury
or loss of life, software that is not robust could be deadly. This point
was driven home in the late 1980s in accidents involving Therac-25,
a radiation-therapy machine, which severely overdosed six patients
between 1985 and 1987, some of whom died from complications
resulting from their radiation overdose. All six accidents were traced
to software errors.

5

Object-Oriented Design Goals: Adaptability

..

..Definition 1.2: Adaptability

A software needs to be able to evolve over time in response to chang-
ing conditions in its environment.

..

..Definition 1.3: Portability

A software is able to run with minimal change on different hardware
and operating platforms.

An advantage of writing software in Python is the portability provided by
the language itself.

6

Object-Oriented Design Goals: Reusability

..

..Definition 1.4: Reusability

The same code should be usable as a component of different system
in various applications.

..

..Example 1.3

Developing quality software can be an expensive enterprise, and its
cost can be offset somewhat if the software is designed in a way that
makes it easily reusable in future applications.

7

Goals, Principles, and Patterns
Object-Oriented Design Priciples

Object-Oriented Design Priciples

• Modularity

• Abstraction

• Encapsulation

8

Object-Oriented Design Priciples

..

..Definition 1.5: Modularity

It refers to an organizing principle in which different components of
a software system are divided into separate functional units.

..

..Example 1.4

A house or apartment can be viewed as consisting of several inter-
acting units:

• electrical

• heating and cooling

• plumbing

• structural

9

Object-Oriented Design Priciples

..

..Definition 1.6: Module

A module is a collection of closely related functions and classes that
are defined together in a single file of source code.

..

..Example 1.5

Python’s standard libraries include, for example,

• the math module, which provides definitions for key
mathematical constants and functions,

• the os module, which provides support for interacting with the
operating system.

10

..

Object-Oriented Design Priciples

..

..Definition 1.6: Module

A module is a collection of closely related functions and classes that
are defined together in a single file of source code.

..

..Example 1.5

Python’s standard libraries include, for example,

• the math module, which provides definitions for key
mathematical constants and functions,

• the os module, which provides support for interacting with the
operating system.

..
Data structure and algorithm in Python

Goals, Principles, and Patterns
Object-Oriented Design Priciples

Object-Oriented Design Priciples

The use of modularity helps support the goals: Robustness, Adaptability,
Reusability.

• Robustness is greatly increased because it is easier to test and debug
separate components before they are integrated into a larger software
system. Furthermore, bugs that persist in a complete system might be
traced to a particular component, which can be fixed in relative isolation.

• The structure imposed by modularity also helps enable software reusability.
If software modules are written in a general way, the modules can be
reused when related need arises in other contexts. This is particularly
relevant in a study of data structures, which can typically be designed with
sufficient abstraction and generality to be reused in many applications.

Object-Oriented Design Priciples

The notion of abstraction is to distill a complicated system down to its
most fundamental parts. Typically, describing the parts of a system
involves naming them and explaining their functionality.

..

..Definition 1.7: Abstract Data Types (ADT)

An ADT is a mathematical model of a data structure that specifies
the type of data stored, the operations supported on them, and the
types of parameters of the operations. An ADT specifies what each
operation does, but not how it does it.

We will typically refer to the collective set of behaviors supported by an
ADT as its public interface.

11

Object-Oriented Design Priciples

Python has a tradition of treating abstractions implicitly using a
mechanism known as duck typing.

As an interpreted and dynamically typed language, there is no “compile
time” checking of data types in Python, and no formal requirement for
declarations of abstract base classes.

12

Object-Oriented Design Priciples

..

..Example 1.6: Duck Typing

class Duck ():
def walk(self):

print (’I walk like a duck ’)
def swim(self):

print (’I swim like a duck ’)
class Person ():

def walk(self):
print (’This man walk like a duck ’)

def swim(self):
print (’This man swim like a duck ’)

obj = Duck
obj ().swim ()
obj = Person
obj ().swim ()

13

..

Object-Oriented Design Priciples

..

..Example 1.6: Duck Typing

class Duck ():
def walk(self):

print (’I walk like a duck ’)
def swim(self):

print (’I swim like a duck ’)
class Person ():

def walk(self):
print (’This man walk like a duck ’)

def swim(self):
print (’This man swim like a duck ’)

obj = Duck
obj ().swim ()
obj = Person
obj ().swim ()

..
Data structure and algorithm in Python

Goals, Principles, and Patterns
Object-Oriented Design Priciples

Object-Oriented Design Priciples

The description of this as “duck typing”comes from an adage attributed to
poet James Whitcomb Riley, stating that “when I see a bird that walks like a
duck and swims like a duck and quacks like a duck, I call that bird a duck.”

Object-Oriented Design Priciples

Another important principle of object-oriented design is encapsulation.

• It gives one programmer freedom to implement the details of a
component, without concern that other programmers will be writing
code that intricately depends on those internal decisions.

• The programmer of a component only need to maintain the public
interface for the component, as other programmers will be writing
code that depends on that interface.

• It yields robustness and adaptability, for it allows the implementation
details of parts of a program to change without adversely affecting
other parts, thereby making it easier to fix bugs or add new
functionality with relatively local changes to a component.

14

Goals, Principles, and Patterns
Design Patterns

Design Patterns

A design pattern describes a solution to a “typical” software design
problem.

A pattern

• provides a general template for a solution that can be applied in
many different situations.

• describes the main elements of a solution in an abstract way that
can be specialized for a specific problem at hand.

• consists of
• a name: identifies the pattern
• a context: describes the scenarios for which this pattern can be

applied
• a template: describes how the pattern is applied
• a result: describes and analyzes what pattern produces

15

Design Patterns

Several design patterns: falling into two groups

• patterns for solving algorithm design problems

• patterns for solving software engineering problems

16

Design Patterns

The algorithm design patterns

• Recursion

• Amortization

• Divide-and-conquer

• Prune-and-search, also known as decrease-and-conquer

• Brute force

• Dynamic programming

• The greedy method

17

Design Patterns

The software engineering design patterns

• Iterator

• Adapter

• Position

• Composition

• Template method

• Locator

• Factory method

18

Software Development

Software Development

Traditional software development involves several phases. Three major
steps are:

1. Design

2. Implementation

3. Testing and Debugging

19

Software Development
Design

Software Development

For object-oriented programming, the design step is perhaps the most
important phase in the process of developing software.

• how to divide the workings of our program into classes,

• how these classes will interact,

• what data each will store,

• what actions each will perform

20

Software Development

There are some rules of thumb that we can apply when determining how
to design our classes:

• Responsibilities: Divide the work into different actors, each with a
different responsibility.

• Independence: Define the work for each class to be as independent
from other classes as possible.

• Behaviors: Define the behaviors for each class carefully and
precisely, so that the consequences of each action performed by a
class will be well understood by other classes that interact with it.

21

..

Software Development

There are some rules of thumb that we can apply when determining how
to design our classes:

• Responsibilities: Divide the work into different actors, each with a
different responsibility.

• Independence: Define the work for each class to be as independent
from other classes as possible.

• Behaviors: Define the behaviors for each class carefully and
precisely, so that the consequences of each action performed by a
class will be well understood by other classes that interact with it.

..
Data structure and algorithm in Python

Software Development
Design

Software Development

• Responsibilities: Divide the work into different actors, each with a
different responsibility.

Try to describe responsibilities using action verbs. These actors will form
the classes for the program.

• Independence: Define the work for each class to be as independent from
other classes as possible.

Subdivide responsibilities between classes so that each class has autonomy
over some aspect of the program. Give data to the class that has
jurisdiction over the actions that require access to this data.

• Behaviors: Define the behaviors for each class carefully and precisely, so
that the consequences of each action performed by a class will be well
understood by other classes that interact with it.

These behaviors will define the methods that this class performs, and the
set of behaviors for a class are the interface to the class, as these form the
means for other pieces of code to interact with objects from the class.

Design

Class: CreditCard

Fields: _customer _balance

_bank _limit

_account

Behaviors: get_customer() get_balance()

get_bank() get_limit()

get_account() charge(price)

make_payment(amount)

22

Software Development
Coding Style and Documentation

Coding Style and Documentation

Programs should be made easy to read and understand. Good
programmers should therefore be mindful of their coding style, and
develop a style that communicates the important aspects of a program’
s design for both humans and computers.

23

Coding Style and Documentation

The main principles:

(1) Python code blocks are typically indented by 4 spaces.
• avoid the use of tabs
• Many Python-aware editors will automatically replace tabs with an

appropriate number of spaces.

(2) Use meaningful names for identifiers. Try to choose names that can
be read aloud, and choose names that reflect the action,
responsibility, or data each identifier is naming.

24

Coding Style and Documentation

• Classes:
• have a name serves as a singular noun
• should be capitalized
• When multiple words are concatenated to form a class name, they

should follow the so-called “CamelCase” convention in which the
first letter of each word is capitalized (e.g., CreditCard).

25

Coding Style and Documentation

• Functions, including member functions:
• should be lowercase
• If multiple words are combined, they should be separated by

underscores (e.g., make_payment).
• The name of a function should typically be a verb that describes its

affect.
if the only purpose of the function is to return a value, the function
name may be a noun that describes the value (e.g., sqrt rather than
calculate_sqrt).

26

Coding Style and Documentation

• Names that identify an dividual object (e.g., a parameter,
instance variable, or local variable):

• should be a lowercase noun (e.g., price)
Occasionally, we stray from this rule when using a single uppercase
letter to designate the name of a data structures (such as tree T).

• Identifiers that represent a constant value
• should use all captical letters and with underscores to seperate words

(e.g., MAX_SIZE).

• Identifiers in any context that begin with a single leading
underscore (e.g., _secret)

• are intended to suggest that they are only for “internal” use to a
class or module, and not part of a public interface.

27

Coding Style and Documentation

(3) Use comments that add meaning to a program and explain
ambiguous or confusing constructs.

• In-line comments are good for quick explanations;

if n % 2 == 1: # n is odd

• Multiline block comments are good for explaining more complex
code sections.
In Python, these are technically multiline string literals, typically
delimited with triple quotes ("""), which have no effect when
executed.

28

Documentation

Python provides integrated support for embedding formal documentation
directly in source code using a mechanism known as a docstring.

Formally, any string literal that appears as the first statement within the
body of a module, class, or function (including a member function of a
class) will be considered to be a docstring. By convention, those string
literals should be delimited within triple quotes (""").

29

Documentation

def scale(data , factor):

""" Multiply all entries of numeric data list

by the given factor ."""

for j in range (len(data)):

data[j] = factor

>>> import scale1

>>> help(scale1 .scale)

Help on function scale in module scale1 :

scale(data , factor)

Multiply all entries of numeric data list by

the given factor .

30

Documentation

def scale (data , factor):

""" Multiply all entries of numeric data list by the given factor .

data an instance of any mutable sequence type (such as a list)

containing numeric elements

factor a number that serves as the multiplicative factor for scaling

"""

for j in range (len(data)):

data[j] = factor

>>> from scale2 import scale

>>> help(scale)

Help on function scale in module scale2 :

scale (data , factor)

Multiply all entries of numeric data list by the given factor .

data an instance of any mutable sequence type (such as a list)

containing numeric elements

factor a number that serves as the multiplicative factor for scaling

31

Software Development
Testing and Debugging

Testing and Debugging

• Testing: the process of experimentally checking the correctness of
a program

• Debugging: the process of tracking the execution of a program and
discovering the errors in it.

Testing and debugging are often the most time-consuming activity in the
development of a program.

32

Testing

A careful testing plan is an essential part of writing a program.

..

..Example 2.1

While verifying the correctness of a program over all possible inputs
is usually infeasible, we should

• aim at executing the program on a representative subset of
inputs;

• method coverage: at the very minimum, we should make
sure that every method of a class is tested at least once;

• statement coverage: even better, each code statement in the
program should be executed at least once.

33

Testing

Programs often tend to fail on special cases of the input. Such cases
need to be carefully identified and tested.

..

..Example 2.2

When testing a method that sorts (that is, puts in order) a sequence
of integers, we should consider the following inputs:

• The sequence has zero length (no elements).

• The sequence has one element.

• All the elements of the sequence are the same.

• The sequence is already sorted.

• The sequence is reverse sorted.

34

Testing

In addition to special inputs to the program, we should also consider
special conditions for the structures used by the program.

..

..Example 2.3

if we use a Python list to store data, we should make sure that
boundary cases, such as inserting or removing at the beginning or
end of the list, are properly handled.

35

Testing

While it is essential to use handcrafted test suites, it is also advantageous
to run the program on a large collection of randomly generated inputs.
The random module in Python provides several means for generating
random numbers, or for randomizing the order of collections.

36

Debugging

• Simplest way: using print statements.

• Better way: Using Debugger, such as pdb and debugging
enviroments provided by most IDEs.

37

Class Definitions

Class Definitions

A class serves as the primary means for abstraction in object-oriented
programming. In Python, every piece of data is represented as an
instance of some class.

A class

• provides a set of behaviors in the form of member functions (also
known as methods), with implementations that are common to all
instances of that class.

• serves as a blueprint for its instances, effectively determining the way
that state information for each instance is represented in the form of
attributes (also known as fields, instance variables, or data
members).

38

Class Definitions
Example: CreditCard Class

Example: CreditCard Class I

class CreditCard :

"""A consumer credit card."""

def __init__ (self , customer , bank , acnt , limit):

""" Create a new credit card instance .

The initial balance is zero.

customer the name of the customer

(e.g., ’John Bowman ’)

bank the name of the bank

(e.g., ’California Savings ’)

acnt the acount identifier

(e.g., ’5391 0375 9387 5309 ’)

limit credit limit (measured in dollars)

"""

self. _customer = customer

self. _bank = bank

39

Example: CreditCard Class II

self. _account = acnt

self. _limit = limit

self. _balance = 0

def get_customer (self):

""" Return name of the customer ."""

return self. _customer

def get_bank (self):

""" Return the bank ’s name."""

return self. _bank

def get_account (self):

""" Return the card identifying number (typically stored as a

string)."""

return self. _account

def get_limit (self):

""" Return current credit limit ."""

40

Example: CreditCard Class III

return self. _limit

def get_balance (self):

""" Return current balance ."""

return self. _balance

def charge (self , price):

""" Charge given price to the card , assuming sufficient credit

limit .

Return True if charge was processed ; False if charge was denied .

"""

if price + self. _balance > self. _limit : # if charge would

exceed limit ,

return False # cannot accept charge

else:

self. _balance += price

return True

41

Example: CreditCard Class IV

def make_payment (self , amount):

""" Process customer payment that reduces balance ."""

self. _balance -= amount

if __name__ == ’__main__ ’:

wallet = []

wallet . append (

CreditCard (’John Bowman ’, ’California Savings ’,

’5391 0375 9387 5309 ’, 2500))

wallet . append (

CreditCard (’John Bowman ’, ’California Federal ’,

’3485 0399 3395 1954 ’, 3500))

wallet . append (

CreditCard (’John Bowman ’, ’California Finance ’,

’5391 0375 9387 5309 ’, 5000))

for val in range (1, 17):

wallet [0]. charge (val)

wallet [1]. charge (2* val)

42

Example: CreditCard Class V

wallet [2]. charge (3* val)

for c in range (3):

print (’Customer =’, wallet [c]. get_customer ())

print (’Bank =’, wallet [c]. get_bank ())

print (’Account =’, wallet [c]. get_account ())

print (’Limit =’, wallet [c]. get_limit ())

print (’Balance =’, wallet [c]. get_balance ())

while wallet [c]. get_balance () > 100:

wallet [c]. make_payment (100)

print (’New balance =’, wallet [c]. get_balance ())

print ()

43

..

Example: CreditCard Class V

wallet [2]. charge (3* val)

for c in range (3):

print (’Customer =’, wallet [c]. get_customer ())

print (’Bank =’, wallet [c]. get_bank ())

print (’Account =’, wallet [c]. get_account ())

print (’Limit =’, wallet [c]. get_limit ())

print (’Balance =’, wallet [c]. get_balance ())

while wallet [c]. get_balance () > 100:

wallet [c]. make_payment (100)

print (’New balance =’, wallet [c]. get_balance ())

print ()

..
Data structure and algorithm in Python

Class Definitions
Example: CreditCard Class

Example: CreditCard Class

The instances defined by the CreditCard class provide a simple model for
traditional credit cards. They have identifying information about the customer,
bank, account number, credit limit, and current balance. The class restricts
charges that would cause a card’s balance to go over its spending limit, but it
does not charge interest or late payments.

Example: CreditCard Class

• The construct begins with the keyword, class, followed by the name
of the class, a colon, and then an indented block of code that serves
as the body of the class.

• The body includes definitions for all methods of the class. These
methods are defined as functions, yet with a special parameter,
named self, that serves to identify the particular instance upon
which a method is invoked.

44

The self indetifier

In Python, the self identifier plays a key role.

Syntactically, self identifies the instance upon which a method is
invoked.

..

..Example 3.1

Assume that a user of our class has a variable, my_card, that iden-
tifies an instance of the CreditCard class.

• When the user calls my_card.get_balance(), identifier self,
within the definition of the get_balance method, refers to
the card known as my_card by the caller.

• The expression, self._balance refers to an instance variable,
named _balance, stored as part of that particular credit card’s
state.

45

The Constructor

A user can create an instance of the CreditCard using a syntax as

cc = CreditCard (’John Doe ’, ’1st Bank ’,

’5391 0375 9387 5309 ’, 1000)

• This results in a call to the specially named __init__ method that
serves as the constructor of the class.

• Its primary responsibility is to establish the state of a newly created
credit card object with appropriate instance variables.

• In the case of the CreditCard class, each object maintains five
instance variables, which we name:
_customer, _bank, _account, _limit, and _balance.

• The initial values for the first four of those five are provided as
explicit parameters that are sent by the user when instantiating the
credit card, and assigned within the body of the constructor.

46

Ecapsulation

Recall that a single leading underscore in the name of a data member,
such as _balance, implies that it is intended as nonpublic. Users of a
class should not directly acess such members.

As a general rule, we will treat all data members as nonpublic. This
allows us to better enforce a consistent state for all instances.

• We can provide accessors, such as get_balance, to provide a user
of our class read-only access to a trait.

• If we wish to allow the user to change the state, we can provide
appropriate update methods.

47

Ecapsulation

Recall that a single leading underscore in the name of a data member,
such as _balance, implies that it is intended as nonpublic. Users of a
class should not directly acess such members.

As a general rule, we will treat all data members as nonpublic. This
allows us to better enforce a consistent state for all instances.

• We can provide accessors, such as get_balance, to provide a user
of our class read-only access to a trait.

• If we wish to allow the user to change the state, we can provide
appropriate update methods.

47

Ecapsulation

Recall that a single leading underscore in the name of a data member,
such as _balance, implies that it is intended as nonpublic. Users of a
class should not directly acess such members.

As a general rule, we will treat all data members as nonpublic. This
allows us to better enforce a consistent state for all instances.

• We can provide accessors, such as get_balance, to provide a user
of our class read-only access to a trait.

• If we wish to allow the user to change the state, we can provide
appropriate update methods.

47

Additional Methods

• The charge function typically adds the given price to the credit card
balance, to reflect a purchase of said price by the customer.

• The make_payment charge reflects the customer sending payment
to the bank for the given amount, thereby reducing the balance on
the card.

48

Error Checking

The implementation of the CreditCard class is not particularly robust.

• Did not explicitly check the types of the parameters to charge and
make_payment, nor any of the parameters to the constructor.

• The code will crash when attempting to add that parameter to the
current balance, such as visa.charge(’candy’).

• If this class were to be widely used in a library, we might use more
rigorous techniques to raise a TypeError when facing such misuse.

• May be susceptible to logical errors.
• If a user were allowed to charge a negative price, such as

visa.charge(-300), that would serve to lower the customer’s
balance.

49

Testing the class I

from credit_card import CreditCard

if __name__ == ’__main__ ’:

wallet = []

wallet . append (CreditCard (’John Bowman ’ ,

’California Savings ’ ,

’5391 0375 9387 5309 ’ ,

2500))

wallet . append (CreditCard (’John Bowman ’ ,

’California Federal ’ ,

’3485 0399 3395 1954 ’ ,

3500))

wallet . append (CreditCard (’John Bowman ’ ,

’California Finance ’ ,

’5391 0375 9387 5309 ’ ,

5000))

for val in range (1, 17):

wallet [0]. charge (val)

50

Testing the class II

wallet [1]. charge (2* val)

wallet [2]. charge (3* val)

for c in range (3):

print (’Customer = ’, wallet [c]. get_customer ())

print (’Bank = ’, wallet [c]. get_bank ())

print (’Account = ’, wallet [c]. get_account ())

print (’Limit = ’, wallet [c]. get_limit ())

print (’Balance = ’, wallet [c]. get_balance ())

while wallet [c]. get_balance () > 100:

wallet [c]. make_payment (100)

print (’New balance = ’, wallet [c]. get_balance ())

print ()

51

Testing the class I

• These tests are enclosed within a conditional, if
__name__ == ’__main__ ’:, so that they can be embedded in the
source code with the class definition.

• Provide method coverage, as each of the methods is called at least
once

• Does not provide statement coverage, as there is never a case in
which a charge is rejected due to the credit limit.

52

..

Testing the class I

• These tests are enclosed within a conditional, if
__name__ == ’__main__ ’:, so that they can be embedded in the
source code with the class definition.

• Provide method coverage, as each of the methods is called at least
once

• Does not provide statement coverage, as there is never a case in
which a charge is rejected due to the credit limit.

..
Data structure and algorithm in Python

Class Definitions
Example: CreditCard Class

Testing the class

How to correctly understand if __name__ == ’__main__’ ?

__name__ is the name of the current module. When the module is directly
running, the module name is __main__. The meaning of this sentence is，

• When the module is directly executed, the following code blocks will be
executed

• When the module is imported, code block is not going to be executed.

The details can be found in

https://stackoverflow.com/questions/4042905/what-is-main-py

http://blog.konghy.cn/2017/04/24/python-entry-program/

Class Definitions
Operator Overloading and Python’s Special Methods

Operator Overloading and Python’s Special Methods

Python’s built-in classes provide natural semantics for many operators.

..

..Example 3.2

a + b invokes addition for numerical types, yet concatenation for
sequence types.

When defining a new class, we must consider whether a syntax like
a + b should be defined when a or b is an instance of that class.

53

Operator Overloading and Python’s Special Methods

By default, the + operator is undefined for a new class. However, the
author of a class may provide a definition using a technique known as
operator overloading.

This is done by implementing a specially named method. In particular,
the + operator is overloaded by implementing a method named
__add__ , which takes the right-hand operand as a parameter and which
returns the result of the expression.

..

..Example 3.3

The syntax a + b is converted to a method call on object of the
form a.__add__(b).

54

Operator Overloading and Python’s Special Methods

a + b a.__add__(b) or b.__radd__(a)

a - b a.__sub__(b) or b.__rsub__(a)

a * b a.__mul__(b) or b.__rmul__(a)

a / b a.__truediv__(b) or b.__rtruediv__(a)

a // b a.__floordiv__(b) or b.__rfloordiv__(a)

a % b a.__mod__(b) or b.__rmod__(a)

a ** b a.__pow__(b) or b.__rpow__(a)

a << b a.__lshift__(b) or b.__rlshift__(a)

a >> b a.__rshift__(b) or b.__rrshift__(a)

a & b a.__and__(b) or b.__rand__(a)

a ^ b a.__xor__(b) or b.__rxor__(a)

a | b a.__or__(b) or b.__ror__(a)

55

Operator Overloading and Python’s Special Methods

a += b a.__iadd__(b)

a -= b a.__isub__(b)

a *= b a.__imul__(b)

· · · · · ·
+a a.__pos__(b)

-a a.__neg__(b)

~a a.__invert__(b)

abs(a) a.__abs__(b)

a < b a.__lt__(b)

a <= b a.__le__(b)

a > b a.__gt__(b)

a >= b a.__ge__(b)

a == b a.__eq__(b)

a != b a.__ne__(b) 56

Operator Overloading and Python’s Special Methods

v in a a.__contains__(v)

a[k] a.__getitem__(k)

a[k] = v a.__setitem__(k, v)

del a[k] a.__delitem__(k)

a(arg1, arg2, ...) a.__call__(arg1, arg2, ...)

len(a) a.__len__()

hash(a) a.__hash__()

iter(a) a.__iter__()

next(a) a.__next__()

57

Operator Overloading and Python’s Special Methods

bool(a) a._bool__()

float(a) a.__float__()

int(a) a.__int__()

repr(a) a.__repr__()

reversed(a) a.__reversed__()

str(a) a.__str__()

58

Non-Operator Overloads

Python relies on specially named methods to control the behavior of
various other functionality, when applied to user-defined classes.

59

Non-Operator Overloads

..

..Example 3.4

The sytax str(foo) is formally a call to the constructor for the
string class.

>>> str (123)

’123 ’

For user-defined class:

>>> class Test ():

>>> def __str__ (self):

>>> return "This is a test"

>>> t = Test ()

>>> str(t)

This is a test

60

Non-Operator Overloads

..

..Example 3.5

The standard way to determine the size of a container type is by
calling the top-level len function. Note that len(foo) is not the
traditional method-calling syntax with the dot operator. However, in
the case of a user-defined class, the top-level len function relies on a
call to a specially named __len__ method of that class. That is, the
call len(foo) is evaluated through a method call, foo.__len__().

61

Implied Methods

As a general rule, if a particular special method is not implemented in a
user-defined class, the standard syntax that relies upon that method will
raise an exception.

..

..Example 3.6

Evaluating the expression, a + b, for instances of a user-defined class
without __add__ or __radd__ will raise an error.

62

Implied Methods

However, there are some operators that have default definitions provided
by Python, in the absence of special methods, and there are some
operators whose definitions are derived from others.

..

..Example 3.7

• The __bool__ method, which supports the syntax if foo:,
has default semantics so that every object other than None is
evaluated as True.

• For container types, the __len__ method is typically defined
to return the size of the container. If such a method exists,
then the evaluation of bool(foo) is interpreted by default to
be True for instances with nonzero length, and False for
instances with zero length.

63

Implied Methods

..

..Example 3.8

• Python provides iterators for collections via the special
method, __iter__. With that said, if a container class
provides implementations for both __len__ and
__getitem__, a default iteration is provided automatically.
Furthermore, once an iterator is defined, default functionality
of __contains__ is provided.

64

Implied Methods

..

..Example 3.9

• The distinction between expression a is b and expression
a == b is that, the former evaluating whether identifiers a and
b are aliases for the same object, and the latter testing a
notion of whether the two idenifiers reference equivalent
values. The notion of “equivalance” depends upon the context
of the class, and semantics is defined with the __eq__

method. However, if no implementation is given for __eq__,
the syntax a == b is legal with semantics of a is b.

65

Class Definitions
Example: Multidimensional Vector Class

Example: Multidimensional Vector Class

To demonstrate the use of operator overloading via special methods, we
provide an implementation of a Vector class, representing the
coordinates of a vector in a multidimensional space.

..

..Example 3.10

In a three-dimensional space, we might wish to represent a vector
with coordinates <5, 2, 3>. Although it might be tempting to di-
rectly use a Python list to represent those coordinates, a list does not
provide an appropriate abstraction for a geometric vector. In partic-
ular, if using lists, the expression [5, 2, 3] + [1, 4, 2] results
in the list [5, 2, 3, 1, 4, 2]. When working with vectors, if
u = <5, 2, 3> and <v = 1, 4, 2>, one would expect the expres-
sion, u + v, to return a three-dimensional vector with coordinates
<6, 2, 5>.

66

Example: Multidimensional Vector Class I

import collections

class Vector :

""" Represent a vector in a multidimensional space ."""

def __init__ (self , d):

if isinstance (d, int):

self. _coords = [0] * d

else:

try: # we test if param is iterable

self. _coords = [val for val in d]

except TypeError :

raise TypeError (’invalid parameter type ’)

def __len__ (self):

""" Return the dimension of the vector ."""

return len(self. _coords)

67

Example: Multidimensional Vector Class II

def __getitem__ (self , j):

""" Return jth coordinate of vector ."""

return self. _coords [j]

def __setitem__ (self , j, val):

""" Set jth coordinate of vector to given value ."""

self. _coords [j] = val

def __add__ (self , other):

""" Return sum of two vectors ."""

if len(self) != len(other): # relies on __len__ method

raise ValueError (’dimensions must agree ’)

result = Vector (len(self)) # start with vector of zeros

for j in range (len(self)):

result [j] = self[j] + other [j]

return result

def __eq__ (self , other):

""" Return True if vector has same coordinates as other ."""

68

Example: Multidimensional Vector Class III

return self. _coords == other . _coords

def __ne__ (self , other):

""" Return True if vector differs from other ."""

return not self == other # rely on existing __eq__

definition

def __str__ (self):

""" Produce string representation of vector ."""

return ’<’ + str(self. _coords)[1: -1] + ’>’ # adapt list

representation

def __neg__ (self):

""" Return copy of vector with all coordinates negated ."""

result = Vector (len(self)) # start with vector of zeros

for j in range (len(self)):

result [j] = -self[j]

return result

69

Example: Multidimensional Vector Class IV

def __lt__ (self , other):

""" Compare vectors based on lexicographical order ."""

if len(self) != len(other):

raise ValueError (’dimensions must agree ’)

return self. _coords < other . _coords

def __le__ (self , other):

""" Compare vectors based on lexicographical order ."""

if len(self) != len(other):

raise ValueError (’dimensions must agree ’)

return self. _coords <= other . _coords

if __name__ == ’__main__ ’:

the following demonstrates usage of a few methods

v = Vector (5) # construct five - dimensional <0, 0, 0, 0, 0>

v[1] = 23 # <0, 23, 0, 0, 0> (based on use of __setitem__)

v[-1] = 45 # <0, 23, 0, 0, 45> (also via __setitem__)

print (v[4]) # print 45 (via __getitem__)

u = v + v # <0, 46, 0, 0, 90> (via __add__)

70

Example: Multidimensional Vector Class V

print (u) # print <0, 46, 0, 0, 90>

total = 0

for entry in v: # implicit iteration via __len__ and __getitem__

total += entry

71

Class Definitions
Iterators

Iterators

Iteration is an important concept in the design of data structures. An
iterator for a collection provides one key behavior:

• It supports a special method named next that returns the next
element of the collection, if any, or raises a StopIteration exception
to indicate that there are no further elements.

72

..

Iterators

Iteration is an important concept in the design of data structures. An
iterator for a collection provides one key behavior:

• It supports a special method named next that returns the next
element of the collection, if any, or raises a StopIteration exception
to indicate that there are no further elements.

..
Data structure and algorithm in Python

Class Definitions
Iterators

Iterators

Fortunately, it is rare to have to directly implement an iterator class. Our pre-
ferred approach is the use of the generator syntax which automatically
produces an iterator of yielded values.

Iterators

Python also helps by providing an automatic iterator implementation for
any class that defines both __len__ and __getitem__.

73

Iterators I

class SequenceIterator :

""" An iterator for any of Python ’s sequence types ."""

def __init__ (self , sequence):

""" Create an iterator for the given sequence ."""

self._seq = sequence # keep a reference to the

underlying data

self._k = -1 # will increment to 0 on first

call to next

def __next__ (self):

""" Return the next element , or else raise StopIteration error .

"""

self._k += 1 # advance to next index

if self._k < len(self._seq):

return (self._seq[self._k]) # return the data element

else:

raise StopIteration () # there are no more elements

74

Iterators II

def __iter__ (self):

""" By convention , an iterator must return itself as an iterator .

"""

return self

75

Class Definitions
Example: Range Class

Example: Range Class

Here we develop our own implementation of a class that mimics Python’s
built-in range class.

• Prior to Python 3 being released, range was implemented as a
function, and it returned a list instance with elements in the
specified range.

>>> a = range (2, 10, 2) # Python2

>>> a

[2, 4, 6, 8]

76

..

Example: Range Class

Here we develop our own implementation of a class that mimics Python’s
built-in range class.

• Prior to Python 3 being released, range was implemented as a
function, and it returned a list instance with elements in the
specified range.

>>> a = range (2, 10, 2) # Python2

>>> a

[2, 4, 6, 8]

..
Data structure and algorithm in Python

Class Definitions
Example: Range Class

Example: Range Class

A typical use of the function was to support a for-loop syntax, such as
for k in range(10000000). Unfortunately, this caused the instantiation and
initialization of a list with the range of numbers. That was an unnecessarily
expensive step, in terms of both time and memory usage.

Example: Range Class

The mechanism used to support ranges in Python 3 is entirely different.
It uses a strategy known as lazy evaluation. Rather than creating a new
list instance, range is a class that can effectively represent the desired
range of elements without ever storing them explicitly in memory.

>>> a = range (2, 10, 2) # Python3

>>> a

range (2, 10, 2)

>>> a. __len__ () # equiv to len(a)

4

>>> a. __getitem__ (2) # equiv to a[2]

6

Because the class supports both __len__ and __getitem__, it inherits
automatic support for iteration, which is why it is possible to execute a
for loop over a range. 77

Example: Range Class I

class Range :
"""A class that mimic ’s the built -in range class ."""

def __init__ (self , start , stop=None , step =1):
""" Initialize a Range instance .

Semantics is similar to built -in range class .
"""
if step == 0:

raise ValueError (’step cannot be 0’)

if stop is None: # special case of range (n)
start , stop = 0, start # should be treated as if
range (0,n)

calculate the effective length once
self. _length = max (0, (stop - start + step - 1) // step)

need knowledge of start and step (but not stop) to support
__getitem__

self. _start = start

78

Example: Range Class II

self. _step = step

def __len__ (self):
""" Return number of entries in the range ."""
return self. _length

def __getitem__ (self , k):
""" Return entry at index k (using standard interpretation if

negative)."""
if k < 0:

k += len(self) # attempt to convert
negative index

if not 0 <= k < self. _length :
raise IndexError (’index out of range ’)

return self. _start + k * self. _step

79

	Goals, Principles, and Patterns
	Object-Oriented Design Goals
	Object-Oriented Design Priciples
	Design Patterns

	Software Development
	Design
	Coding Style and Documentation
	Testing and Debugging

	Class Definitions
	Example: CreditCard Class
	Operator Overloading and Python's Special Methods
	Example: Multidimensional Vector Class
	Iterators
	Example: Range Class

