
Lecture 12:
Joins Part I

Lecture 12

What you will learn about in this section

1. RECAP: Joins

2. Nested Loop Join (NLJ)

3. Block Nested Loop Join (BNLJ)

4. Index Nested Loop Join (INLJ)

2

Lecture 11

1. RECAP: Joins

Lecture 12 > Section 1 > Joins

4

Joins: Example

Example: Returns all pairs of
tuples r ∈ #, % ∈ & such that
'.) = %.)

A D
3 7
2 2
2 3

A B C
1 0 1
2 3 4
2 5 2
3 1 1

R S
A B C D

2 3 4 2

+ ⋈ -

Lecture 12 > Section 1 > Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

5

Joins: Example

Example: Returns all pairs of
tuples r ∈ #, % ∈ & such that
'.) = %.)

A D
3 7
2 2
2 3

A B C
1 0 1
2 3 4
2 5 2
3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

+ ⋈ -

Lecture 12 > Section 1 > Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

6

Joins: Example

Example: Returns all pairs of
tuples r ∈ #, % ∈ & such that
'.) = %.)

A D
3 7
2 2
2 3

A B C
1 0 1
2 3 4
2 5 2
3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

+ ⋈ -

Lecture 12 > Section 1 > Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

7

Joins: Example

Example: Returns all pairs of
tuples r ∈ #, % ∈ & such that
'.) = %.)

A D
3 7
2 2
2 3

A B C
1 0 1
2 3 4
2 5 2
3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

+ ⋈ -

Lecture 12 > Section 1 > Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

8

Joins: Example

Example: Returns all pairs of
tuples r ∈ #, % ∈ & such that
'.) = %.)

A D
3 7
2 2
2 3

A B C
1 0 1
2 3 4
2 5 2
3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

+ ⋈ -

Lecture 12 > Section 1 > Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

9

Semantically: A Subset of the Cross Product

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

Example: Returns all pairs of
tuples r ∈ #, % ∈ & such that
'.) = %.)

A D
3 7
2 2
2 3

A B C
1 0 1
2 3 4
2 5 2
3 1 1

R S A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

×
Cross
Product

Filter by
conditions
(r.A = s.A)

… Can we actually
implement a join
in this way?

, ⋈ .

Lecture 12 > Section 1 > Joins

Notes

• We write ! ⋈ # to mean join R and S by returning all tuple pairs
where all shared attributes are equal

• We write ! ⋈ # on A to mean join R and S by returning all tuple pairs
where attribute(s) A are equal

• For simplicity, we’ll consider joins on two tables and with equality
constraints (“equijoins”)

However joins can merge > 2 tables,
and some algorithms do support non-
equality constraints!

Lecture 12 > Section 1 > Joins

2. Nested Loop Joins

11

Lecture 12 > Section 2 > NLJ

Notes
• We are again considering “IO aware” algorithms:

care about disk IO

• Given a relation R, let:
• T(R) = # of tuples in R
• P(R) = # of pages in R

• Note also that we omit ceilings in calculations…
good exercise to put back in!

Lecture 12 > Section 2 > NLJ

Recall that we read / write
entire pages with disk IO

Nested Loop Join (NLJ)

Compute R ⋈ # $% &:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

Lecture 12 > Section 2 > NLJ

Nested Loop Join (NLJ)

Compute R ⋈ # $% &:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

Lecture 12 > Section 2 > NLJ

P(R)

1. Loop over the tuples in R

Note that our IO cost is based
on the number of pages
loaded, not the number of
tuples!

Cost:

Nested Loop Join (NLJ)

Compute R ⋈ # $% &:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

Lecture 12 > Section 2 > NLJ

P(R) + T(R)*P(S)

Have to read all of S from disk for every tuple in R!

1. Loop over the tuples in R

2. For every tuple in R, loop
over all the tuples in S

Cost:

Nested Loop Join (NLJ)

Compute R ⋈ # $% &:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

Lecture 12 > Section 2 > NLJ

P(R) + T(R)*P(S)

Note that NLJ can handle things other than equality
constraints… just check in the if statement!

1. Loop over the tuples in R

2. For every tuple in R, loop
over all the tuples in S

3. Check against join conditions

Cost:

Nested Loop Join (NLJ)

Compute R ⋈ # $% &:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

Lecture 12 > Section 2 > NLJ

P(R) + T(R)*P(S) + OUT

1. Loop over the tuples in R

2. For every tuple in R, loop
over all the tuples in S

3. Check against join conditions

4. Write out (to page, then
when page full, to disk)

Cost:

What would OUT
be if our join
condition is trivial
(if TRUE)?

OUT could be bigger
than P(R)*P(S)… but
usually not that bad

Nested Loop Join (NLJ)

Compute R ⋈ # $% &:
for r in R:

for s in S:
if r[A] == s[A]:

yield (r,s)

Lecture 12 > Section 2 > NLJ

P(R) + T(R)*P(S) + OUT

What if R (“outer”) and S
(“inner”) switched?

Cost:

P(S) + T(S)*P(R) + OUT

Outer vs. inner selection makes a huge difference-
DBMS needs to know which relation is smaller!

3. IO-Aware Approach:
Block Nested Loop Join

Lecture 12 > Section 3 > BNLJ

Block Nested Loop Join (BNLJ)

Compute R ⋈ # $% &:
for each B-1 pages pr of R:
for page ps of S:
for each tuple r in pr:
for each tuple s in ps:
if r[A] == s[A]:
yield (r,s)

Lecture 12 > Section 3 > BNLJ

P())

Given B+1 pages of memory

1. Load in B-1 pages of R at a
time (leaving 1 page each
free for S & output)

Cost:

Note: There could be some
speedup here due to the fact
that we’re reading in multiple
pages sequentially however
we’ll ignore this here!

Block Nested Loop Join (BNLJ)

Compute R ⋈ # $% &:
for each B-1 pages pr of R:
for page ps of S:
for each tuple r in pr:
for each tuple s in ps:
if r[A] == s[A]:
yield (r,s)

Lecture 12 > Section 3 > BNLJ

P (+ * (
+ − 1*(#)

Given B+1 pages of memory

Note: Faster to iterate over the
smaller relation first!

1. Load in B-1 pages of R at a
time (leaving 1 page each
free for S & output)

2. For each (B-1)-page segment
of R, load each page of S

Cost:

Block Nested Loop Join (BNLJ)

Compute R ⋈ # $% &:
for each B-1 pages pr of R:
for page ps of S:
for each tuple r in pr:
for each tuple s in ps:
if r[A] == s[A]:
yield (r,s)

Lecture 12 > Section 3 > BNLJ

Given B+1 pages of memory

1. Load in B-1 pages of R at a
time (leaving 1 page each
free for S & output)

2. For each (B-1)-page segment
of R, load each page of S

3. Check against the join
conditions

BNLJ can also handle non-equality constraints

Cost:

P (+ * (
+ − 1*(#)

Block Nested Loop Join (BNLJ)

Compute R ⋈ # $% &:
for each B-1 pages pr of R:
for page ps of S:
for each tuple r in pr:
for each tuple s in ps:
if r[A] == s[A]:
yield (r,s)

Lecture 12 > Section 3 > BNLJ

P (+ * +
,-. /(#) + OUT

Given B+1 pages of memory

1. Load in B-1 pages of R at a
time (leaving 1 page each
free for S & output)

2. For each (B-1)-page segment
of R, load each page of S

3. Check against the join
conditions

4. Write out

Cost:

Again, OUT could be bigger than
P(R)*P(S)… but usually not that bad

Lecture 12 > Section 3

Message: It’s all about the memory!

Joins, A Cage Match: BNLJ vs. NLJ

BNLJ vs. NLJ: Benefits of IO Aware

• Example:
• R: 500 pages
• S: 1000 pages
• 100 tuples / page
• We have 12 pages of memory (B = 11)

• NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs ~= 140 hours

• BNLJ: Cost = 500 + !""∗$"""$" = 50 Thousand IOs ~= 0.14 hours

Lecture 12 > Section 3 > Match

A very real difference from a small
change in the algorithm!

Ignoring OUT here…

BNLJ vs. NLJ: Benefits of IO Aware

• In BNLJ, by loading larger chunks of R, we minimize the number of full
disk reads of S
• We only read all of S from disk for every (B-1)-page segment of R!
• Still the full cross-product, but more done only in memory

P " + $ %
&'()(+) + OUTP(R) + T(R)*P(S) + OUT

NLJ BNLJ

BNLJ is faster by roughly (&'()-(%)$(%) !

Lecture 12 > Section 3 > Match

BNLJ vs. NLJ: Benefits of IO Aware

• Example:
• R: 500 pages
• S: 1000 pages
• 100 tuples / page
• We have 12 pages of memory (B = 11)

• NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs ~= 140 hours

• BNLJ: Cost = 500 + !""∗$"""$" = 50 Thousand IOs ~= 0.14 hours

Lecture 12 > Section 3 > Match

A very real difference from a small
change in the algorithm!

Ignoring OUT here…

4. Smarter than Cross-Products:
Indexed Nested Loop Join

Lecture 12 > Section 4 > INLJ

Smarter than Cross-Products: From Quadratic
to Nearly Linear
• All joins that compute the full cross-product have some quadratic

term
• For example we saw:

• Now we’ll see some (nearly) linear joins:
• ~ O(P(R) + P(S) + OUT), where again OUT could be quadratic but is usually

better

P " + $ %
&'($(*) + OUT

P(R) + T(R)P(S) + OUTNLJ

BNLJ

We get this gain by taking advantage of structure- moving to
equality constraints (“equijoin”) only!

Lecture 12 > Section 4 > INLJ

Index Nested Loop Join (INLJ)

Compute R ⋈ # $% &:
Given index idx on S.A:
for r in R:
s in idx(r[A]):
yield r,s

Lecture 12 > Section 4 > INLJ

P(R) + T(R)*L + OUT

à We can use an index (e.g. B+ Tree) to avoid doing
the full cross-product!

where L is the IO cost to access
all the distinct values in the
index; assuming these fit on
one page, L ~ 3 is good est.

Cost:

Summary

• We covered joins--an IO aware algorithm makes a big difference.

• Fundamental strategies: blocking and reorder loops (asymmetric
costs in IO)

• Comparing nested loop join cost calculation is something that I will
definitely ask you!

Lecture 12 > SUMMARY

