
Lectures 7: Intro to
Transactions & Logging

Lecture 7

Goals for this pair of lectures

• Transactions are a programming abstraction that enables the DBMS
to handle recovery and concurrency for users.

• Application: Transactions are critical for users
• Even casual users of data processing systems!

• Fundamentals: The basics of how TXNs work
• Transaction processing is part of the debate around new data processing

systems

• Give you enough information to understand how TXNs work, and the main
concerns with using them

Lecture 7

Note that we are not implementing it

Today’s Lecture

1. Transactions

2. Properties of Transactions: ACID

3. Logging

3

Lecture 7

1. Transactions

4

Lecture 7 > Section 1

What you will learn about in this section

1. Our “model” of the DBMS / computer

2. Transactions basics

3. Motivation: Recovery & Durability

4. Motivation: Concurrency [next lecture]

5

Lecture 7 > Section 1

High-level: Disk vs. Main Memory

• Disk:

• Slow
• Sequential access

• (although fast sequential reads)

• Durable
• We will assume that once on disk, data is safe!

• Cheap

6

Lecture 7 > Section 1 > Our model

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

• Random Access Memory (RAM) or Main Memory:

• Fast
• Random access, byte addressable

• ~10x faster for sequential access
• ~100,000x faster for random access!

• Volatile
• Data can be lost if e.g. crash occurs, power goes out, etc!

• Expensive
• For $100, get 16GB of RAM vs. 2TB of disk!

7

Lecture 7 > Section 1 > Our model

High-level: Disk vs. Main Memory

Our model: Three Types of Regions of
Memory

1. Local: In our model each process in a DBMS has its
own local memory, where it stores values that only
it “sees”

2. Global: Each process can read from / write to
shared data in main memory

3. Disk: Global memory can read from / flush to disk

4. Log: Assume on stable disk storage- spans both
main memory and disk…

Local Global
Main

Memory
(RAM)

Disk

“Flushing to disk” =
writing to disk from
main memory

1 2

3

Lecture 7 > Section 1 > Our model

Log is a sequence from
main memory -> disk

4

• Keep in mind the tradeoffs here as motivation for the mechanisms
we introduce

• Main memory: fast but limited capacity, volatile

• Vs. Disk: slow but large capacity, durable

9

Lecture 7 > Section 1 > Our model

High-level: Disk vs. Main Memory

How do we effectively utilize both ensuring certain critical guarantees?

Transactions

10

Lecture 7 > Section 1 > Transactions Basics

Transactions: Basic Definition

A transaction (“TXN”) is a sequence
of one or more operations (reads or
writes) which reflects a single real-
world transition.

START TRANSACTION
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

COMMIT

Lecture 7 > Section 1 > Transactions Basics

In the real world, a TXN
either happened
completely or not at all

Transactions: Basic Definition

A transaction (“TXN”) is a sequence of one or
more operations (reads or writes) which reflects
a single real-world transition.

Lecture 7 > Section 1 > Transactions Basics

In the real world, a TXN
either happened
completely or not at all

Examples:

• Transfer money between accounts

• Purchase a group of products

• Register for a class (either waitlist or
allocated)

13

Transactions in SQL

• In “ad-hoc” SQL:
• Default: each statement = one transaction

• In a program, multiple statements can be grouped together as a
transaction:

Lecture 7 > Section 1 > Transactions Basics

START TRANSACTION
UPDATE Bank SET amount = amount – 100
WHERE name = ‘Bob’
UPDATE Bank SET amount = amount + 100
WHERE name = ‘Joe’

COMMIT

Model of Transaction for CS 145

Note: For 145, we assume that the DBMS only sees
reads and writes to data

• User may do much more

• In real systems, databases do have more info...

Lecture 7 > Section 1 > Transactions Basics

Motivation for Transactions
Grouping user actions (reads & writes) into transactions
helps with two goals:

1. Recovery & Durability: Keeping the DBMS data
consistent and durable in the face of crashes, aborts,
system shutdowns, etc.

2. Concurrency: Achieving better performance by
parallelizing TXNs without creating anomalies

Lecture 7 > Section 1 > Motivation

This lecture!

Next lecture

Motivation
1. Recovery & Durability of user data is essential for
reliable DBMS usage

• The DBMS may experience crashes (e.g. power outages, etc.)

• Individual TXNs may be aborted (e.g. by the user)

Lecture 7 > Section 1 > Motivation: Recovery & Durability

Idea: Make sure that TXNs are either durably stored in full, or
not at all; keep log to be able to “roll-back” TXNs

17

Protection against crashes / aborts

Client 1:
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

What goes wrong?

Crash / abort!

Lecture 7 > Section 1 > Motivation: Recovery & Durability

18

Protection against crashes / aborts

Client 1:
START TRANSACTION

INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

COMMIT OR ROLLBACK

Now we’d be fine! We’ll see how / why this lecture

Lecture 7 > Section 1 > Motivation: Recovery & Durability

Motivation
2. Concurrent execution of user programs is essential
for good DBMS performance.

• Disk accesses may be frequent and slow- optimize for throughput
(# of TXNs), trade for latency (time for any one TXN)

• Users should still be able to execute TXNs as if in isolation and
such that consistency is maintained

Idea: Have the DBMS handle running several user
TXNs concurrently, in order to keep CPUs humming…

Lecture 7 > Section 1 > Motivation: Concurrency

20

Multiple users: single statements

Client 1: UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

Client 2: UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

Two managers attempt to discount products concurrently-
What could go wrong?

Lecture 7 > Section 1 > Motivation: Concurrency

21

Multiple users: single statements
Client 1: START TRANSACTION

UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

COMMIT

Client 2: START TRANSACTION
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

COMMIT

Now works like a charm- we’ll see how / why next lecture…

Lecture 7 > Section 1 > Motivation: Concurrency

2. Properties of Transactions

22

Lecture 7 > Section 2

What you will learn about in this section

1. Atomicity

2. Consistency

3. Isolation

4. Durability

5. ACTIVITY?

23

Lecture 7 > Section 2

24

Transaction Properties: ACID

• Atomic
• State shows either all the effects of txn, or none of them

• Consistent
• Txn moves from a state where integrity holds, to another where integrity

holds
• Isolated

• Effect of txns is the same as txns running one after another (ie looks like batch
mode)

• Durable
• Once a txn has committed, its effects remain in the database

ACID continues to be a source of great debate!

Lecture 7 > Section 2

25

ACID: Atomicity

• TXN’s activities are atomic: all or nothing

• Intuitively: in the real world, a transaction is something that
would either occur completely or not at all

• Two possible outcomes for a TXN

• It commits: all the changes are made

• It aborts: no changes are made

Lecture 7 > Section 2 > Atomicity

26

ACID: Consistency

• The tables must always satisfy user-specified integrity constraints
• Examples:

• Account number is unique
• Stock amount can’t be negative
• Sum of debits and of credits is 0

• How consistency is achieved:
• Programmer makes sure a txn takes a consistent state to a consistent state
• System makes sure that the txn is atomic

Lecture 7 > Section 2 > Consistency

27

ACID: Isolation

• A transaction executes concurrently with other transactions

• Isolation: the effect is as if each transaction executes in
isolation of the others.

• E.g. Should not be able to observe changes from other
transactions during the run

Lecture 7 > Section 2 > Isolation

28

ACID: Durability

• The effect of a TXN must continue to exist (“persist”) after
the TXN
• And after the whole program has terminated
• And even if there are power failures, crashes, etc.
• And etc…

•Means: Write data to disk
Change on the horizon?
Non-Volatile Ram (NVRam).
Byte addressable.

Lecture 7 > Section 2 > Durability

Challenges for ACID properties

• In spite of failures: Power failures, but not media failures

• Users may abort the program: need to “rollback the changes”
• Need to log what happened

• Many users executing concurrently
• Can be solved via locking (we’ll see this next lecture!)

And all this with… Performance!!

Lecture 7 > Section 2

This lecture

Next lecture

A Note: ACID is contentious!

• Many debates over ACID, both historically
and currently

• Many newer “NoSQL” DBMSs relax ACID

• In turn, now “NewSQL” reintroduces ACID
compliance to NoSQL-style DBMSs…

Lecture 7 > Section 2

ACID is an extremely important & successful
paradigm, but still debated!

3. Atomicity & Durability via
Logging

31

Lecture 7 > Section 3

Motivation & Basics

Lecture 7 > Section 3 > Motivation & Basics

Goal for this lecture: Ensuring Atomicity &
Durability
• Atomicity:

• TXNs should either happen completely or
not at all

• If abort / crash during TXN, no effects
should be seen

33

Lecture 7 > Section 3 > Motivation & basics

ACID

TXN 1

TXN 2

No changes
persisted

All changes
persisted

We’ll focus on how to accomplish atomicity (via logging)

Crash / abort

• Durability:
• If DBMS stops running, changes due to

completed TXNs should all persist
• Just store on stable disk

The Log
• Is a list of modifications

• Log is duplexed and archived on stable storage.

• Can force write entries to disk
• A page goes to disk.

• All log activities handled transparently the DBMS.

Assume we
don’t lose it!

Lecture 7 > Section 3 > Motivation & basics

Basic Idea: (Physical) Logging

• Record UNDO information for every update!
• Sequential writes to log
• Minimal info (diff) written to log

• The log consists of an ordered list of actions
• Log record contains:

<XID, location, old data, new data>

This is sufficient to UNDO any transaction!

Lecture 7 > Section 3 > Motivation & basics

Why do we need logging for atomicity?

• Couldn’t we just write TXN to disk only once whole TXN complete?
• Then, if abort / crash and TXN not complete, it has no effect- atomicity!
• With unlimited memory and time, this could work…

• However, we need to log partial results of TXNs because of:
• Memory constraints (enough space for full TXN??)
• Time constraints (what if one TXN takes very long?)

We need to write partial results to disk!
…And so we need a log to be able to undo these partial results!

Lecture 7 > Section 3 > Motivation & basics

What you will learn about in this section

1. Logging: An animation of commit protocols

37

Lecture 7 > Section 3

A Picture of Logging

Lecture 7 > Section 3 > Logging commit protocol

A picture of logging

Data on Disk

Main Memory

Log on Disk

LogT A=0

B=5

A=0

T: R(A), W(A)

Lecture 7 > Section 3 > Logging commit protocol

A picture of logging

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A)
A: 0à1

Lecture 7 > Section 3 > Logging commit protocol

A picture of logging

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A)
A: 0à1

Lecture 7 > Section 3 > Logging commit protocol

Operation
recorded in log in

main memory!

What is the correct way to write this all to
disk?
• We’ll look at the Write-Ahead Logging (WAL) protocol

• We’ll see why it works by looking at other protocols which are
incorrect!

42

Remember: Key idea is to ensure durability
while maintaining our ability to “undo”!

Write-Ahead Logging (WAL)
TXN Commit Protocol

Lecture 7 > Section 3 > Logging commit protocol

Transaction Commit Process

1. FORCE Write commit record to log

2. All log records up to last update from this TX are FORCED

3. Commit() returns

Transaction is committed once commit log
record is on stable storage

Lecture 7 > Section 3 > Logging commit protocol

Incorrect Commit Protocol #1

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A) A: 0à1

Lecture 7 > Section 3 > Logging commit protocol

Let’s try committing
before we’ve written
either data or log to
disk…

If we crash now, is T
durable?

OK, Commit!

Lost T’s update!

Incorrect Commit Protocol #2

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A) A: 0à1

Lecture 7 > Section 3 > Logging commit protocol

Let’s try committing
after we’ve written
data but before we’ve
written log to disk…

If we crash now, is T
durable? Yes! Except…

OK, Commit!

How do we know
whether T was
committed??

Improved Commit Protocol (WAL)

Lecture 7 > Section 3 > Logging commit protocol

Write-ahead Logging (WAL) Commit Protocol

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A) A: 0à1

Lecture 7 > Section 3 > Logging commit protocol

This time, let’s try
committing after we’ve
written log to disk but
before we’ve written
data to disk… this is WAL!

If we crash now, is T
durable?

OK, Commit!

Write-ahead Logging (WAL) Commit Protocol

Data on Disk

Main Memory

Log on Disk

T

A=0

T: R(A), W(A)

A: 0à1

Lecture 7 > Section 3 > Logging commit protocol

This time, let’s try

committing after we’ve

written log to disk but

before we’ve written

data to disk… this is WAL!

If we crash now, is T

durable?

OK, Commit!

USE THE LOG!
A=1

Write-Ahead Logging (WAL)

• DB uses Write-Ahead Logging (WAL) Protocol:

1. Must force log record for an update before the
corresponding data page goes to storage

2. Must write all log records for a TX before commit

Lecture 7 > Section 3 > Logging commit protocol

Each update is
logged! Why not
reads?

à Atomicity

à Durability

Logging Summary

• If DB says TX commits, TX effect remains after database
crash

• DB can undo actions and help us with atomicity

• This is only half the story…

Lecture 7 > Section 3 > Logging commit protocol

