Lectures 5:
Design Theory Part |



Lecture 5

Today’s Lecture

1. Normal forms & functional dependencies
 ACTIVITY: Finding FDs

2. Finding functional dependencies

3. Closures, superkeys & keys
* ACTIVITY: The key or a key?



1. Normal forms & functional
dependencies



Lecture 5 > Section 1

What you will learn about in this section

1. Overview of design theory & normal forms
2. Data anomalies & constraints
3. Functional dependencies

4. ACTIVITY: Finding FDs
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Design Theory

* Design theory is about how to represent your data to avoid
anomalies.

* It is a mostly mechanical process
» Tools can carry out routine portions

* We have a notebook implementing all algorithms!
« We’ll play with it in the activities!
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Normal Forms

e 1st Normal Form (1NF) = All tables are flat

e 2nd Normal Form = disused

DB designs based
 Boyce-Codd Normal Form (BCNF) SHIIEERE B

functional Our focus in
dependencies, this lecture
intended to prevent + next one

* 314 Normal Form (3NF)

data anomalies

e 4th gnd 5" Normal Forms = see text books
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1t Normal Form (1NF)

Student Courses
Student Courses

Mary CS145

Mary {CS145,CS229}
Mary CS229

Joe {CS145,CS106}
Joe CS145
Joe CS106
Violates 1NF. In 15 NF

1NF Constraint: Types must be atomic!
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Data Anomalies & Constraints
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Constraints Prevent (some)

Anomalies in the Data

A poorly designed database causes anomalies:

Student | Course | Room
Mary CS145 | BO1
Joe CS145 |BO1
Sam CS145 |BO1

If every course is in
only one room,
contains redundant
information!
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Constraints Prevent (some)
Anomalies in the Data

A poorly designed database causes anomalies:

Student | Course | Room
If we update the
Mary C5145 |BO1 room number for
Joe CS145 | C12 one tuple, we get

Sam CS145 |BO1 inconsistent data =
an update anomaly
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Constraints Prevent (some)
Anomalies in the Data

A poorly designed database causes anomalies:

Student | Course | Room

If everyone drops the class, we lose what
room the class is in! = a delete anomaly
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Constraints Prevent (some)

Anomalies in the Data

A poorly designed database causes anomalies:

€5229

C12

Student | Course | Room
Mary CS145 |BO1
Joe CS145 (BO1
Sam CS145 (BO1

Similarly, we can’t
reserve a room
without students
= an insert

anomaly
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Constraints Prevent (some)
Anomalies in the Data

Student | Course
Mary CS145
Joe CS145
Sam CS145

Course | Room
CS145 |BO1
CS229 |C12

Is this form better?

 Redundancy?

* Update anomaly?
* Delete anomaly?
* |nsert anomaly?

Today: develop theory to understand why this design
may be better and how to find this decomposition...
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Functional Dependencies
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Functional Dependency

Def: Let A,B be sets of attributes
We write A = B or say A functionally determines
B if, for any tuples t; and t,:

t,[A] =t,[A] implies t,[B] = t,[B]

and we call A = B a functional dependency

A->B means that
“Whenever two tuples agree on A then they agree on B.”
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A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A,} and
B=1{B,,...B,}inR,
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A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A,} and
B=1{B,,...B,}inR,

The functional dependency A= B on
R holds if for any t,t; in R:
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A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A,} and
B=1{B,,...B,}inR,

The functional dependency A= B on
R holds if for any t,t; in R:

if t;[A] = tj[Al] AND ti[A2]=tj[A2] AND
.. AND t.[A ] = tj[Am]

If t1,t2 agree here..
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A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A,} and
B=1{B,,...B,}inR,

A, A, B, B,
The functional dependency A= B on
ti R holds if for any t,t; in R:
5 if t[A1] = t;[A;] AND t;[A,]=t,[A,] AND
o | .. AND t[A,] = t[A,]
If t1,t2 agree here.. ...they also agree here! then ti[Bl] = tj[Bl] AND ti[Bz]=tj[Bz]

AND ... AND t[B,] = t[B,)]
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FDs for Relational Schema Design

* High-level idea: why do we care about FDs?

1. Start with some relational schema
2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
1. One which minimizes the possibility of anomalies
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Functional Dependencies as Constraints

A functional dependency is a form
of constraint

* Holds on some instances (but not
others) — can check whether there
are violations

e Part of the schema, helps define a
valid instance

Recall: an instance of a schema is a multiset of
tuples conforming to that schema, i.e. a table

Student | Course | Room
Mary CS145 |BO1
Joe CS145 (BO1
Sam CS145 (BO1

Note: The FD {Course}
-> {Room} holds on this
instance
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Functional Dependencies as Constraints

Note that:

You can check if an FD is
violated by examining a single
instance;

However, you cannot prove
that an FD is part of the
schema by examining a single
instance.

e This would require checking
every valid instance

Student | Course | Room
Mary CS145 |BO1
Joe CS145 (BO1
Sam CS145 (BO1

However, cannot prove
that the FD {Course} ->
{Room} is part of the

schema
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More Examples

An FD is a constraint which holds, or does not hold on
an instance:

EmpID |Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer
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More Examples

EmpID |Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 <« |Salesrep
E1111 Smith 9876 <« |Salesrep
E9999 Mary 1234 Lawyer

{Position} = {Phone}

24
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More Examples

EmpID |Name Phone Position
E0045 Smith 1234 — |Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 — |Lawyer

but not {Phone} - {Position}

25
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ACTIVITY

Find at least three FDs which
are violated on this instance:

{
{
{

“ N
A%
N

}
}
}

A B C D E
1 2 4 3 6
3 2 5 1 8
1 4 4 5 7
1 2 4 3 6
3 2 5 1 8

26



2. Finding functional
dependencies
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What you will learn about in this section

1. “Good” vs. “Bad” FDs: Intuition
2. Finding FDs
3. Closures

4. ACTIVITY: Compute the closures
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“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

Intuitively:

EmpID |[Name |Phone |Position
E0045 |Smith [1234 Clerk
E3542 |Mike 9876 Salesrep
E1111 |Smith |9876 Salesrep
E9999 |Mary 1234 Lawyer

EmplD -> Name, Phone,

Position is “good FD”

 Minimal redundancy,
less possibility of
anomalies

29
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“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID |Name |Phone |Position Intuitively:
E0045 |Smith [1234 Clerk

E3542 |Mike 9876 Salesrep
E1111  |Smith || 9876 Salesrep

E9999 | Mary 1234 Lawyer But Position -> Phone is a
“bad FD”

* Redundancy!
Possibility of data
anomalies

EmplD -> Name, Phone,
Position is “good FD”
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“Good” vs. “Bad” FDs

Returning to our original example...

Student | Course | Room
can you see how the “bad FD”

Mary C>14> |BO1 {Course} -> {Room} could lead to
Joe CS145 |BO1 an:
Sam CS145 |BO1 * Update Anomaly

Insert Anomaly
Delete Anomaly

Given a set of FDs (from user) our goal is to:
1. Find all FDs, and
2. Eliminate the “Bad Ones".
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FDs for Relational Schema Design

* High-level idea: why do we care about FDs?

1. Start with some relational schema
2. Find out its functional dependencies (FDs) This part can be tricky!

3. Use these to design a better schema
1. One which minimizes possibility of anomalies
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Finding Functional Dependencies

* There can be a very large number of FDs...
* How to find them all efficiently?

* We can’t necessarily show that any FD will hold on all instances...
* How to do this?

We will start with this problem:
Given a set of FDs, F what other FDs must hold?
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Finding Functional Dependencies

Equivalent to asking: Given a set of FDs, F = {f,,...f}, does an FD g hold?

Inference problem: How do we decide?
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Finding Functional Dependencies

Example:
Products Provided FDs:

Name Color | Category Dep Price 1. {Name} = {Color}
Gizmo |Green |Gadget |Toys |49 2. {Category} = {Department}
Widget |Black |Gadget |Toys 59 3. {Color, Category} = {Price}
Gizmo |Green |Whatsit Garden |99

Given the provided FDs, we can see that {Name, Category} = {Price}
must also hold on any instance...

Which / how many other FDs do?!?
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Finding Functional Dependencies

Equivalent to asking: Given a set of FDs, F = {f,,...f, }, does an FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called Armstrong’s
Rules.

1. Split/Combine,

2. Reduction, and

3. Transitivity... ideas by picture
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1. Split/Combine

A, ..., A, By,..B.
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1. Split/Combine

A, ..., A, By,..B.

... iIs equivalent to the following n FDs...

A, ..., A, =2 B fori=1,..,n
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1. Split/Combine

And vice-versa, A,,..., A, = B, fori=1,...,n

... iIs equivalent to ...

A, ..., A, By,...,B.
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2. Reduction/Trivial

Ay...An 2 A foranyj=1,..,m
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3. Transitive Closure

A, ..., A, B,..B,and
B,,...,B, > Cy,...,C,
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3. Transitive Closure

A, ..., A, B,..B,and
B,,...,B, > Cy,...,C,

implies
A,...,A, =2 C,...C,
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Finding Functional Dependencies

Example:
Products Provided FDs:

Name Color | Category Dep Price 1. {Name} = {Color}
Gizmo |Green |Gadget |Toys |49 2. {Category} = {Department}
Widget |Black |Gadget |Toys 59 3. {Color, Category} = {Price}
Gizmo |Green |Whatsit Garden |99

Which / how many other FDs hold?
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Finding Functional Dependencies

Example:
Inferred FDs: Provided FDs:
1 {Name} > (Color
4. {Name, Category} -> {Name} ? 2. {Category} =2 {Dept.}
5. {Name, Category} -> {Color} ? {CO;O"' Category} =2
Price

6. {Name, Category} -> {Category}

7. {Name, Category -> {Color, Category}

Y Y| Y

8. {Name, Category} -> {Price}

Which / how many other FDs hold?
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Finding Functional Dependencies

Example:
Inferred FDs: Provided FDs:
1 {Name} > (Color
4. {Name, Category} -> {Name} Trivial 2. {Category} =2 {Dept.}
5. {Name, Category}-> {Color} Transitive (4 -> 1) 3. {_CO|O'3 Category} =2
6. {Name, Category} -> {Category} Trivial (Price}

7. {Name, Category -> {Color, Category}  Split/combine (5 + 6)

8. {Name, Category} -> {Price} Transitive (7 -> 3)

Can we find an algorithmic way to do this?



Lecture 5 > Section 2 > Closures

Closures
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Closure of a set of Attributes

Given a set of attributes A, ..., A, and a set of FDs F:
Then the closure, {A,, ..., A} is the set of attributes B s.t. {A, ..., A,} 2> B

Example:

Example
Closures:

F

{name} > {color}
{category} > {department}
{color, category} > {price}

{name}* = {name, color}

{name, category}+ =

{name, category, color, dept, price}
{color}* = {color}

47
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Closure Algorithm

Start with X=1{A,, ..., A} and set of FDs F.
Repeat until X doesn’t change; do:
if {B,, ..., B,} =2 Cisentailed by F
and {B,, ..., B.} € X
then add Cto X.

Return X as X*

48
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Closure Algorithm

Start with X ={A, ..., A}, FDs F.
Repeat until X doesn’t change; do:
if {B4, ..., B,}=2 CisinFand{By,
.., Bi} € X:
then add C to X.
Return X as X*

{name, category}+ =
{name, category}

{name} > {color}
{category} > {dept}

{color, category} =
{price}

49
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Closure Algorithm

Start with X ={A, ..., A}, FDs F.
Repeat until X doesn’t change; do:
if {B4, ..., B,}=2 CisinFand{By,
.., Bi} € X:
then add C to X.
Return X as X*

{name, category}+ =
{name, category, color}

{name} > {color}
{category} > {dept}

{color, category} =
{price}

50
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Closure Algorithm

Start with X = {A, ..., A}, FDs F.
Repeat until X doesn’t change; do:

if {B,, .., B.} > Cisin Fand {B,,

.., Bi} € X:
then add C to X.
Return X as X*

= {name, category}* =
{name} > {color} {name, category, color, dept}

{category} > {dept}

{color, category} =
{price}

51
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Closure Algorithm

Start with X = {A4, ..., A}, FDs F.
Repeat until X doesn’t change; do:

if {B,, .., B.} > Cisin Fand {B,,

.., Bi} € X:
then add C to X.
Return X as X*

{name} > {color}

{category} > {dept; {name, category}* =

{name, category, color, dept,

{color, category} > orice}

{price}

52
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Example

R(A,B,C,D,E,F)

Compute {A,B}* = {A, B,

Compute {A, F}* ={A, F

{A,B} > {C}
{A,D} > {E}

{B} > {D}
{A,F} > {B}
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Example

R(A,B,C,D,E,F)

{A,B} > {C}
{A,D} > {E}

{B} > {D}
{A,F} > {B}

Compute {A,B}*=1{A, B, C, D

Compute {A, F}*={A,F B




Lecture 5 > Section 2 > Closures

Example

R(A,B,C,D,E,F)

{A,B} > {C}
{A,D} > {E}

{B} > {D}
{A,F} > {B}

Compute {A,B}* ={A, B, C, D, E}

Compute {A, F}*={A, B, C, D, E, F}

55



3. Closures, Superkeys & Keys
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What you will learn about in this section

1. Closures Pt. Il

2. Superkeys & Keys

3. ACTIVITY: The key or a key?
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Why Do We Need the Closure?

* With closure we can find all FD’s easily

e Tocheckif X > A

1. Compute X*

2. Check if A(EX*

Note here that X is a set of
attributes, but A is a single
attribute. Why does considering
FDs of this form suffice?

Recall the Split/combine rule:
XAy, X DA,

implies

X>{A, .., Al
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Using Closure to Infer ALL FDs

Example:
Given F =

Step 1: Compute X*, for every set of attributes X:

{A}*
{B}*
{C}

{A}
1B,D}
{C}
{D}
= {A,B,C,D}

{A,Cr = {A,C}

{A,D}* = {A,B,C,D}

{A,B,C}* = {A,B,D}* = {A,C,D}*= {A,B,C,D}
{B,C,D}*= {B,(C,D}

{A,B,C,D}* = {A,B,C,D}

No need to
compute all of
these- why?

59
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Using Closure to Infer ALL FDs

Example:
Given F =

Step 1: Compute X*, for every set of attributes X:

1A}* = {A}, 1B}*= {B,D}, {C}*= {C}, 1D}* =
{D}, {A,B}*= {A,B,C,D}, {A,C}*= {A,C},
{A,D}* = {A,B,C,D}, {A,B,C}*= {A,B,D}* =
{A,C,D}* = {A,B,C,D}, {B,C,D}*= {B,C,D},
{A,B,C,D}* = {A,B,C,D}

Step 2: Enumerate all FDs X 2 Y, s.t. Yc Xtand XN Y = &:

{A,B} > {C,D}, {A,D} > {B,C},
{A,B,C} > {D}, {A,B,D} > {C},
{A,C,D} > {B}

60




Lecture 5 > Section 3 > Closures Pt. Il

Using Closure to Infer ALL FDs

Example:
Given F =

Step 1: Compute X*, for every set of attributes X:

1A}* = {A}, 1B}*= {B,D}, {C}*= {C}, 1D}* =
{D}, {A,B}*= {A,B,C,D}, {A,C}*= {A,C},
{A,D}* = {A,B,C,D}, {A,B,C}*= {A,B,D}* =
{A,C,D}* = {A,B,C,D}, {B,C,D}*= {B,C,D},
{A,B,C,D}* = {A,B,C,D}

Step 2: Enumerate all FDs X 2 Y, s.t. Yc X" and XN Y = &:

{A,B} > {C,D}, {A,D} > {B,C},
{A,B,C} > {D}, {A,B,D} > {C},
{A,C,D} > {B}

“Yisin the
closure of X

V4

61
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Using Closure to Infer ALL FDs

Example: {A,B} > C
Step 1: Compute X, for every set of attributes X: °Ve"F= |{A,D} z g

1A}* = {A}, 1B}*= {B,D}, {C}*= {C}, 1D}* =
{D}, {A,B}*= {A,B,C,D}, {A,C}*= {A,C},
{A,D}* = {A,B,C,D}, {A,B,C}*= {A,B,D}* =
{A,C,D}* = {A,B,C,D}, {B,C,D}*= {B,C,D},
{A,B,C,D}* = {A,B,C,D}

Step 2: Enumerate all FDs X 2 Y, s.t. Y Xtand XN Y=U: ThefFDX 2Y
is non-trivial

{A,B} > {C,D}, {A,D} > {B,C},
{A,B,C} > {D}, {A,B,D} > {C},
{A,C,D} > {B}

62
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Superkeys and Keys
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Keys and Superkeys

A superkey is a set of attributes A4, ..., A, s.t. e all attributes are
for any other attribute B in R, functionally determined
we have {A;, .., A.}> B by a superkey

This means that no subset of a
key is also a superkey (i.e.,
dropping any attribute from the
key makes it no longer a
superkey)

A key is a minimal superkey



Finding Keys and Superkeys
* For each set of attributes X
1. Compute X*
2. If X*=set of all attributes then X is a superkey

3. If Xis minimal, then it is a key
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Example of Finding Keys

Product(name, price, category, color)

{name, category} = price
{category} = color

What is a key?
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Example of Keys

Product(name, price, category, color)

{name, category} = price
{category} = color

{name, category}* = {name, price, category, color}
= the set of all attributes
= this is a superkey
= this is a key, since neither name nor category
alone is a superkey
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Activity-5-1.ipynb



Lecture_1_1.ipynb

Lectures 5,7 > SUMMARY

Ssummary

* Constraints allow one to reason about redundancy in the data

* Normal forms describe how to remove this redundancy by
decomposing relations

* Elegant—by representing data appropriately certain errors are essentially
impossible
e For FDs is the normal form.



