
Basic Data Structures in Python
Stack, Queue

Seongjin Lee
July 8, 2020

Gyeongsang National University

Table of contents

1. Class

2. Stack

3. Queue

4. Double-Ended Queues

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 1/57

Class

Class Definitions i

A class serves as the primary means for abstraction in
object-oriented programming. In Python, every piece of data is
represented as an instance of some class. A class

• provides a set of behaviors in the form of member functions
(also known as methods), with implementations that are
common to all instances of that class.

• serves as a blueprint for its instances, effectively determining
the way that state information for each instance is represented
in the form of attributes (also known as fields, instance
variables, or data members).

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 2/57

Class
Example: CreditCard Class

Example: CreditCard Class i

1 c lass Credi tCard :
2 """A consumer credit card."""
3 def i n i t (se l f , customer , bank , acnt , l im i t) :
4 """Create a new credit card instance.
5

6 The initial balance is zero.
7

8 customer the name of the customer (e.g., John Bowman)
9 bank the name of the bank (e.g., California Savings)
10 acnt the acount identifier (e.g., 5391 0375 9387 5309)
11 limit credit limit (measured in dollars)
12 """
13 s e l f . customer = customer
14 s e l f . bank = bank
15 s e l f . account = acnt
16 s e l f . l im i t = l im i t
17 s e l f . balance = 0

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 3/57

Example: CreditCard Class ii

18

19 def get customer (s e l f) :
20 """Return name of the customer."""
21 return s e l f . customer
22

23 def get bank (s e l f) :
24 """Return the bank s name."""
25 return s e l f . bank
26

27 def get account (s e l f) :
28 """Return the card identifying number (typically stored as a string)."""
29 return s e l f . account
30

31 def get l im i t (s e l f) :
32 """Return current credit limit."""
33 return s e l f . l im i t
34

35 def get balance (s e l f) :

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 4/57

Example: CreditCard Class iii

36 """Return current balance."""
37 return s e l f . balance
38

39 def charge (se l f , p r i ce) :
40 """Charge given price to the card, assuming sufficient credit limit.
41

42 Return True if charge was processed; False if charge was denied."""
43

44 # i f charge would exceed l im i t ,
45 i f pr i ce + s e l f . balance > s e l f . l im i t :
46 return False # cannot accept charge
47 else :
48 s e l f . balance += pr i ce
49 return True
50

51 def make payment (se l f , amount) :
52 """Process customer payment that reduces balance."""
53 s e l f . balance −= amount

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 5/57

Example: CreditCard Class iv

54

55

56 i f name == '__main__' :
57 wal le t = []
58 wal le t . append (Cred i tCard (John Bowman , C a l i f o r n i a Savings ,
59 5391 0375 9387 5309 , 2500))
60 wal le t . append (Cred i tCard (John Bowman , C a l i f o r n i a Federal ,
61 3485 0399 3395 1954 , 3500))
62 wal le t . append (Cred i tCard (John Bowman , C a l i f o r n i a Finance ,
63 5391 0375 9387 5309 , 5000))
64

65 for va l in range (1 , 1 7) :
66 wal le t [0] . charge (va l)
67 wal le t [1] . charge (2 va l)
68 wal le t [2] . charge (3 va l)
69

70 for c in range (3) :
71 p r i n t (Customer = , wa l le t [c] . get customer ())

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 6/57

Example: CreditCard Class v

72 p r i n t (Bank = , wa l le t [c] . get bank ())
73 p r i n t (Account = , wa l le t [c] . get account ())
74 p r i n t (L im i t = , wa l le t [c] . get l im i t ())
75 p r i n t (Balance = , wa l le t [c] . get balance ())
76 while wal le t [c] . get balance () > 100 :
77 wal le t [c] . make payment (100)
78 p r i n t (New balance = , wa l le t [c] . get balance ())
79 p r i n t ()

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 7/57

Stack

Stack i

Definition
Stack A stack is a collection of objects that are inserted and removed
according to the last-in, first-out (LIFO) principle.

A user may insert objects into a stack at any time, but may only
access or remove the most recently inserted object that remains (at
the so-called “top”of the stack).

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 8/57

Stack ii

Example
Internet Web browsers store the addresses of recently visited sites in
a stack. Each time a user visits a new site, that site’s address is
“pushed” onto the stack of addresses. The browser then allows the
user to “pop” back to previously visited sites using the “back” button.

Example
Text editors usually provide an “undo”mechanism that cancels recent
editing operations and reverts to former states of a document. This
undo operation can be accomplished by keeping text changes in a
stack.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 9/57

Stack
The Stack Abstract Data Type

The Stack Abstract Data Type i

Stacks are the simplest of all data structures, yet they are also
among the most important.

Formally, a stack is an abstract data type (ADT) such that an instance
S supports the following two methods:

• S.push(e): Add element e to the top of stack S.
• S.pop(): Remove and return the top element from the stack S;
an error occurs if the stack is empty.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 10/57

The Stack Abstract Data Type ii

Additionally, define the following accessor methods for convenience:

• S.top(): Return a reference to the top element of stack S,
without removing it; an error occurs if the stack is empty.

• S.is_empty(): Return True if stack S does not contain any
elements.

• len(S): Return the number of elements in stack S; in Python,
we implement this with the special method __len__.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 11/57

The Stack Abstract Data Type iii

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 12/57

Stack
Simple Array-Based Stack Implementation

Simple Array-Based Stack Implementation i

We can implement a stack quite easily by storing its elements in a
Python list.

The list class already supports

• adding an element to the end with the append method,
• removing the last element with the pop method,

so it is natural to align the top of the stack at the end of the list, as
shown in

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 13/57

Simple Array-Based Stack Implementation ii

Although a programmer could directly use the list class in place of a
formal stack class,

• lists also include behaviors (e.g., adding or removing elements
from arbitrary positions) that would break the abstraction that
the stack ADT represents.

• the terminology used by the list class does not precisely align
with traditional nomenclature for a stack ADT, in particular the
distinction between append and push.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 14/57

The Adapter Pattern i

Definition
The adapter design pattern applies to any context where we
effectively want to modify an existing class so that its methods
match those of a related, but different, class or interface.

One general way to apply the adapter pattern is to define a new class
in such a way that it contains an instance of the existing class as a
hidden field, and then to implement each method of the new class
using methods of this hidden instance variable.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 15/57

Implementing a Stack Using a Python List i

We use the adapter design pattern to define an ArrayStack class that
uses an underlying Python list for storage.

One question that remains is what our code should do if a user calls
pop or top when the stack is empty. Our ADT suggests that an error
occurs, but we must decide what type of error.

1 c lass Empty (Except ion) :
2 pass

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 16/57

Implementing a Stack Using a Python List ii

1 c lass ArrayStack :
2 def __ in i t __ (s e l f) :
3 s e l f . _data = []
4

5 def __len__ (s e l f) :
6 return len (s e l f . _data)
7

8 def is_empty (s e l f) :
9 return len (s e l f . _data) == 0
10

11 def push (s e l f , e) :
12 s e l f . _data . append (e)
13

14 def pop (s e l f) :
15 i f s e l f . is_empty () :
16 p r i n t ('Stack is empty!')
17 return s e l f . _data . pop ()
18

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 17/57

Implementing a Stack Using a Python List iii

19 def top (s e l f) :
20 i f s e l f . is_empty () :
21 p r i n t ('Stack is empty')
22 return s e l f . _data [−1]
23

24 i f __name__ == "__main__" :
25 S = ArrayStack ()
26 S . push (5)
27 S . push (3)
28 p r i n t (S . _data)
29 p r i n t (S . pop ())
30 p r i n t (S . is_empty ())
31 p r i n t (S . pop ())
32 p r i n t (S . is_empty ())
33 S . push (7)
34 S . push (9)
35 S . push (4)
36 p r i n t (S . pop ())

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 18/57

Implementing a Stack Using a Python List iv

37 S . push (6)
38 S . push (8)
39 p r i n t (S . _data)

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 19/57

Implementing a Stack Using a Python List v

The result of running the code
1 [5 , 3] 3 False
2 5 True
3 4
4 [7 , 9 , 6 , 8]

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 20/57

Implementing a Stack Using a Python List vi

The O(1) time for push and pop are amortized bounds.

• A typical call to either of these methods uses constant time;
• But there is occasionally an O(n)-time worst case, where n is the
current number of elements in the stack, when an operation
causes the list to resize its internal array.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 21/57

Stack
Application

Reversing Data Using a Stack i

As a consequence of the LIFO protocol, a stack can be used as a
general tool to reverse a data sequence.

Example
If the values 1, 2, and 3 are pushed onto a stack in that order, they
will be popped from the stack in the order 3, 2, and then 1.

Example
We might wish to print lines of a file in reverse order in order to
display a data set in decreasing order rather than increasing order.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 22/57

Reversing Data Using a Stack ii

code/reverse.py
1 from array_s tack import ArrayStack
2

3 def r e v e r s e _ f i l e (f i lename) :
4 S = ArrayStack ()
5

6 o r i g i n a l = open (f i lename)
7 for l i n e in o r i g i n a l :
8 S . push (l i ne . r s t r i p ('\n'))
9 o r i g i n a l . c lose
10

11 output = open (f i lename , 'w')
12 while not S . is_empty () :
13 output . wr i te (S . pop () + '\n')
14 output . c lose ()
15

16 i f __name__ == "__main__" :
17 r e v e r s e _ f i l e ('text.txt')

before
t h i s i s s i x t h l i ne
t h i s i s f i f t h l i ne
t h i s i s four th l i ne
t h i s i s t h i rd l i ne
t h i s i s second l i ne
t h i s i s f i r s t l i ne

a ter
t h i s i s f i r s t l i ne
t h i s i s second l i ne
t h i s i s t h i rd l i ne
t h i s i s four th l i ne
t h i s i s f i f t h l i ne
t h i s i s s i x t h l i ne

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 23/57

Matching Parentheses i

Consider arithmetic expressions that may contain various pairs of
grouping symbols

1 from array_s tack import ArrayStack
2 def is_matched_html (raw) :
3 S = ArrayStack ()
4 j = 0
5 while j ! = −1 :
6 k = raw . f ind ('>' , j + 1)
7 i f k == −1 :
8 return False
9 tag = raw [j + 1 : k]
10 i f not tag . s t a r t sw i t h ('/') :
11 S . push (tag)
12 else :
13 i f S . is_empty () :
14 return False

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 24/57

Matching Parentheses ii

15 i f tag [1 :] ! = S . pop () :
16 return False
17 j = raw . f ind ('<' , k + 1)
18 return S . is_empty ()
19

20 i f __name__ == "__main__" :
21 raw = "<a> "
22 i f (is_matched_html (raw)) :
23 p r i n t ("Matched")
24 else :
25 p r i n t ("Not matching")

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 25/57

Matching Tags in HTML i

Another application of matching delimiters is in the validation of
markup languages such as HTML or XML.

HTML is the standard format for hyperlinked documents on the
Internet and XML is an extensible markup language used for a variety
of structured data sets.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 26/57

Matching Tags in HTML ii

In an HTML document, portions of text are delimited by HTML tags. A
simple opening and corresponding closing HTML tag has the form

1 <name> . . . </name>

Other commonly used HTML tags that are used in this example
include:

• body: document body
• h1: section header
• center: center justify
• p: paragraph
• ol: numbered (ordered) list
• li: list item

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 27/57

Matching Tags in HTML iii

1 from array_s tack import ArrayStack
2 def is_matched_html (raw) :
3 S = ArrayStack ()
4 j = 0
5 while j ! = −1 :
6 k = raw . f ind ('>' , j + 1)
7 i f k == −1 :
8 return False
9 tag = raw [j + 1 : k]
10 i f not tag . s t a r t sw i t h ('/') :
11 S . push (tag)
12 else :
13 i f S . is_empty () :
14 return False
15 i f tag [1 :] ! = S . pop () :
16 return False
17 j = raw . f ind ('<' , k + 1)
18 return S . is_empty ()

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 28/57

Matching Tags in HTML iv

19

20 i f __name__ == "__main__" :
21 raw = "<a> "
22 i f (is_matched_html (raw)) :
23 p r i n t ("Matched")
24 else :
25 p r i n t ("Not matching")

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 29/57

Queue

Queue i

Definition
A queue is a collection of objects that are inserted and removed
according to the first-in, first-out (FIFO) principle.

Elements can be inserted at any time, but only the element that has
been in the queue the longest can be next removed.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 30/57

Queue ii

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 31/57

Queue
The Queue Abstract Data Type

The Queue Abstract Data Type i

Formally, the queue abstract data type defines a collection that
keeps objects in a sequence, where

• element access and deletion are restricted to the first element
in the queue;

• and element insertion is restricted to the back of the sequence

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 32/57

The Queue Abstract Data Type ii

The queue abstract data type (ADT) supports the following two
fundamental methods for a queue Q:

• Q.enqueue(e): Add element e to the back of queue Q.
• Q.dequeue(e): Remove and return the first element from
queue Q; an error occurs if the queue is empty.

The queue ADT also includes the following supporting methods

• Q.first(): Return a reference to the element at the front of
queue Q, without removing it; an error occurs if the queue is
empty.

• Q.is_empty(): Return True if queue Q does not contain any
elements.

• len(Q): Return the number of elements in queue Q; in Python,
we implement this with the special method __len__.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 33/57

The Queue Abstract Data Type iii

By convention, we assume that a newly created queue is empty, and
that there is no a priori bound on the capacity of the queue.
Elements added to the queue can have arbitrary type.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 34/57

The Queue Abstract Data Type iv

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 35/57

Queue
Array-Based Queue Implementation

Array-Based Queue Implementation i

For the stack ADT, we created a very simple adapter class that used a
Python list as the underlying storage. It may be very tempting to use
a similar approach for supporting the queue ADT.

• We could enqueue element e by calling append(e) to add it to
the end of the list.

• We could use the syntax pop(0), as opposed to pop(), to
intentionally remove the first element from the list when
dequeuing.

As easy as this would be to implement, it is tragically inefficient.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 36/57

Array-Based Queue Implementation ii

As discussed before, when pop is called on a list with a non-default
index, a loop is executed to shi t all elements beyond the specified
index to the le t, so as to fill the hole in the sequence caused by the
pop. Therefore, a call to pop(0) always causes the worst-case
behavior of O(n) time.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 37/57

Array-Based Queue Implementation iii

We can improve on the above strategy by avoiding the call to
pop(0) entirely.
We can

• replace the dequeued entry in the array with a reference to
None, and

• maintain an explicit variable f to store the index of the element
that is currently at the front of the queue.

Such an algorithm for dequeue would run in O(1) time.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 38/57

Array-Based Queue Implementation iv

A ter several dequeue operations, this approach might lead to

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 39/57

Array-Based Queue Implementation v

Unfortunately, there remains a drawback to the revised approach.

We can build a queue that has relatively few elements, yet which are
stored in an arbitrarily large list. This occurs, for example, if we
repeatedly enqueue a new element and then dequeue another
(allowing the front to dri t rightward). Over time, the size of the
underlying list would grow to O(m) where m is the total number of
enqueue operations since the creation of the queue, rather than the
current number of elements in the queue.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 40/57

Using an Array Circularly i

In developing a more robust queue implementation, we allow

• the front of the queue to dri t rightward,
• the contents of the queue to “wrap around”the end of an
underlying array.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 41/57

Using an Array Circularly ii

We assume that our underlying array has fixed length N that is
greater that the actual number of elements in the queue.

New elements are enqueued toward the “end” of the current queue,
progressing from the front to index N1 and continuing at index 0,
then 1.

Implementing this circular view is not difficult.

• When we dequeue an element and want to “advance” the front
index, we use the arithmetic f = (f + 1)% N.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 42/57

Using an Array Circularly iii

Internally, the queue class maintains the following three instance
variables:

• _data: is a reference to a list instance with a fixed capacity.
• _size: is an integer representing the current number of elements
stored in the queue (as opposed to the length of the data list).

• _front: is an integer that represents the index within data of the
first element of the queue (assuming the queue is not empty).

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 43/57

A Python Queue Implementation i

1 c lass ArrayQueue :
2 DEFAULT_CAPACITY = 10
3 def __ in i t __ (s e l f) :
4 s e l f . _data = [None] * ArrayQueue . DEFAULT_CAPACITY
5 s e l f . _ s i ze = 0
6 s e l f . _ f ront = 0
7

8 def __len__ (s e l f) :
9 return s e l f . _ s i ze
10

11 def is_empty (s e l f) :
12 return s e l f . _ s i ze == 0
13

14 def f i r s t (s e l f) :
15 i f s e l f . is_empty () :
16 p r i n t ('Queue is empty')
17 return s e l f . _data [s e l f . _ f ront]

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 44/57

A Python Queue Implementation ii

18

19 def dequeue (s e l f) :
20 i f s e l f . is_empty () :
21 p r i n t ('Queue is empty')
22 r e su l t = s e l f . _data [s e l f . _ f ront]
23 s e l f . _ f ront = (s e l f . _ f ront + 1) % len (s e l f . _data)
24 s e l f . _ s i ze −= 1
25 return r e su l t
26

27 def enqueue (se l f , e) :
28 i f s e l f . s i z e == len (s e l f . data) :
29 s e l f . r e s i z e (2* len (s e l f . data))
30 a va i l = (s e l f . f ron t + s e l f . s i z e) % len (s e l f . data)
31 s e l f . data [a v a i l] = e
32 s e l f . s i z e += 1
33

34 def _ res i ze (se l f , cap) :
35 old = s e l f . data

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 45/57

A Python Queue Implementation iii

36 s e l f . _data = [None] * cap
37 walk = s e l f . _ f ront
38 for k in range (s e l f . _ s i ze)
39 s e l f . _data [k] = old [walk]
40 walk = (1 + walk) % len (old)
41 s e l f . _ f ront = 0

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 46/57

Resizing the Queue i

When enqueue is called at a time when the size of the queue equals
the size of the underlying list, we rely on a standard technique of
doubling the storage capacity of the underlying list.

A ter creating a temporary reference to the old list of values, we
allocate a new list that is twice the size and copy references from the
old list to the new list. While transferring the contents, we
intentionally realign the front of the queue with index 0 in the new
array, as shown in

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 47/57

Resizing the Queue ii

With the exception of the resize utility, all of the methods rely on a
constant number of statements involving arithmetic operations,
comparisons, and assignments. Therefore, each method runs in
worst-case O(1) time, except for enqueue and dequeue, which have
amortized bounds of O(1) time

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 48/57

Resizing the Queue iii

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 49/57

Double-Ended Queues

Double-Ended Queues i

Definition
A dequeue (i.e., double-ended queue)is a queue-like data structure
that supports insertion and deletion at both the front and the back
of the queue.

Deque is usually pronounced “deck” to avoid confusion with the
dequeue method of the regular queue ADT, which is pronounced like
the abbreviation “D.Q.”.

The deque abstract data type is more general than both the stack
and the queue ADTs.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 50/57

Double-Ended Queues ii

Example
A restaurant using a queue to maintain a waitlist.

• Occassionally, the first person might be removed from the queue
only to find that a table was not available; typically, the
restaurant will re-insert the person at the first position in the
queue.

• It may also be that a customer at the end of the queue may
grow impatient and leave the restaurant.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 51/57

Double-Ended Queues
The Deque Abstract Data Type

The Deque Abstract Data Type i

To provide a symmetrical abstraction, the deque ADT is defined so
that deque D supports the following methods:

• D.add_first(e): Add element e to the front of deque D.
• D.add_last(e): Add element e to the back of deque D.
• D.delete_first(): Remove and return the first element from
deque D; an error occurs if the deque is empty.

• D.delete_last(): Remove and return the last element from
deque D; an error occurs if the deque is empty.

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 52/57

The Deque Abstract Data Type ii

Additionally, the deque ADT will include the following accessors:

• D.first(): Return (but do not remove) the first element of
deque D; an error occurs if the deque is empty.

• D.last(): Return (but do not remove) the last element of
deque D; an error occurs if the deque is empty.

• D.is_empty(): Return True if deque D does not contain any
elements.

• len(D): Return the number of elements in deque D; in Python,
we implement this with the special method __len__

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 53/57

The Deque Abstract Data Type iii

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 54/57

Double-Ended Queues
Implementing a Deque with a Circular Array

Implementing a Deque with a Circular Array i

We can implement the deque ADT in much the same way as the
ArrayQueue class.

• We recommend maintaining the same three instance variables:
_data, _size, and _front.

• Whenever we need to know the index of the back of the deque,
or the first available slot beyond the back of the deque, we use
modular arithmetic for the computation.

• in last() method, uses the index
back = (s e l f . _ f ront + s e l f . _ s i ze − 1) % len (s e l f . _data)

• in add_first() method, circularly decrement the index
s e l f . _ f ront = (s e l f . _ f ront − 1) % len (s e l f . _data)

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 55/57

Double-Ended Queues
Deques in the Python Collections Module

Deques in the Python Collections Module i

An implementation of a deque class is available in Python’s standard
collections module. A summary of the most commonly used
behaviors of the collections.deque class is given in

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 56/57

Deques in the Python Collections Module ii

Basic Data Structures in Python, Seongjin Lee (Gyeongsang National University) 57/57

That's all Folks!

	Class
	Example: CreditCard Class

	Stack
	The Stack Abstract Data Type
	Simple Array-Based Stack Implementation
	Application

	Queue
	The Queue Abstract Data Type
	Array-Based Queue Implementation

	Double-Ended Queues
	The Deque Abstract Data Type
	Implementing a Deque with a Circular Array
	Deques in the Python Collections Module

