Chapter 8 Security

Computer Networking

A note on the use of these Powerpoint slides:

We' re making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we' d like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR
All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

Computer
Networking: A Top Down Approach
$7^{\text {th }}$ edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Chapter 8: Network Security

Chapter goals:

- understand principles of network security:
- cryptography and its many uses beyond "confidentiality"
- authentication
- message integrity
- security in practice:
- firewalls and intrusion detection systems
- security in application, transport, network, link layers

Chapter 8 roadmap

8.I What is network security?
8.2 Principles of cryptography
8.3 Message integrity, authentication

What is network security?

confidentiality: only sender, intended receiver should "understand" message contents

- sender encrypts message
- receiver decrypts message
authentication: sender, receiver want to confirm identity of each other
message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
access and availability: services must be accessible and available to users

Friends and enemies: Alice, Bob, Trudy

- well-known in network security world
- Bob, Alice (lovers!) want to communicate "securely"
- Trudy (intruder) may intercept, delete, add messages

Who might Bob, Alice be?

- ... well, real-life Bobs and Alices!
- Web browser/server for electronic transactions (e.g., on-line purchases)
- on-line banking client/server
- DNS servers
- routers exchanging routing table updates
- other examples?

There are bad guys (and girls) out there!

Q: What can a "bad guy" do?
A: A lot! See section I. 6

- eavesdrop: intercept messages
- actively insert messages into connection
- impersonation: can fake (spoof) source address in packet (or any field in packet)
- hijacking: "take over" ongoing connection by removing sender or receiver, inserting himself in place
- denial of service: prevent service from being used by others (e.g., by overloading resources)

Chapter 8 roadmap

8.I What is network security?
8.2 Principles of cryptography
8.3 Message integrity, authentication

The language of cryptography

m plaintext message
$\mathrm{K}_{\mathrm{A}}(\mathrm{m})$ ciphertext, encrypted with key K_{A}
$m=K_{B}\left(K_{A}(m)\right)$

Breaking an encryption scheme

- cipher-text only attack: Trudy has ciphertext she can analyze
- two approaches:
- brute force: search through all keys
- statistical analysis
- known-plaintext attack: Trudy has plaintext corresponding to ciphertext
- e.g., in monoalphabetic cipher, Trudy determines pairings for a,l,i,c,e,b,o,
- chosen-plaintext attack: Trudy can get ciphertext for chosen plaintext

Symmetric key cryptography

symmetric key crypto: Bob and Alice share same (symmetric) key: K

- e.g., key is knowing substitution pattern in mono alphabetic substitution cipher
Q: how do Bob and Alice agree on key value?

Simple encryption scheme

substitution cipher: substituting one thing for another

- monoalphabetic cipher: substitute one letter for another
plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq
e.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc

Encryption key: mapping from set of 26 letters to set of 26 letters

A more sophisticated encryption approach

- n substitution ciphers, $\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots, \mathrm{M}_{\mathrm{n}}$
- cycling pattern:
- e.g., $n=4: M_{1}, M_{3}, M_{4}, M_{3}, M_{2} ; \quad M_{1}, M_{3}, M_{4}, M_{3}, M_{2} ;$..
- for each new plaintext symbol, use subsequent substitution pattern in cyclic pattern
- dog: d from M_{1}, o from M_{3}, g from M_{4}

Encryption key: n substitution ciphers, and cyclic pattern

- key need not be just n-bit pattern

Symmetric key crypto: DES

DES: Data Encryption Standard

- US encryption standard [NIST I993]
- 56-bit symmetric key, 64-bit plaintext input
- block cipher with cipher block chaining
- how secure is DES?
- DES Challenge: 56-bit-key-encrypted phrase decrypted (brute force) in less than a day
- no known good analytic attack
- making DES more secure:
- 3DES: encrypt 3 times with 3 different keys

Symmetric key crypto: DES

- DES operation

initial permutation 16 identical "rounds" of function application, each using different 48 bits of key
final permutation

AES: Advanced Encryption Standard

- symmetric-key NIST standard, replaced DES (Nov 200I)
- processes data in 128 bit blocks
- I28, 192, or 256 bit keys
- brute force decryption (try each key) taking I sec on DES, takes 149 trillion years for AES

Public Key Cryptography

symmetric key crypto

- requires sender, receiver know shared secret key
- Q: how to agree on key in first place (particularly if never "met")?
- public key crypto
- radically different approach [DiffieHellman76, RSA78]
- sender, receiver do not share secret key
- public encryption key known to all
- private decryption key known only to receiver

Public key cryptography

Public key encryption algorithms

requirements:
(1) need $K_{B}^{+}(\cdot)$ and $K_{B}^{-}($.$) such that$

$$
\mathrm{K}_{\mathrm{B}}^{-}\left(\mathrm{K}_{\mathrm{B}}^{+}(\mathrm{m})\right)=\mathrm{m}
$$

(2) given public key K_{B}^{+}, it should be impossible to compute private key $\mathrm{K}_{\mathrm{B}}^{-}$

RSA: Rivest, Shamir, Adelson algorithm

Prerequisite: modular arithmetic

- $x \bmod n=$ remainder of x when divide by n
- facts:
$[(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n$
$[(a \bmod n)-(b \bmod n)] \bmod n=(a-b) \bmod n$
$[(a \bmod n) *(b \bmod n)] \bmod n=(a * b) \bmod n$
- thus
$(a \bmod n)^{d} \bmod n=a^{d} \bmod n$
- example: $x=14, n=10, d=2$:
$(x \bmod n)^{d} \bmod n=4^{2} \bmod 10=6$
$x^{d}=14^{2}=196 x^{d} \bmod 10=6$

RSA: getting ready

- message: just a bit pattern
- bit pattern can be uniquely represented by an integer number
- thus, encrypting a message is equivalent to encrypting a number

example:

- $\mathrm{m}=10010001$. This message is uniquely represented by the decimal number 145.
- to encrypt m, we encrypt the corresponding number, which gives a new number (the ciphertext).

RSA: Creating public/private key pair

I. choose two large prime numbers p, q. (e.g., I 024 bits each)
2. compute $n=p q, z=(p-l)(q-l)$
3. choose e (with $e<n$) that has no common factors with z (e, z are "relatively prime").
4. choose d such that ed-I is exactly divisible by z. (in other words: ed mod $z=1$).
5. public key is $\underbrace{(n, e) .}_{\mathrm{K}_{\mathrm{B}}^{+}}$private key is $\underbrace{(n, d) \text {. }}_{\mathrm{K}_{\mathrm{B}}^{-}}$

RSA: encryption, decryption

0 . given (n, e) and (n, d) as computed above
I. to encrypt message $m(<n)$, compute

$$
c=m^{e} \bmod n
$$

2. to decrypt received bit pattern, c, compute

$$
m=c^{d} \bmod n
$$

$$
\begin{gathered}
\text { magic } \\
\text { happens! }
\end{gathered} m=(\underbrace{m^{e} \bmod n}_{c})^{d} \bmod n
$$

RSA example:

Bob chooses $p=5, q=7$. Then $n=35, z=24$.

$$
e=5 \text { (so e, z relatively prime). }
$$

$d=29$ (so ed-1 exactly divisible by z).
encrypting 8-bit messages.

Why does RSA work?

- must show that $c^{d} \bmod n=m$ where $c=m^{e} \bmod n$
- fact: for any x and y : $y^{y} \bmod n=x^{(y \bmod z)} \bmod n$
- where $n=p q$ and $z=(p-I)(q-1)$
- thus,
$c^{d} \bmod n=\left(m^{e} \bmod n\right)^{d} \bmod n$
$=m^{\text {ed }} \bmod n$
$=m^{(\text {ed } \bmod z)} \bmod n$
$=m^{\prime} \bmod n$
$=\mathrm{m}$

RSA: another important property

The following property will be very useful later:

$$
K_{B}^{-}\left(K_{B}^{+}(m)\right)=m=K_{B}^{+}\left(K_{B}^{-}(m)\right)
$$

use public key first, followed by private key
use private key
first, followed by public key
result is the same!

Why $K_{B}^{-}\left(K_{B}^{+}(m)\right)=m=K_{B}^{+}\left(K_{B}^{-}(m)\right)$?
follows directly from modular arithmetic:
$\left(m^{e} \bmod n\right)^{d} \bmod n=m^{\text {ed }} \bmod n$

$$
\begin{aligned}
& =m^{d e} \bmod n \\
& =\left(m^{d} \bmod n\right)^{e} \bmod n
\end{aligned}
$$

Why is RSA secure?

- suppose you know Bob's public key (n,e). How hard is it to determine d ?
- essentially need to find factors of n without knowing the two factors p and q
- fact: factoring a big number is hard

RSA in practice: session keys

- exponentiation in RSA is computationally intensive
- DES is at least 100 times faster than RSA
- use public key crypto to establish secure connection, then establish second key symmetric session key - for encrypting data
session key, K
- Bob and Alice use RSA to exchange a symmetric key K_{S}
- once both have K_{s}, they use symmetric key cryptography

Chapter 8 roadmap

8.I What is network security?
8.2 Principles of cryptography
8.3 Message integrity, authentication

Authentication

Goal: Bob wants Alice to "prove" her identity to him
Protocol ap I.0: Alice says "I am Alice"

Failure scenario??

Authentication

Goal: Bob wants Alice to "prove" her identity to him
Protocol ap I.O: Alice says "I am Alice"

in a network, Bob can not "see" Alice, so Trudy simply declares herself to be Alice

Authentication: another try

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Failure scenario??

Authentication: another try

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Trudy can create a packet "spoofing"
Alice' s address

Authentication: another try

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Failure scenario??

Authentication: another try

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Authentication: yet another try

Protocol ap3.I: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

Failure scenario??

Authentication: yet another try

Protocol ap3.I: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

record and playback still works!

Authentication: yet another try

Goal: avoid playback attack
nonce: number (R) used only once-in-a-lifetime ap4.0: to prove Alice "live", Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

Failures, drawbacks?

Authentication: ap5.0

ap4.0 requires shared symmetric key

- can we authenticate using public key techniques? ap5.0: use nonce, public key cryptography

ap5.0: security hole

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

ap5.0: security hole

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

difficult to detect:

- Bob receives everything that Alice sends, and vice versa. (e.g., so Bob,Alice can meet one week later and recall conversation!)
- problem is that Trudy receives all messages as well!

Chapter 8 roadmap

8.I What is network security?
8.2 Principles of cryptography
8.3 Message integrity, authentication

Digital signatures

cryptographic technique analogous to hand-written signatures:

- sender (Bob) digitally signs document, establishing he is document owner/creator.
- verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

Digital signatures

simple digital signature for message m :

- Bob signs m by encrypting with his private key $K_{\bar{B}}$, creating "signed" message, $K_{\bar{B}}(m)$

Digital signatures

- suppose Alice receives msg m, with signature: $m, K_{B}^{-}(m)$
- Alice verifies m signed by Bob by applying Bob's public key K_{B} to ${ }^{+} K_{B}(m)$ then checks $K_{B}\left(K_{B}^{+}(m)^{-}\right)=m$.
- If $K_{B}^{+}\left(K_{B}^{-}(m)\right)=m$, whoever signed m must have used Bob' s private key.

Alice thus verifies that:

- Bob signed m
- no one else signed m
- Bob signed m and not m ' non-repudiation:
\checkmark Alice can take m, and signature $K_{B}(m)$ to court and prove that Bob signed m

Message digests

computationally expensive to public-keyencrypt long messages

goal: fixed-length, easy-to-compute digital
"fingerprint"

- apply hash function H to m, get fixed size message digest, $H(m)$.

Hash function properties:

- many-to-I
- produces fixed-size msg digest (fingerprint)
- given message digest x, computationally infeasible to find m such that $x=H(m)$

Internet checksum: poor crypto hash function

Internet checksum has some properties of hash function:

- produces fixed length digest (I6-bit sum) of message
- is many-to-one

But given message with given hash value, it is easy to find another message with same hash value:

message	ASCII format	message	ASCII format
IOU1	49 4F 5531	IOU9	49 4F 5539
00.9	30302 E 39	00.1	30302 E 31
9 BOB	3942 D 242	9 BOB	3942 D2 42
	B2 C1 D2 AC	essages hecksums	B2 C1 D2 AC

Digital signature $=$ signed message digest

Bob sends digitally signed message:

Alice verifies signature, integrity of digitally signed message:

Hash function algorithms

- MD5 hash function widely used (RFC I32I)
- computes 128 -bit message digest in 4-step process.
- arbitrary 128 -bit string x, appears difficult to construct msg m whose MD5 hash is equal to x
- SHA-I is also used
- US standard [NIST, FIPS PUB I80-I]
- I60-bit message digest

Recall: ap 5.0 security hole

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

Public-key certification

- motivation: Trudy plays pizza prank on Bob
- Trudy creates e-mail order:

Dear Pizza Store, Please deliver to me four pepperoni pizzas. Thank you, Bob

- Trudy signs order with her private key
- Trudy sends order to Pizza Store
- Trudy sends to Pizza Store her public key, but says it's Bob's public key
- Pizza Store verifies signature; then delivers four pepperoni pizzas to Bob
- Bob doesn't even like pepperoni

Certification authorities

- certification authority (CA): binds public key to particular entity, E .
- E (person, router) registers its public key with CA.
- E provides "proof of identity" to CA.
- CA creates certificate binding E to its public key.
- certificate containing E's public key digitally signed by CA - CA says "this is E's public key"

Certification authorities

- when Alice wants Bob's public key:
- gets Bob's certificate (Bob or elsewhere).
- apply CA's public key to Bob's certificate, get Bob's public key

