Chapter 8 Security

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

C All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking

Computer Networking: A Top Down Approach

7th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016

Chapter 8: Network Security

Chapter goals:

- understand principles of network security:
 - cryptography and its many uses beyond "confidentiality"
 - authentication
 - message integrity
- security in practice:
 - firewalls and intrusion detection systems
 - security in application, transport, network, link layers

Chapter 8 roadmap

8.1 What is network security?8.2 Principles of cryptography8.3 Message integrity, authentication

What is network security?

confidentiality: only sender, intended receiver should "understand" message contents

- sender encrypts message
- receiver decrypts message

authentication: sender, receiver want to confirm identity of each other

message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
 access and availability: services must be accessible and available to users

Friends and enemies: Alice, Bob, Trudy

- well-known in network security world
- Bob, Alice (lovers!) want to communicate "securely"
- Trudy (intruder) may intercept, delete, add messages

Who might Bob, Alice be?

- ... well, *real-life* Bobs and Alices!
- Web browser/server for electronic transactions (e.g., on-line purchases)
- on-line banking client/server
- DNS servers
- routers exchanging routing table updates
- other examples?

There are bad guys (and girls) out there!

- <u>Q</u>: What can a "bad guy" do?
- A: A lot! See section 1.6
 - eavesdrop: intercept messages
 - actively *insert* messages into connection
 - *impersonation:* can fake (spoof) source address in packet (or any field in packet)
 - hijacking: "take over" ongoing connection by removing sender or receiver, inserting himself in place
 - denial of service: prevent service from being used by others (e.g., by overloading resources)

Chapter 8 roadmap

8.1 What is network security?

8.2 Principles of cryptography

8.3 Message integrity, authentication

The language of cryptography

m plaintext message $K_A(m)$ ciphertext, encrypted with key K_A $m = K_B(K_A(m))$

Breaking an encryption scheme

- cipher-text only attack: Trudy has ciphertext she can analyze
- two approaches:
 - brute force: search through all keys
 - statistical analysis

- known-plaintext attack: Trudy has plaintext corresponding to ciphertext
 - e.g., in monoalphabetic cipher, Trudy determines pairings for a,l,i,c,e,b,o,
- chosen-plaintext attack: Trudy can get ciphertext for chosen plaintext

Symmetric key cryptography

symmetric key crypto: Bob and Alice share same (symmetric)
key: K_S

- e.g., key is knowing substitution pattern in mono alphabetic substitution cipher
- <u>Q:</u> how do Bob and Alice agree on key value?

Simple encryption scheme

substitution cipher: substituting one thing for another

monoalphabetic cipher: substitute one letter for another

plaintext:	abcdefghijklmnopqrstuvwxyz
ciphertext:	mnbvcxzasdfghjklpoiuytrewq

e.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc

Encryption key: mapping from set of 26 letters to set of 26 letters

A more sophisticated encryption approach

- n substitution ciphers, M₁, M₂,..., M_n
- cycling pattern:
 - e.g., n=4: M₁,M₃,M₄,M₃,M₂; M₁,M₃,M₄,M₃,M₂; ..
- for each new plaintext symbol, use subsequent substitution pattern in cyclic pattern
 - dog: d from M_1 , o from M_3 , g from M_4

Encryption key: n substitution ciphers, and cyclic pattern

• key need not be just n-bit pattern

Symmetric key crypto: DES

DES: Data Encryption Standard

- US encryption standard [NIST 1993]
- 56-bit symmetric key, 64-bit plaintext input
- block cipher with cipher block chaining
- how secure is DES?
 - DES Challenge: 56-bit-key-encrypted phrase decrypted (brute force) in less than a day
 - no known good analytic attack
- making DES more secure:
 - 3DES: encrypt 3 times with 3 different keys

Symmetric key crypto: DES

DES operation

initial permutation
I6 identical "rounds" of function application, each using different 48 bits of key

final permutation

AES: Advanced Encryption Standard

- symmetric-key NIST standard, replaced DES (Nov 2001)
- processes data in 128 bit blocks
- I 28, I 92, or 256 bit keys
- brute force decryption (try each key) taking I sec on DES, takes 149 trillion years for AES

Public Key Cryptography

symmetric key crypto

- requires sender, receiver know shared secret key
- Q: how to agree on key in first place (particularly if never "met")?

public key crypto

- radically different approach [Diffie-Hellman76, RSA78]
- sender, receiver do not share secret key
- *public* encryption key known to *all*
- private decryption key known only to receiver

Public key cryptography

Public key encryption algorithms

requirements:

1 need
$$K_B^+(.)$$
 and $K_B^-(.)$ such that
 $K_B^-(K_B^+(m)) = m$

RSA: Rivest, Shamir, Adelson algorithm

Prerequisite: modular arithmetic

x mod n = remainder of x when divide by n

facts:

[(a mod n) + (b mod n)] mod n = (a+b) mod n [(a mod n) - (b mod n)] mod n = (a-b) mod n [(a mod n) * (b mod n)] mod n = (a*b) mod n

thus

 $(a \mod n)^d \mod n = a^d \mod n$

RSA: getting ready

- message: just a bit pattern
- bit pattern can be uniquely represented by an integer number
- thus, encrypting a message is equivalent to encrypting a number

example:

- m= 10010001. This message is uniquely represented by the decimal number 145.
- to encrypt m, we encrypt the corresponding number, which gives a new number (the ciphertext).

RSA: Creating public/private key pair

I. choose two large prime numbers p, q.(e.g., 1024 bits each)

- 2. compute n = pq, z = (p-1)(q-1)
- 3. choose e (with e<n) that has no common factors with z (e, z are "relatively prime").
- 4. choose d such that ed-1 is exactly divisible by z. (in other words: ed mod z = 1).
- 5. public key is (n,e). private key is (n,d). K_B^+ K_B^-

RSA: encryption, decryption

0. given (*n*,*e*) and (*n*,*d*) as computed above

I. to encrypt message m (<n), compute $c = m^{e} \mod n$

2. to decrypt received bit pattern, *c*, compute $m = c^{d} \mod n$

RSA example:

Bob chooses p=5, q=7. Then n=35, z=24. e=5 (so e, z relatively prime). d=29 (so ed-1 exactly divisible by z).

encrypting 8-bit messages.

Why does RSA work?

- must show that c^d mod n = m where c = m^e mod n
- fact: for any x and y: $x^{y} \mod n = x^{(y \mod z)} \mod n$
 - where n = pq and z = (p-1)(q-1)

thus,

- $c^{d} \mod n = (m^{e} \mod n)^{d} \mod n$
 - = m^{ed} mod n
 - $= m^{(ed mod z)} mod n$
 - = m^I mod n

= m

RSA: another important property

The following property will be very useful later:

$$K_{B}(K_{B}^{+}(m)) = m = K_{B}^{+}(K_{B}^{-}(m))$$

use public key first, followed by private key use private key first, followed by public key

result is the same!

Why
$$K_B(K_B(m)) = m = K_B(K_B(m))$$
?

follows directly from modular arithmetic:

$(m^e \mod n)^d \mod n = m^{ed} \mod n$ $= m^{de} \mod n$ $= (m^d \mod n)^e \mod n$

Why is RSA secure?

- suppose you know Bob's public key (n,e). How hard is it to determine d?
- essentially need to find factors of n without knowing the two factors p and q
 - fact: factoring a big number is hard

RSA in practice: session keys

- exponentiation in RSA is computationally intensive
- DES is at least 100 times faster than RSA
- use public key crypto to establish secure connection, then establish second key – symmetric session key – for encrypting data

session key, K_S

- Bob and Alice use RSA to exchange a symmetric key K_S
- once both have K_S, they use symmetric key cryptography

Chapter 8 roadmap

8.1 What is network security?8.2 Principles of cryptography8.3 Message integrity, *authentication*

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap 1.0: Alice says "I am Alice"

Failure scenario??

Goal: Bob wants Alice to "prove" her identity to him <u>Protocol ap I.O</u>: Alice says "I am Alice"

in a network, Bob can not "see" Alice, so Trudy simply declares herself to be Alice

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Security 8-33

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Authentication: yet another try

Protocol ap3.1: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

Authentication: yet another try

Protocol ap3.1: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

Authentication: yet another try

Goal: avoid playback attack nonce: number (R) used only once-in-a-lifetime ap4.0: to prove Alice "live", Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

Authentication: ap5.0

ap4.0 requires shared symmetric key
can we authenticate using public key techniques? *ap5.0*: use nonce, public key cryptography

ap5.0: security hole

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

ap5.0: security hole

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

difficult to detect:

- Bob receives everything that Alice sends, and vice versa. (e.g., so Bob, Alice can meet one week later and recall conversation!)
- problem is that Trudy receives all messages as well!

Chapter 8 roadmap

8.1 What is network security?8.2 Principles of cryptography8.3 Message integrity, authentication

Digital signatures

cryptographic technique analogous to hand-written signatures:

- sender (Bob) digitally signs document, establishing he is document owner/creator.
- verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

Digital signatures

simple digital signature for message m:

 Bob signs m by encrypting with his private key K_B, creating "signed" message, K_B(m)

Digital signatures

- suppose Alice receives msg m, with signature: m, $K_{B}(m)$
- Alice verifies m signed by Bob by applying Bob's public key K_B to⁺ $K_B(m)$ then checks $K_B(K_B^+(m)) = m$.
- If $K_B^+(K_B^-(m)) = m$, whoever signed m must have used Bob's private key.

Alice thus verifies that:

- Bob signed m
- no one else signed m
- Bob signed m and not m '

non-repudiation:

✓ Alice can take m, and signature $K_B(m)$ to court and prove that Bob signed m

Message digests

computationally expensive to public-keyencrypt long messages goal: fixed-length, easyto-compute digital "fingerprint"

 apply hash function H to m, get fixed size message digest, H(m).

Hash function properties:

- many-to-l
- produces fixed-size msg digest (fingerprint)
- given message digest x, computationally infeasible to find m such that x = H(m)

Internet checksum: poor crypto hash function

Internet checksum has some properties of hash function:

- produces fixed length digest (16-bit sum) of message
- is many-to-one

But given message with given hash value, it is easy to find another message with same hash value:

<u>message</u>	ASCII format	<u>message</u>	ASCII format
I O U 1	49 4F 55 31	I O U <u>9</u>	49 4F 55 <u>39</u>
00.9	30 30 2E 39	00. <u>1</u>	30 30 2E <u>31</u>
9 B O B	39 42 D2 42	9 B O B	39 42 D2 42
	B2 C1 D2 AC	— different messages —	- B2 C1 D2 AC
		but identical checksums!	

Digital signature = signed message digest

Bob sends digitally signed message:

Alice verifies signature, integrity of digitally signed message:

Hash function algorithms

- MD5 hash function widely used (RFC 1321)
 - computes 128-bit message digest in 4-step process.
 - arbitrary 128-bit string x, appears difficult to construct msg m whose MD5 hash is equal to x
- SHA-1 is also used
 - US standard [NIST, FIPS PUB 180-1]
 - 160-bit message digest

Recall: ap5.0 security hole

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

Public-key certification

- motivation: Trudy plays pizza prank on Bob
 - Trudy creates e-mail order: Dear Pizza Store, Please deliver to me four pepperoni pizzas. Thank you, Bob
 - Trudy signs order with her private key
 - Trudy sends order to Pizza Store
 - Trudy sends to Pizza Store her public key, but says it's Bob's public key
 - Pizza Store verifies signature; then delivers four pepperoni pizzas to Bob
 - Bob doesn't even like pepperoni

Certification authorities

- certification authority (CA): binds public key to particular entity, E.
- E (person, router) registers its public key with CA.
 - E provides "proof of identity" to CA.
 - CA creates certificate binding E to its public key.
 - certificate containing E's public key digitally signed by CA CA says "this is E's public key"

Certification authorities

- when Alice wants Bob's public key:
 - gets Bob's certificate (Bob or elsewhere).
 - apply CA's public key to Bob's certificate, get Bob's public key

