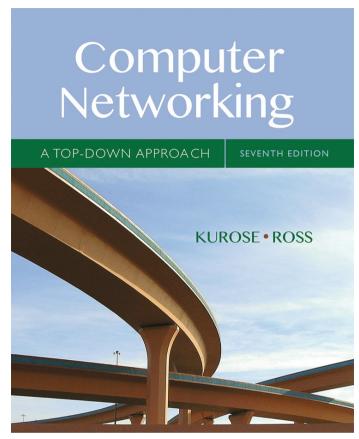
Chapter 5 Network Layer: The Control Plane


A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach

7th edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Chapter 5: network layer control plane

chapter goals: understand principles behind network control plane

- traditional _____ algorithms
- Protocol
- network management

and their instantiation, implementation in the Internet:

 OSPF, BGP, OpenFlow, ODL and ONOS controllers, ICMP, SNMP

Chapter 5: outline

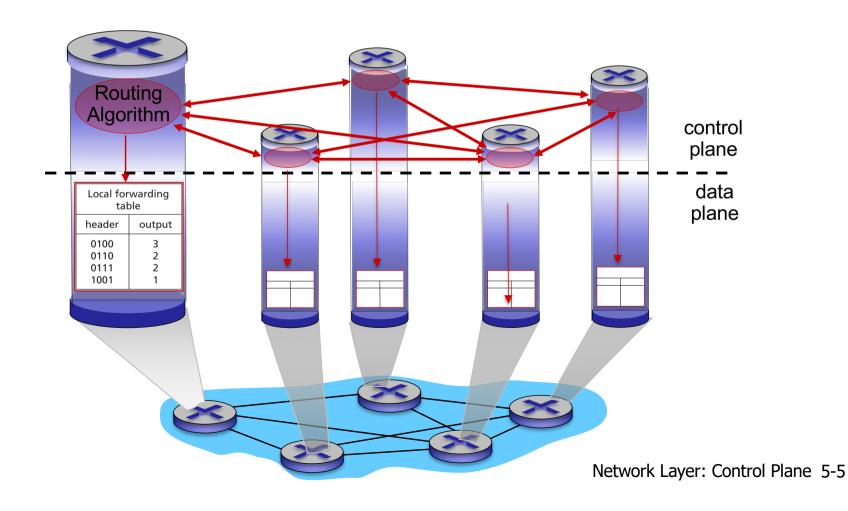
- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

Network-layer functions

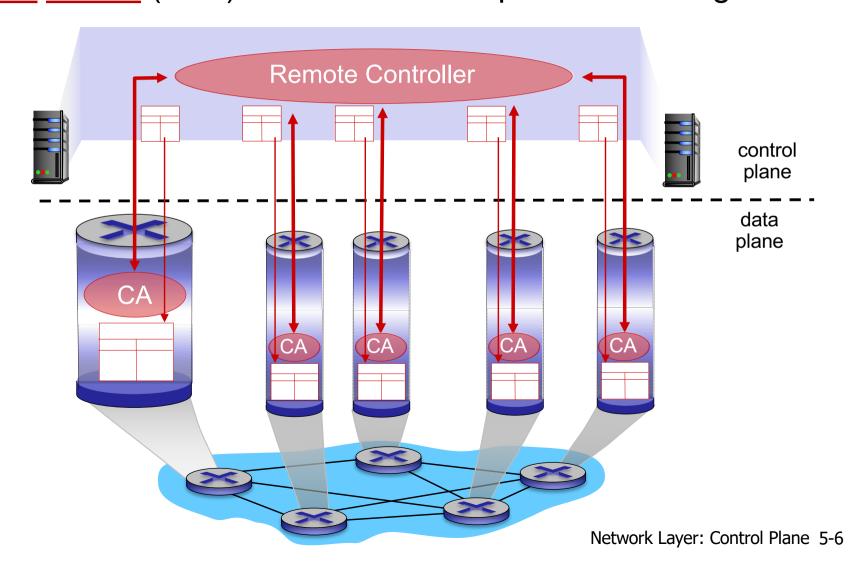
Recall: two network-layer functions:

: move packets	•
from router's input to	<u> </u>
appropriate router output	-


: determine route	_	
taken by packets from source	P	lane
to destination		

Two approaches to structuring network control plane:

- per-router control (traditional)
- logically centralized control (software defined networking)


Per-router control plane

routing algorithm components in _____ and ____ router ____ with each other in control plane to compute forwarding tables

Logically centralized control plane

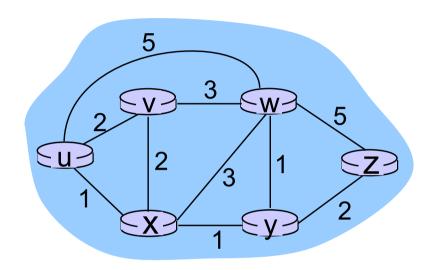
A _____ (typically remote) controller interacts with ____ (CAs) in routers to compute forwarding tables

Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

Routing protocols

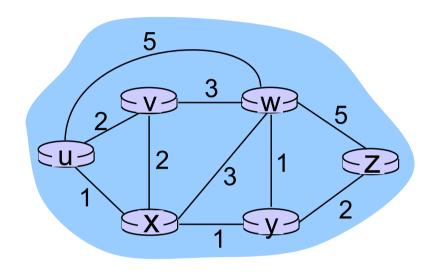

Routing protocol goal: determine "____"
(equivalently, routes), from sending hosts to receiving host, through network of routers

path: ____ of ___ packets will ____ in going from given ____ source host to given final ____ host

"good": least "___ ", "__ ", "___ "

routing: a "top-10" networking challenge!

Graph abstraction of the network


graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = \text{set of links} = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

aside: graph abstraction is useful in other network contexts, e.g., P2P, where N is set of peers and E is set of TCP connections

Graph abstraction: costs

$$c(x,x') = cost of link (x,x')$$

e.g., $c(w,z) = 5$

cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

key question: what is the least-cost path between u and z? routing algorithm: algorithm that finds that least cost path

Routing algorithm classification

global or decentralized information?
bal:
all routers have
, link info
"" algorithms
centralized:
router knows
neighbors, link costs
to neighbors
process of
computation, of
with neighbors
" algorithms

Q: static or dynamic?

static:

routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

A link-state routing algorithm

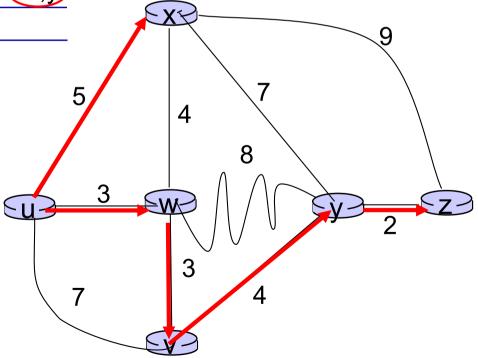
's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

notation:

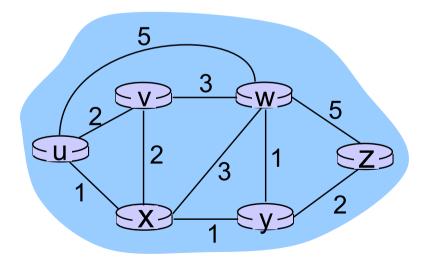
- C(X,y): link from node x to y; = ∞ if not direct neighbors
- D(V): current value of cost of path from source to . v
- P(V): ____ node along path from source to v
- N': set of whose least cost path known

Dijsktra's algorithm


```
Initialization:
   N' = \{u\}
   for all nodes v
    if v adjacent to u
       then D(v) = c(u,v)
    else D(v) = \infty
   Loop
    find w not in N' such that D(w) is a minimum
   add w to N'
   update D(v) for all v adjacent to w and not in N':
      D(v) = \min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14
     shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

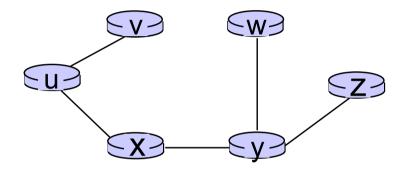
Dijkstra's algorithm: example

		$D(\mathbf{v})$	D(w)	D(x)	D(y)	D(z)
Step	o N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	(3,u)	5,u	∞	∞
1	uw	6,w		5,u) 11,w	∞
2	uwx	6,w			11,W	14,X
3	uwxv				10,V	14,x
4	uwxvy					(12,y)
5	uwxvyz		-	_	_	


notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Dijkstra's algorithm: another example


Ste	эр	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
_	0	u	2,u	5,u	1,u	∞	∞
	1	ux ←	2,u	4,x		2,x	∞
	2	uxy <mark>←</mark>	2,u	3,y			4,y
	3	uxyv		3,y			4,y
	4	uxyvw 🗲					4,y
	5	uxyvwz ←					

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

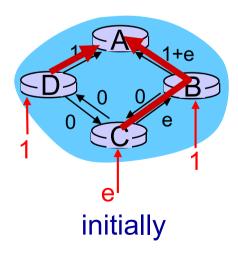
Dijkstra's algorithm: example (2)

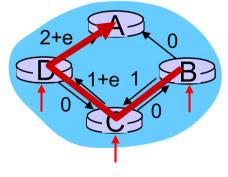
resulting shortest-path tree from u:

resulting forwarding table in u:

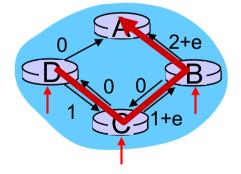
destination	link	
V	(u,v)	
X	(u,x)	
У	(u,x)	
W	(u,x)	
Z	(u,x)	

Network Layer: Control Plane 5-17

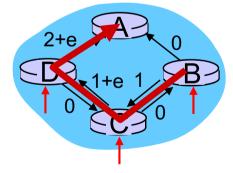

Dijkstra's algorithm, discussion


algorithm complexity: n nodes

- each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- more efficient implementations possible: O(nlogn)


oscillations possible:

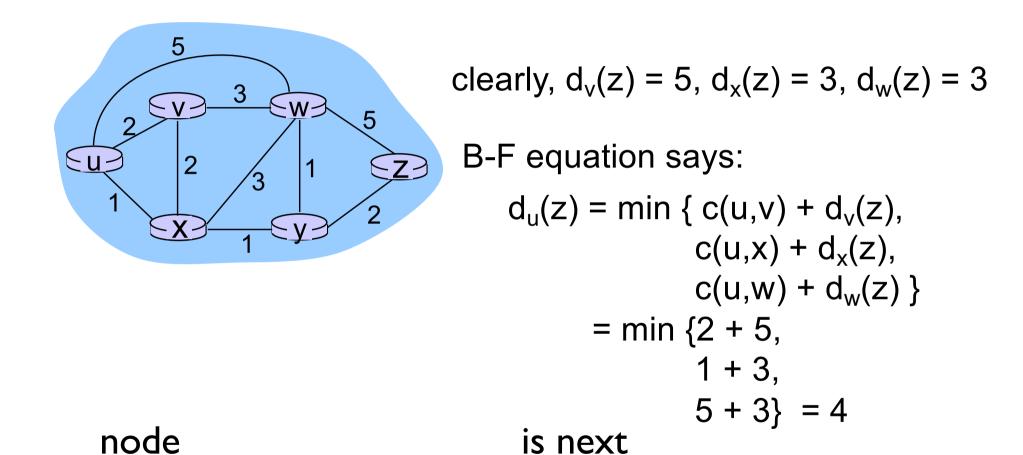
e.g., support link cost equals amount of carried traffic:



given these costs, find new routing.... resulting in new costs

given these costs, find new routing....

given these costs, find new routing.... resulting in new costs resulting in new costs


Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

equation (dynamic programming) let $d_x(y) := cost of ____ path from ___ to _$ then $d_{x}(y) = \min \{c(x,v) + d_{v}(y)\}$ cost from v to _____ y cost to neighbor v min taken over v of x

Bellman-Ford example

path, used in

hop in

table

- $D_x(y)$ = estimate of least cost from x to y
 - x maintains distance vector $\mathbf{D}_{x} = [\mathbf{D}_{x}(y): y \in \mathbb{N}]$
- node x:
 - knows cost to each neighbor v: c(x,v)
 - maintains its neighbors' distance vectors. For each neighbor v, x maintains

$$\mathbf{D}_{\mathsf{v}} = [\mathsf{D}_{\mathsf{v}}(\mathsf{y}): \mathsf{y} \in \mathsf{N}]$$

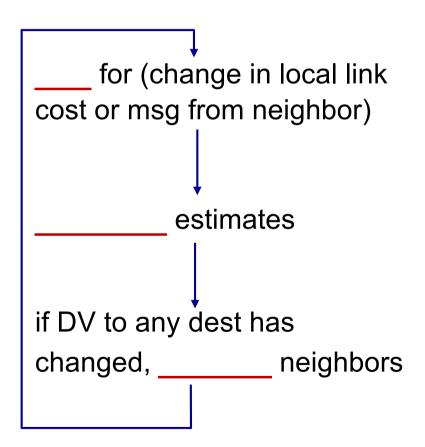
key idea:

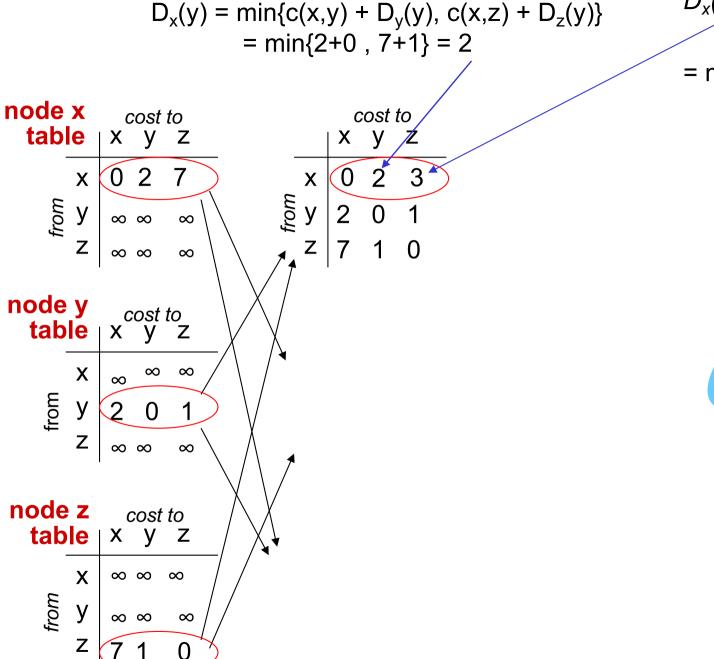
- from ______, each node sends its _____distance vector ______ to neighbors
- when x receives new DV estimate from neighbor,
 it _____ its ____ DV using B-F equation:

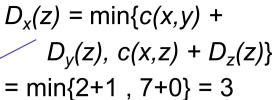
$$D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\}$$
 for each node $y \in N$

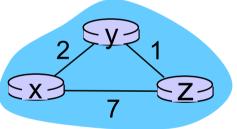
* under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$

iterative, asynchronous: each local iteration

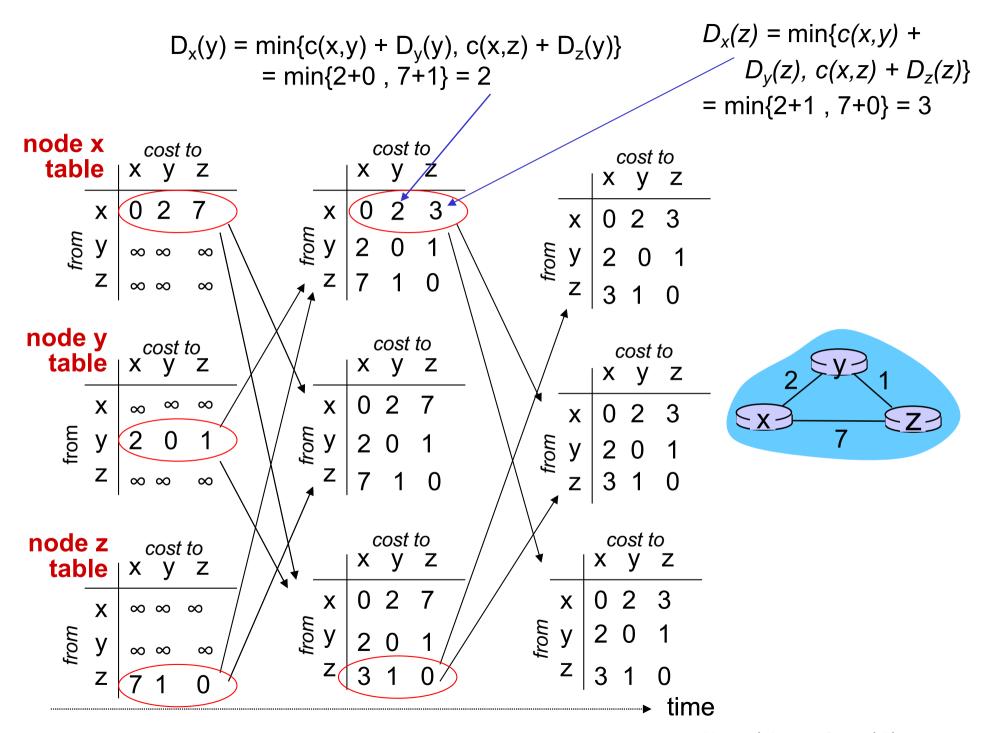

caused by:

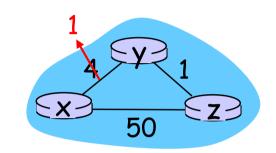

- local link cost change
- DV update message from neighbor


distributed:


- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

each node:




time

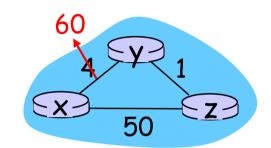
Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors

"good news travels fast" t_0 : y detects link-cost change, updates its DV, informs its neighbors.

 t_1 : z receives update from y, updates its table, computes new least cost to x, sends its neighbors its DV.


 t_2 : y receives z's update, updates its distance table. y's least costs do not change, so y does not send a message to z.

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- bad news travels slow "count to infinity" problem!
- 44 iterations before algorithm stabilizes: see text

poisoned reverse:

- If Z routes through Y to get to X:
 - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- will this completely solve count to infinity problem?

Comparison of LS and DV algorithms

message _____

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

speed of _

- LS: O(n²) algorithm requires
 O(nE) msgs
 - may have oscillations
- DV: convergence time varies
 - may be routing loops
 - count-to-infinity problem

: what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network

Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

Making routing scalable

our routing study thus far - idealized

- all routers identical
- network "flat"
- ... not true in practice

scale: with billions of destinations:

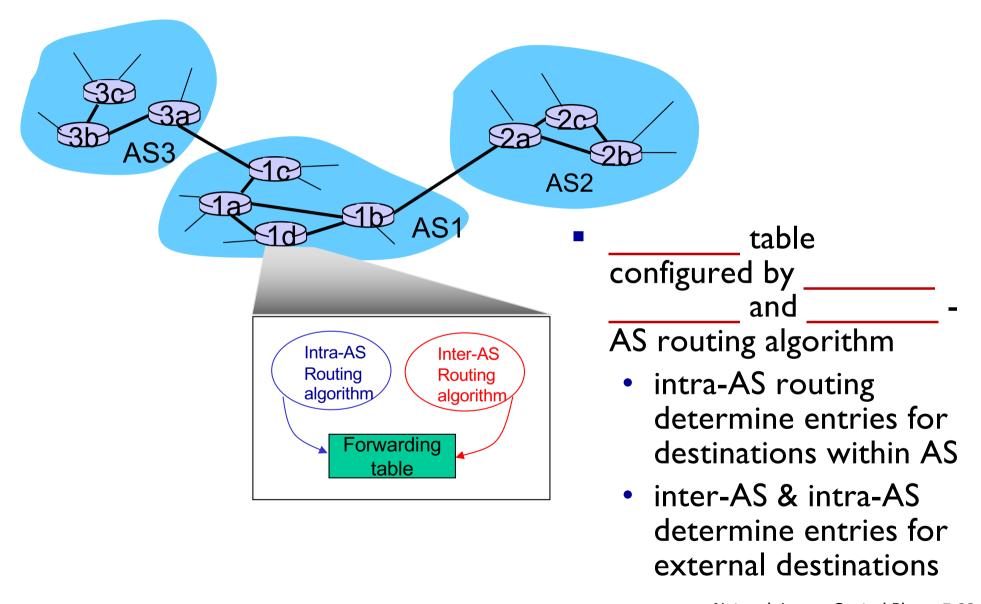
- can't store all destinations in routing tables!
- routing table exchange would swamp links!

administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network

Internet approach to scalable routing

aggregate routers into regions known as "______" (AS) (a.k.a. "______")

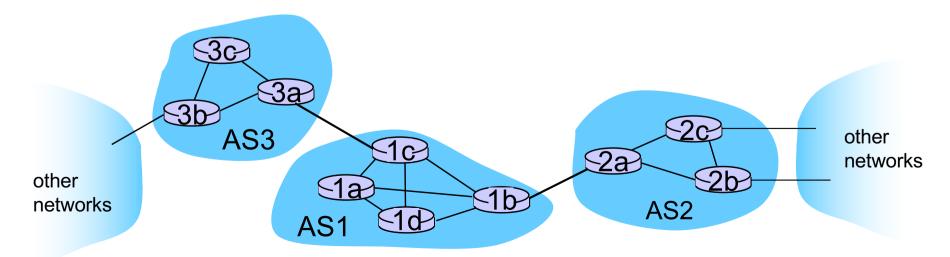

-AS routing

- routing among hosts, routers in _____ AS ("network")
- all routers in AS must run same intra-domain protocol
- routers in different AS can run different intra-domain routing protocol
- gateway router: at "____' of its own AS, has link(s) to router(s) in other AS'es

_-AS routing

- routing _____ AS'es
- gateways perform interdomain routing (as well as intra-domain routing)

Interconnected ASes


Inter-AS tasks

- suppose router in AS1 receives datagram destined outside of AS1:
 - router should forward packet to gateway router, but which one?

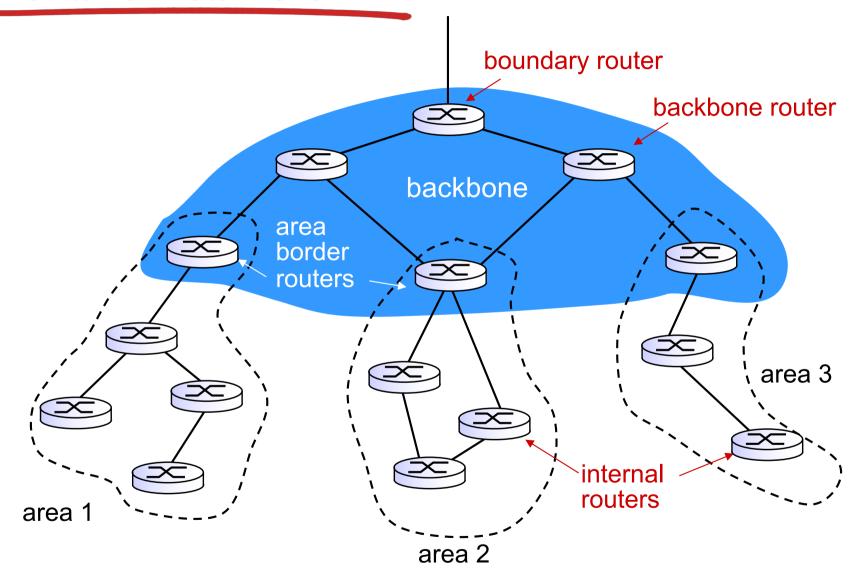
AS1 must:

- learn which _____ are through AS2, which through AS3
- 2. ____ this ____ info to all routers in AS1

job of inter-AS routing!

Intra-AS Routing

- also known as _____ protocols (IGP)
- most common intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First (IS-IS protocol essentially same as OSPF)
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary for decades, until 2016)


OSPF (Open Shortest Path First)

- "open": publicly available
- uses link-state algorithm
 - link state packet _____
 - topology map at each node
 - route computation using Dijkstra's algorithm
- router _____ OSPF link-state _____ to all other routers in entire AS
 - carried in OSPF messages directly over IP (rather than TCP or UDP
 - link state: for each attached link
- IS-IS routing protocol: nearly identical to OSPF

OSPF "advanced" features

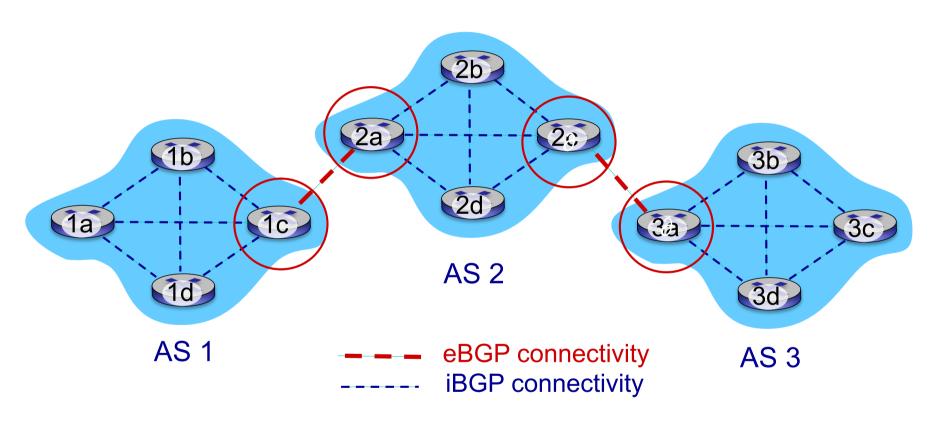
- security: all OSPF messages ______ (to prevent malicious intrusion)
- multiple same-cost paths allowed (only one path in RIP)
- for each link, multiple cost metrics for different TOS (e.g., satellite link cost set low for best effort ToS; high for real-time ToS)
- integrated uni- and multi-cast support:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- hierarchical OSPF in large domains.

Hierarchical OSPF

Hierarchical OSPF

- two-level hierarchy: local area, backbone.
 - link-state advertisements only in area
 - each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- backbone routers: run OSPF routing limited to backbone.
- boundary routers: connect to other AS' es.

Chapter 5: outline

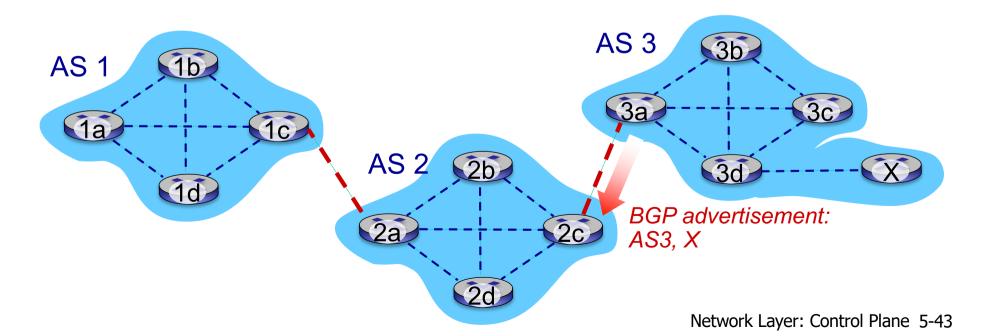

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

Internet inter-AS routing: BGP

- BGP (_______): the de facto inter-domain routing protocol
 - "glue that holds the Internet together"
- BGP provides each AS a means to:
 - subnet _____ information from neighboring ASes
 - _____ information to all AS-internal routers.
 - determine "good" routes to other networks based on reachability information and policy
- allows subnet to advertise its existence to rest of Internet: "1 am here"

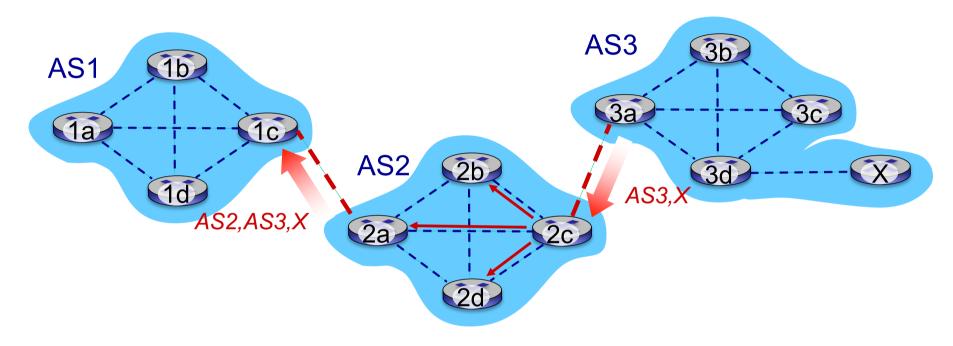
eBGP, iBGP connections



gateway routers run both eBGP and iBGP protocols

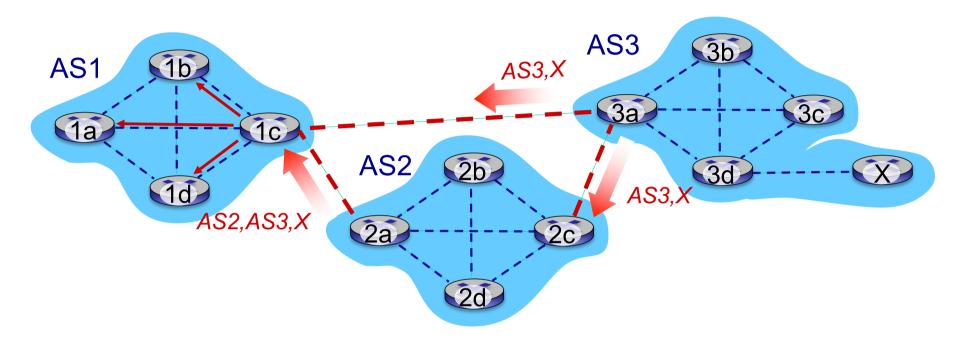
BGP basics

- BGP session: two BGP routers ("peers") exchange BGP messages over semi-permanent TCP connection:
 - advertising paths to different destination network prefixes (BGP is a "path vector" protocol)
- when AS3 gateway router 3a advertises path AS3,X to AS2 gateway router 2c:
 - AS3 promises to AS2 it will forward datagrams towards X



Path attributes and BGP routes

- advertised prefix includes BGP attributes
 - prefix + attributes = "route"
- two important attributes:
 - _____: list of ASes through which prefix advertisement has passed
 - indicates specific internal-AS router to nexthop AS
- Policy-based routing:

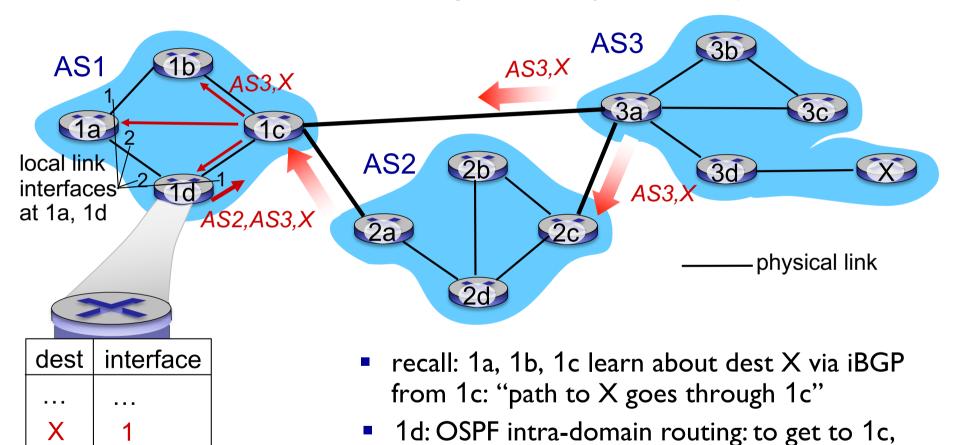

 - AS policy also determines whether to advertise path to other other neighboring ASes

BGP path advertisement

- AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 3a
- Based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP) to all AS2 routers
- Based on AS2 policy, AS2 router 2a advertises (via eBGP) path AS2, AS3, X to AS1 router 1c

BGP path advertisement

gateway router may learn about multiple paths to destination:

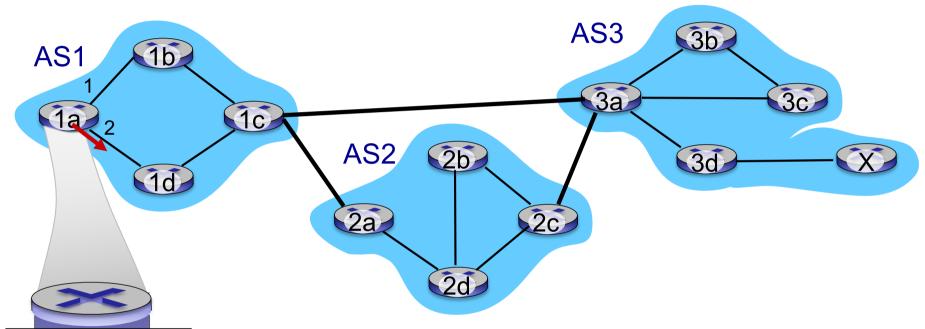

- AS1 gateway router 1c learns path AS2,AS3,X from 2a
- AS1 gateway router 1c learns path AS3,X from 3a
- Based on policy, AS1 gateway router 1c chooses path AS3, X, and advertises path within AS1 via iBGP

BGP messages

- BGP messages exchanged between peers over TCP connection
- BGP messages:
 - OPEN: opens TCP connection to remote BGP peer and authenticates sending BGP peer
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

BGP, OSPF, forwarding table entries

Q: how does router set forwarding table entry to distant prefix?



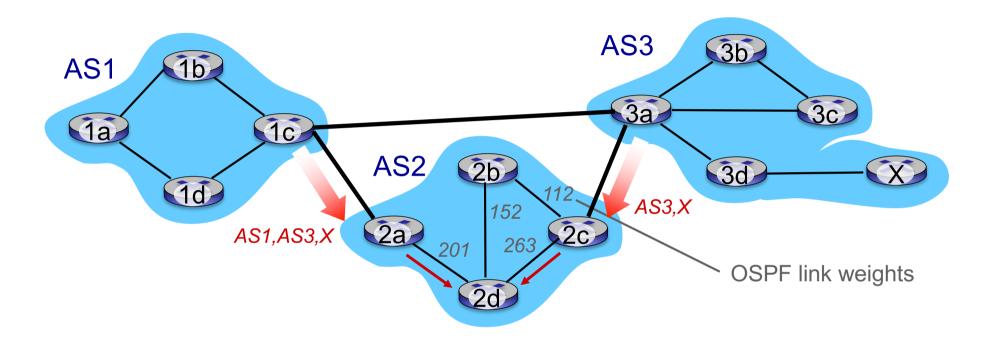
forward over outgoing local interface 1

Network Layer: Control Plane 5-48

BGP, OSPF, forwarding table entries

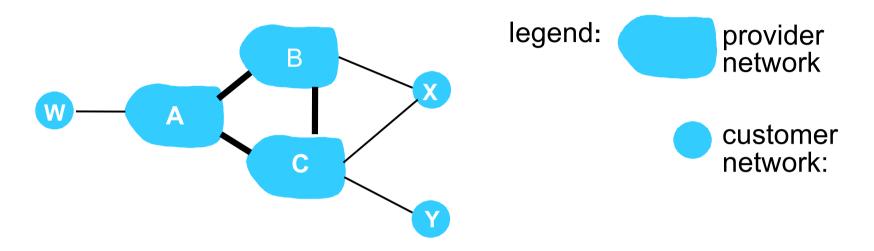
Q: how does router set forwarding table entry to distant prefix?

dest	interface
X	2


- recall: Ia, Ib, Ic learn about dest X via iBGP from Ic: "path to X goes through Ic"
- 1d: OSPF intra-domain routing: to get to 1c, forward over outgoing local interface 1
- 1a: OSPF intra-domain routing: to get to 1c, forward over outgoing local interface 2

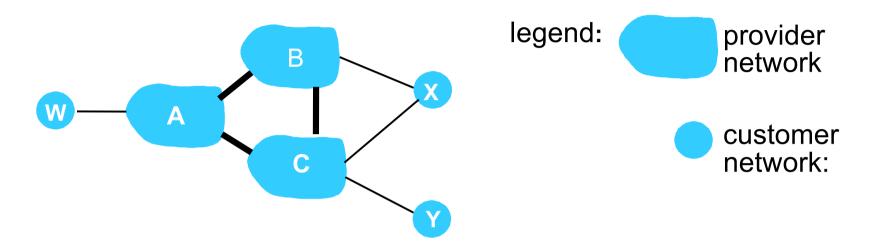
BGP route selection

- router may learn about more than one route to destination AS, selects route based on:
 - I. local preference value attribute: policy decision
 - 2. shortest AS-PATH
 - 3. closest NEXT-HOP router: hot potato routing
 - 4. additional criteria


Network Layer: Control Plane 5-50

Hot Potato Routing

- 2d learns (via iBGP) it can route to X via 2a or 2c
- hot potato routing: choose local gateway that has _____ intra-domain _____ (e.g., 2d chooses 2a, even though more AS hops to X): don't worry about inter-domain cost!


BGP: achieving policy via advertisements

Suppose an ISP only wants to route traffic to/from its customer networks (does not want to carry transit traffic between other ISPs)

- A advertises path Aw to B and to C
- B chooses not to advertise BAw to C:
 - B gets no "revenue" for routing CBAw, since none of C,A, w are B's customers
 - C does not learn about CBAw path
- C will route CAw (not using B) to get to w

BGP: achieving policy via advertisements

Suppose an ISP only wants to route traffic to/from its customer networks (does not want to carry transit traffic between other ISPs)

- A,B,C are provider networks
- X,W,Y are customer (of provider networks)
- X is dual-homed: attached to two networks
- policy to enforce: X does not want to route from B to C via X
 - .. so X will not advertise to B a route to C

Why different Intra-, Inter-AS routing?

policy:

- inter-AS: admin wants _____ over how its traffic routed, who routes through its net.
- intra-AS: single admin, so no policy decisions needed scale:
- routing _____ size, reduced update traffic

performance:

- intra-AS: can focus on performance
- inter-AS: policy may dominate over performance

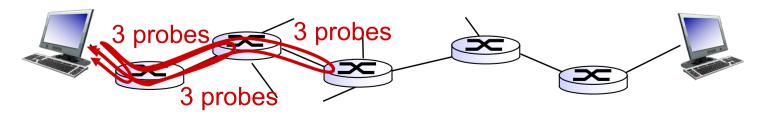
Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

ICMP:

	used by hosts & routers					
	•	vork-	<u>Type</u>	<u>Code</u>	<u>description</u>	
	level information	VOTIK	0	0	echo reply (ping)	
	ievei iiiioi iiiauoii		3	0	dest. network unreachable	
	• reporting:		3	1	dest host unreachable	
	unreachable host, no	etwork,	3	2	dest protocol unreachable	
	port, protocol		3	3	dest port unreachable	
	• request/re	eply	3	6	dest network unknown	
	(used by ping)		3	7	dest host unknown	
	network-layer "abo	ve" IP:	4	0	source quench (congestion	
	 ICMP msgs carried i 				control - not used)	
	datagrams		8	0	echo request (ping)	
	ICMP message: type, code	9	0	route advertisement		
		10	0	router discovery		
	plus first 8 bytes of IP		11	0	TTL expired	
	datagram causing er	ror	12	0	bad IP header	


Traceroute and ICMP

- source sends series of UDP segments to destination
 - first set has TTL = I
 - second set has TTL=2, etc.
 - unlikely port number
- when datagram in nth set arrives to nth router:
 - router discards datagram and sends source ICMP message (type II, code 0)
 - ICMP message include name of router & IP address

 when ICMP message arrives, source records RTTs

stopping criteria:

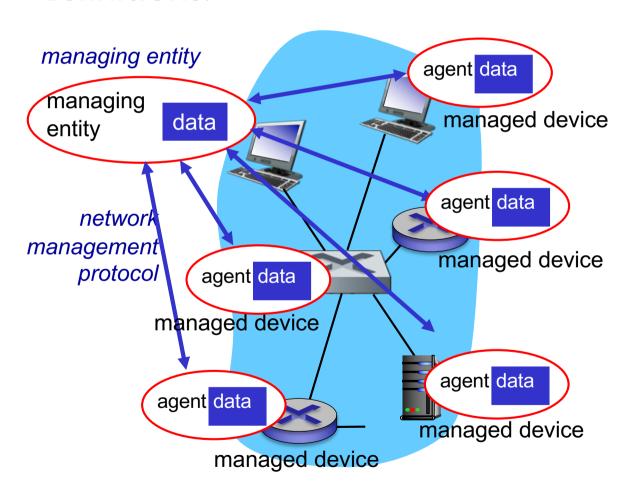
- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
- link state
- distance vector
- 5.3 intra-AS routing in the Internet: OSPF
- 5.4 routing among the ISPs: BGP

- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

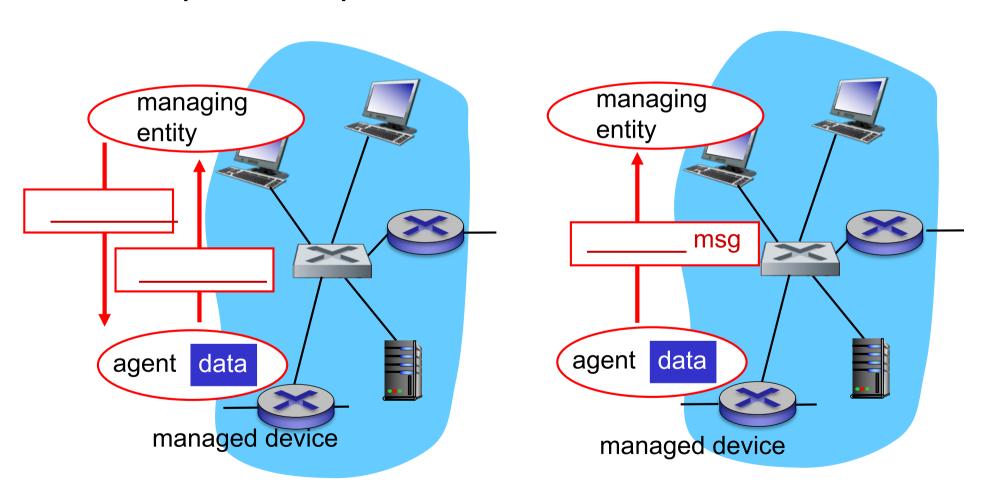
What is network management?


- autonomous systems (aka "network"): 1000s of interacting hardware/software components
- other complex systems requiring monitoring, control:
 - jet airplane
 - nuclear power plant
 - others?

"Network mana	igement includ	les the		
and	_ of the	,	, and human	
elements to monitor, test, poll, configure, analyze, evaluate,				
and control the network and element resources to meet the				
, opera		, and	of	
requirements a	t a			

Infrastructure for network management

definitions:



managed devices
contain managed
objects whose data is
gathered into a

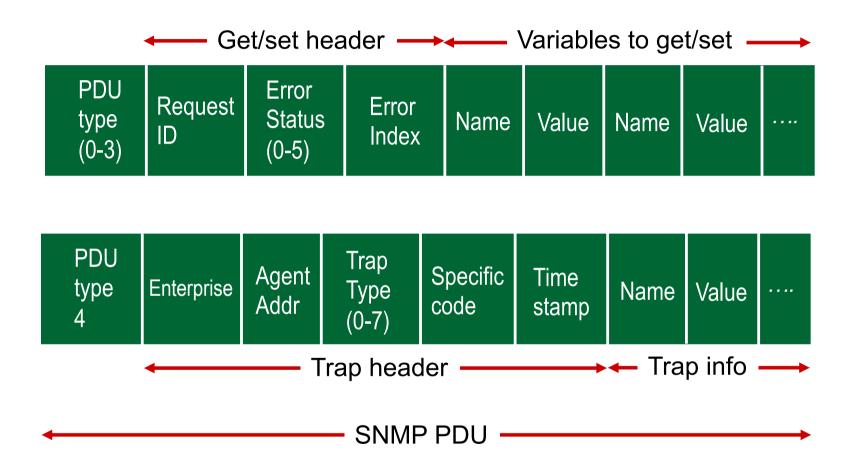
(MIB)

SNMP protocol

Two ways to convey MIB info, commands:

request/response mode

trap mode


Network Layer: Control Plane 5-61

SNMP protocol: message types

Message type	<u>Function</u>
GetRequest GetNextRequest GetBulkRequest	manager-to-agent: "get me data" (data instance, next data in list, block of data)
InformRequest	manager-to-manager: here's MIB value
SetRequest	manager-to-agent: set MIB value
Response	Agent-to-manager: value, response to Request
Trap	Agent-to-manager: inform manager of exceptional event

Network Layer: Control Plane 5-62

SNMP protocol: message formats

More on network management: see earlier editions of text!

Chapter 5: summary

we've learned a lot!

- approaches to network control plane
 - per-router control (traditional)
 - logically centralized control (software defined networking)
- traditional routing algorithms
 - implementation in Internet: OSPF, BGP
- Internet Control Message Protocol
- network management

next stop: link layer!