Structures, Unions,
and Enumerations

adopted from KNK C Programming : A Modern Approach

Structure (+=4#|) Variables

* The properties of a structure are different from those of an array.
TZM = i E4F CHE

* The elements of a structure (its members) aren’t required to
have the same type.
TR FE2A(BEH) = MECEEE LS T US

* The members of a structure have names; to select a particular

member, we specify its name, not its position.
Mol B = 0l§5 411 A4, 1 MHE ArE5H7|flo]M O|F= AHEH
(H[: HfE 2 QIE A HS = &)

L —1—

* |n some languages, structures are called records, and members

are known as fields.
O A0l= =M E 82 E, B = EEC D B E

Vi

Declaring Structure Variables

e A structure is a logical choice for storing a collection of related
data items.
XM= AHFJU=H0HE Fe =A== s
e A declaration of two structure variables that store information
about parts in a warehouse:
S0 Ae FFEE XY 26l F 71 +2X H4=F M eist= O
struct {
int number;
char name [NAME LEN+1];
int on hand;
} partl, part?Z;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Declaring Structure Variables

* The members of a structure are stored in memory in the order in

which they’re declared.
TN e M= MAE = MO 2 0| 220 HiX| =

* Appearance of partl (HEZ2|0 EHE ZFH)

e Assumptions(7t%d):

* partl is located at address 2000.
A|ZF 32~ 2000

* Integers occupy four bytes.

H= 4HIO|E
* NAME LEN has the value 25. NAME_LEN =25
* There are no gaps between the members.

A= AO|0= S20| R5

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

\

2000
2001
2002
2003

2004

2029
2030
2031
2032

2033

N\

>number

>name

>on_hand

Declaring Structure Variables

* Abstract representations of a structure:
ToghE FEN Q| 7

number I

name
number name on hand

on_ hand
* Member values will go in the boxes later.

=X w2 0|20 HEE

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Declaring Structure Variables

e Each structure represents d hew scope.
ZEAXK= M EL HOE b 9)S

T OoT

* Any names declared in that scope won’t conflict with other
names in a program.
TN LM M E Ol F2 =2 1% OHE XOM ALE = O| i S=5HA| s
* In C terminology, each structure has a separate name space for its
members.

2 REH O W s SYX 02372 XS

Copyright © 2008 W. W. Norton & Company. 6
All rights reserved.

Declaring Structure Variables

* For example, the following declarations can appear in the same

program:

Ol = =0 Ot &0| & H9| TZANZtot ZE 1ZHO| A MO =
number, name 2| 0| 50| Z€X|Bt Z=0tX| XS

struct {

int number;
char name[NAME LEN+1];
int on hand;

} partl, part2?;

struct {
char name[NAME LEN+1];
int number;
char sex;

} employeel, employee?Z;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Initializing Structure Variables

e A structure declaration may include an initializer:
TZEM M A 27|zt = US

struct {
int number;
char name [NAME LEN+1];
int on hand;
} partl = {528, "Disk drive", 10},
part2 = {914, "Printer cable", 5};

* Appearance of part1 after initialization: £7|3t 2 2&

number 528

name | Disk drive

on hand 10

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Initializing Structure Variables

e Structure initializers follow rules similar to those for array
initializers.
T2 Z=27|215t= B ol &=7|2t2f FAte A2 S

* Expressions used in a structure initializer must be constant. (This
restriction is relaxed in C99.)
T2 =720 AtE ot =42 A0 OF 2H(c990| M= 1Al O 2t3tE)

e An initializer can have fewer members than the structure it’s
initializing.
TARNC MK HHELC=E M2 =o| HHE X7|3t S += /US

* Any “leftover” members are given 0 as their initial value.
7|20 Melel BHE LR 7|3t &

Designated Initializers (C99)

* C99’s designated initializers can be used with structures.
c99= TN Q| AH E XSt X|E X732t 75

* The initializer for part1 shown in the previous example:
part12| YEI™ X7|3t=CtE10 €S

{528, "Disk drive", 10}

* In a designated initializer, each value would be labeled by

the name of the member that it initializes:
XN x=7|3t6l= CH2 1 20| BIHO| 0| E2 K| B35l 7|3t e = U S

{ .number = 528, .name = "Disk drive", .on hand = 10}

 The combination of the period and the member name is

called a designator.
X|7d5t= 2. () + HHO|E O, .number

10

Designated Initializers (C99)

* Designated initializers are easier to read and check for

correctness.
A8 =7|=H5 ofE s g0 gt

* Also, values in a designhated initializer don’t have to be placed in
the same order that the members are listed in the structure.
A8 =7|2tE otH - 2M0f L2 B o] = MO 2 LI ESHX| 50t &
 The programmer doesn’t have to remember the order in which
the members were originally declared.
TE20dH= Yol =& 7|9 2R Qi
 The order of the members can be changed in the future

without affecting designated initializers.
HH 2| &= A7k Al ZHO] X[Lt Y O 2t X8 Z=7(2te] &= A= Hi K| B0t &

11

Designated Initializers (C99)

* Not all values listed in a designated initializer need be prefixed by

a designator.
X8 7|2k I HE 0| &S MOf o= A2 Ot

 Example:

{ .number = 528, "Disk drive", .on hand = 10}

The compiler assumes that "Disk drive" initializes the

member that follows number in the structure.
"disk drive” = number C}20j| L} Q= HIEHO| ZtO|2t11 7}t

 Any members that the initializer fails to account for are set to

Copyright © 2008 W. W. Norton & Company. 12
All rights reserved.

Operations on Structures

 To access a member within a structure, we write the name of the

structure first, then a period, then the name of the member.
TN MHE H2ot| /o A2 0| F, E, 22| HH 0| E2 &

e Statements that display the values of part1l’s members:
part10|2f= N[HHE 10 2= 2 HE 0
printf ("Part number: $d\n", partl.number);
printf ("Part name: %$s\n", partl.name);
printf ("Quantity on hand: %d\n", partl.on hand);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Operations on Structures

* The members of a structure are Ivalues.
TN BH = Ivalue R
* They can appear on the left side of an assignment or as the
operand in an increment or decrement expression:
TN O B = 2E a0 2ZF0 2 = U0 S AU ALY = US
partl.number = 258;
/* changes partl's part number */

partl.on hand++;
/* increments partl's quantity on hand */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Operations on Structures

* The period used to access a structure member is actually a C
operator.
H2 oA HLAXRO| D Mol BHE H2E = AE

* |t takes precedence over nearly all other operators.
o2 He R &2o| AMIEL 227t =&

 Example:

scanf ("%d", &partl.on hand);

The . operator takes precedence over the & operator, so &

computes the address of partl.on hand.

& AMXIHLE HO| M= 7 &= &partl.on_hand2f StH partl.on_hand2]

>~ o
Fag

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

15

Operations on Structures

* The other major structure operation is assighment:
TNl & E o

partZ2 = partl;

* The effect of this statement is to copy partl.number into

part?2.number, partl.name intopart?2.name, and so on.
partl TN 2= HHO| 2= part22| = HHZ FA}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Operations on Structures

e Arrays can’t be copied using the = operator, but an array
embedded within a structure is copied when the enclosing
structure is copied.

H €2 = HLAE S A QFHE

 Some programmers exploit this property by creating “dummy”
structures to enclose arrays that will be copied later:

O === 2N Q| 7| 5= O| 85l Hi €2 4 A0 2857 | = &
struct { int al[l0]; } al, aZ2;
al = az2;

/* legal, since al and a2 are structures */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Operations on Structures

 The = operator can be used only with structures of compatible
types. =@LHAtE 2 2UFS o RN AMEE=EE THs

* Two structures declared at the same time (as partl and part?
were) are compatible. SA|0| MAE XX HEZT =2H7tS

e Structures declared using the same “structure tag” or the same
type name are also compatible. Z2 #=H Ef2E MM MAEl Bl S2HE

e Other than assignment, C provides no operations on entire
structures. €& /0= 724 MR E CHF = A= SIS

* |n particular, the == and ! = operators can’t be used with
structures. 0| & 50 ==L} 1= ALKt = 5 = B S

18

Structure Types

e Suppose that a program needs to declare several structure

variables with identical members.
£2 HHE 4= 2N HeE o 7 MOF oFCra 7HE off 2 Xt

* We need a name that represents a type of structure, not a

particular structure variable.
TZME 2= MT| Q5= 0| &0 Ead, X H=a 0|F0| Ot

* Ways to name a structure: #+ZX|0f| 0O|E& F0{5}7|

* Declare a “structure tag” & E{2E M
* Use typedef to define a type name typedefC £ & 2| 0| & N

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

19

Declaring a Structure Tag

* A structure tag is a name used to identify a particular kind of

structure.
TEH Ej1E PENSS TET| Y302

* The declaration of a structure tag named part:
part2t= O| S8 #+ =X Ef 1] M A
struct part {
int number;
char name [NAME LEN+1];
int on hand;

by

* Note that a semicolon must follow the right brace.

LEZ 0| MOIZ=0| EAs

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Declaring a Structure Tag

* The part tag can be used to declare variables:
O|X| part E{1E MM === ML = US

struct part partl, part?2Z;
* We can’t drop the word struct:
part partl, part2; /*** WRONG *x**/

part isn’t a type name; without the word struct, itis

meaningless.

2HOF struct2t= THOIE UMAH LRI ML parte 72N A2 B 0|EE =
* Since structure tags aren’t recognized unless preceded by the

word struct, they don’t conflict with other names used in a

program.
struct I = Ef1 0|52 2|0| Qi5; =213 LHO|| CtE AL O|Ec2 & = /U

a —_ —

Declaring a Structure Tag

* The declaration of a structure tag can be combined with the
declaration of structure variables:
TN Ef o AN HO[O|F & E0| 2 = U=
struct part {
int number;
char name [NAME LEN+1];
int on hand;
} partl, part?Z;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Declaring a Structure Tag

* All structures declared to have type struct part are

compatible with one another:

struct part2t= E} 18 4= 7282 M=l H
struct part partl = {528, "D
struct part part2;

+E£RE 3 It

isk drive", 10};

part2 = partl;
/* legal; both parts have the same type */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

Defining a Structure Type

* As an alternative to declaring a structure tag, we can use

typedef to define a genuine type name.
TN EfOE MOSH= T typedefC 2 MER EFU 2 X HE = US

* A definition of a type named Part: part ¥2| 9l

typedef struct {
int number;
char name [NAME LEN+1];
int on hand;
} Part;
e Part can be used in the same way as the built-in types:
CGE 7|2 &0 20l Part B & = U=

Part partl, part?Z;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Defining a Structure Type

* When it comes time to name a structure, we can usually choose

either to declare a structure tag or to use typedef.
TZEN 2l O|F2 B W= 72X Ef 1 EE= typedefE & T U=

 However, declaring a structure tag is mandatory when the

structure is to be used in a linked list (Chapter 17).
oh HE2| 2 E(linked list) & & M= & T+ ZM Ef1E ArE5H{OF &t

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

25

Structures as Arguments and Return Values

* Functions may have structures as arguments and return values.

2r 2| 2t QIR E 2| A 7t
* A function with a structure argument: &K £ QX2 2= 2= 0

vold print part(struct part p)
{

printf ("Part number: $d\n", p.number);
printf ("Part name: %$s\n", p.name);
printf ("Quantity on hand: %d\n", p.on hand);

}
* Acallof print part:2& 0

print part (partl);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Structures as Arguments and Return Values

e A function that returns a part structure:
part 12X & 2|Eot= &=
struct part build part(int number,
const char *name,
int on hand)

struct part p;

p.number = number;
strcpy (p.name, name) ;
p.on hand = on hand;

return p;

}
* Acallofbuild part: 2= 0
partl = build part (528, "Disk drive", 10);

Copyright © 2008 W. W. Norton & Company. 27
All rights reserved.

Structures as Arguments and Return Values

* Passing a structure to a function and returning a structure from a
function both require making a copy of all members in the
structure.

TZME e QAR HE E= 2[H g2 ol FxN 2= BT SAHE

* To avoid this overhead, it’s sometimes advisable to pass a pointer
to a structure or return a pointer to a structure.
SAtH| 8= SO0 H M0 Ciot Z QI & QA E= 2[H 422 At E

* Chapter 17 gives examples of functions that have a pointer to a

structure as an argument and/or return a pointer to a structure.
1780 &8 o7t U=

28

Structures as Arguments and Return Values

* There are other reasons to avoid c%pylng structures.
TN SAFE T|S{ofe E CHE O| 77 U=

* For example, the <stdio.h> header defines a type named

FILE, which is typically a structure.
<stdio.h> 3| M2 0{= FLEO|2H= XM 7} K o| &

e Each FILE structure stores information about the state of an

Pen file and therefore must be unigue in a program.
FILE 72N G052 ML JEfESES 410 U, E= T2 10| A
FILES| & E = S Tel|OFef

e Every function in <stdio.h> that opens a file returns a

pomter to a FILE structure. N N
sigole ol 55 3 1Y 9718 ohe 482 2% e TEH2
ZOIE 2 Z|H S

* Every function that performs an operation on an open file

requiresa FILE pomter as an argument.

SOl =2 0192 ZAS= =2 FILEQ] EOIHE QXIE g2

29

Structures as Arguments and Return Values

* Within a function, the initializer for a structure variable can be
another structure:

vold f (struct part partl)

{
struct part part2 = partl;

}

* The structure being initialized must have automatic storage
duration.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Compound Literals (C99)

* Chapter 9 introduced the C99 feature known as the compound
literal.
S Z2AE 2 oA AEHE

* A compound literal can be used to create a structure “on the fly,”
without first storing it in a variable.
23 DX S M ESMS|M RN Z OIS ZHS K EHS

— H 1= HA =

* The resulting structure can be passed as a parameter, returned by

a function, or assigned to a variable.
Ol A *”“5 TEN = O H-2 AO| AL 2t =0 2| H = HOf 2 EE

ol
PONY=

31

Compound Literals (C99)

A compound literal can be used to create a
structure that will be passed to a function:
print part ((struct part) {528, "Disk drive", 10});

The compound literal is shown in bold.
S ZANEE MM 20 HEY L2ME UE = US; 72 =M7H0

= L.

* A compound literal can also be assigned to a variable:

artl = (struct part) {528, "Disk drive", 10};
A SO E 2R3 & '9lS
1 = O = O = I AN O

32

Compound Literals (C99)

A compound literal consists of a type name within

parentheses, followed by a set of values in braces.
25 OXge sz 20| SHo| 0|2 LS 2 20| ZtE0| Xsto 2

= L =21 = - ©— L- HA = — H —

-3
* When a compound literal represents a structure, the type
name can be a structure tag preceded by the word struct

or a typedef name.
25t BXY0| FEM S LIEFWHCIH S| O| 2L struct 7| U EQF XA

= L.

E} 17t QLA LE typedef O] S22 F2| =l Z40| 0 OF &

Compound Literals (C99)

* A compound literal may contain designators, just like a

designated initializer:
=3 2R XYAT|SE 4 U
print part((struct part) {.on hand = 10,
.name = "Disk drive",

.number = 528});

A compound literal may fail to provide full initialization, in

which case any uninitialized members default to zero.
S ZAE Moz SR RT[9ted 32, V(% OrEl HH = 022

= L.

x7|2tE

34

Nested Arrays and Structures

e Structures and arrays can be combined without restriction.
TANQFHIE 2 Mot B 2= HetE = US

* Arrays may have structures as their elements, and structures may

contain arrays and structures as members.
H —_r”‘*ﬂ A2 s A, TN HEZ T OfL2r 28 = BHE

A o
TAAEI

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

35

Nested Structures

* Nesting one structure inside another is often useful.

of =N E HE TN FE L= N2 RER

* Suppose that person name is the following structure:

person_nameO|Bt= AN E A H A}
struct person name
char first [FFIRST NAME LEN+1];
char middle 1nitial;
char last [LAST_NAME_LEN+1] ;
I

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Nested Structures

* We can use person name as part of a larger structure:
person_nameS CI2 2 1xH|o| YHZ £ 498
struct student {
struct person name name;
int 1d, age;
char sex;
} studentl, student?2;

* Accessing studentl’s first name, middle initial, or last name
requires two applications of the . operator:
student12| O| & (first, middle, last)& = 20t7| }SHAM = ™ AMXIE FH AR

strcpy (studentl.name.first, "Fred");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Nested Structures

* Having name be a structure makes it easier to treat names

as units of data.
name2 £ & KN|O|7| |20 O| 2= StLto| 4|O|E BEF 2 He2| 7=

* A function that displays a name could be passed one

person name argument instead of three arguments:
person_name= 2lAIZ2 & [= H =377t OfL| 2} StLIH &

display name (studentl.name) ;

* Copying the information from a person name structure to
the name member of a student structure would take one
assighment instead of three: Oj7f|H+=2 SAIE = otHO 2
SAH7tS
struct person name new name;

studentl.name = new name;

38

Arrays of Structures

* One of the most common combinations of arrays and structures is
an array whose elements are structures.
Hi Euf 2N 28e| 7t 2ot 22 Hf 82| 247 M| 8%

—_ -

* This kind of array can serve as a simple database.
Hi 2= OIO|HHO|AXNE & = /S

O =2 T AN

* An array of part structures capable of storing information about

100 parts:
part TN S HIE 2 2

struct part inventory[100];

Of

A2, 2 27U ARE NMEE = UAS

.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Arrays of Structures

* Accessing a part in the array is done by using subscripting:
part Hi € & SILIE H26t2{ ™ HAE A0 &

print part (inventory[1]);

* Accessing a member within a part structure requires a

combination of subscripting and member selection:
part 2K 2| HH O E25t2{ ™ B S HXQt HH MEH S SljoFgt

inventory[1] .number = 883;

* Accessing a single character in a part name requires
subscripting, followed by selection, followed by

subscripting:
part O| 20| 3t 2XI2 AL M= Y @4 MEHR MK}, PEK O] B MEH

]
- 1o
0

40

Initializing an Array of Structures

* Initializing an array of structures is done in much the same way as
initializing a multidimensional array.
TZM By E 2| Z=7|2t= CEALR B E =7(|2tef mArSt 422 Jts

e Each structure has its own brace-enclosed initializer; the array
initializer wraps another set of braces around the structure

initializers.
2t AAXZNESE2E FOHAM 7|2t S22/ SHE A2 Y RN £7|3¢
’“*s*ai Hi G X273t S227t A 4

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Initializing an Array of Structures

* One reason for initializing an array of structures is that it contains
information that won’t change during program execution.
HIE 2 A ZME =7[25l= Ol 7= Z2 03 Zdk[= S0 il E HE 7t
HEL[X| S EEO|7| =

 Example: an array that contains country codes used when making
international telephone calls. 0f: Zf Li2t & =X Motz FE

* The elements of the array will be structures that store the name
of a country along with its code:
HolEl A 2M B E2 LIt O| St R E B & MY
struct dialing code {
char *country;
int code;

by

42

Initializing an Array of Structures

const struct dialing code country codes[] =

{{"Argentina", 54}, {"Bangladesh", 8801},
{"Brazil", 55}, {"Burma (Myanmar)", 951},
{"China", 8o}, {"Colombia", 57},
{"Congo, Dem. Rep. of", 243}, {"Egypt", 20},
{"Ethiopia", 251}, {"France", 33},
{"Germany", 49}, {"India", 911},
{"Indonesia", 62}, {"Iran", 981,
{"Italy", 39}, {"Japan", 81},
{"Mexico", 52}, {"Nigeria", 2341,
{"Pakistan", 92}, {"Philippines", 63},
{"Poland", 48}, {"Russia'", 7},
{"South Africa", 27}, {"South Korea", 821},
{"Spain", 34}, {"Sudan", 2491,
{"Thailand", 66}, {"Turkey", 901},
{"Ukraine", 380}, {"United Kingdom", 441,
{"United States", 1}, {"Vietnam", 841} };

* The inner braces around each structure value are optional.
2 AN Z27|4e SEE = HEIAE Y

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Initializing an Array of Structures

* C99’s designated initializers allow an item to have more than one
designator.

992| K| 7|3Hs Lt Ol At X HALS 2 4 U

* A declaration of the inventory array that uses a designated
initializer to create a single part:
XN 27|22 5| & Bt inventory HIE X2 2f2 Z=7|=t5H= O
struct part inventory[100] =
{[0] .number = 528, [0].on hand = 10,
(0] .name [0] = '"\O'};

The first two items in the initializer use two designators; the last
item uses three.

A8X2 Aol M B E 7|t e, =M= A[EoI R 7| M=o &
M H 2|t CHE

44

Program: Maintaining a Parts Database

* The inventory.c program illustrates how nested arrays and

structures are used in practice.
inventory.c ZTE M2 H{Ef AXZN 7t S E 422 2 0 E E¢

-—

* The program tracks parts stored in a warehouse.

Z2lYe Yo HESS Ha|E

* Information about the parts is stored in an array of structures.
S0 dE= FA2M Hi G0 X E

 Contents of each structure: 24t 2K o L E2 LISt &S
e Part number

* Name
* Quantity

45

Program: Maintaining a Parts Database

* Operations supported by the program:
o2 20| X| St &

- O 1

 Add a new part number, part name, and initial quantity on
hand 22 £8 #=, 0|5, |+ 7|

* Given a part number, print the name of the part and the
current quantity on hand £& H3 0| Cist O| 2Nt ER V|~ &

* Given a part number, change the quantity on hand
= HZ 0 o5l 27 7i4 =78

* Print a table showing all information in the database
OIEHO|AC| B= HE =8

* Terminate program execution T2 1% T =

Program: Maintaining a Parts Database

* The codes 1 (insert), s (search), u (update), p (print), and g

(quit) WiII be used to represent these operations.
A71s2 1(&E), s (@), u(@),p(EH)qg(ER)ZE =X 75

* A session with the program: &3 0

Enter operation code: 1
Enter part number: 528
Enter part name: Disk drive
Enter quantity on hand: 10

Enter operation code: s
Enter part number: 528
Part name: Disk drive
Quantity on hand: 10

Copyright © 2008 W. W. Norton & Company.

All rights reserved. a7

Program: Maintaining a Parts Database

Enter operation code: s
Enter part number: 914
Part not found.

Enter operation code: 1
Enter part number: 914

Enter part name: Printer cable
Enter quantity on hand: 5

Enter operation code: u
Enter part number: 528

Enter change 1n quantity on hand: -2

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Program: Maintaining a Parts Database

Enter operation code: s
Enter part number: 528
Part name: Disk drive
Quantity on hand: 8

Enter operation code: p

Part Number Part Name Quantity on Hand
528 Disk drive 8
914 Printer cable 5

Enter operation code: g

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Program: Maintaining a Parts Database

* The program will store information about each part in a structure.
455 82E M0 HE

* The structures will be stored in an array named inventory.
inventory2t= Tt 2A| HiE 2 FE F|g
* Avariable named num parts will keep track of the number of

parts currently stored in the array.
num_parts =71 H EOf| X & E £F2| /=& 2|

Copyright © 2008 W. W. Norton & Company. 50
All rights reserved.

Program: Maintaining a Parts Database

* An outline of the program’s main loop: T2 1 #o| 0|2l F=

for (;7) |

prompt user to enter operation code; //s% ZE

read code; // ZE 87|

switch (code) {
case 'i': perform insert operation; break;// &%
case 's': perform search operation; break;// BM
case 'u': perform update operation; break;/;, A4
case 'p': perform print operation; break;// £
case 'qg': terminate program;// &
default: printerror message; // Olg] =

51

Program: Maintaining a Parts Database

 Separate functions will perform the insert, search, update,
and print operations.
S0 XA Mz2 & 8o

* Since the functions will all need access to inventory
and num parts, these variables will be external.
inventory2} num_parts= 2= 20| A ZHE S} OF 2 external 2 M

* The program is split into three files: 3 #2222 T/ g%
* inventory.c (the bulk of the program) Z=2 1= 0| Il A=
* readline.h (contains the prototype forthe read line

function) read_line2 2| ZE EEIQ/AHO| UAZ

* readline. c (contains the definition of read line)
read_linel| 7+2 /& 2[7} &

52

inventory.c
/* Maintains a parts database (array version) */

#include <stdio.h>
#include "readline.h"

#define NAME LEN 25
#define MAX PARTS 100

struct part {
int number;
char name [NAME LEN+1];
int on hand;

} inventory[MAX PARTS];

int num parts = 0; /* number of parts currently stored */

int find part(int number);
void insert (void) ;
vold search (void) ;
void update (void);
void print (void) ;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

/**

* main: Prompts the user to enter an operation code, *
x then calls a function to perform the requested x
x action. Repeats until the user enters the *
* command 'gq'. Prints an error message 1f the user *
x enters an 1llegal code. *

**/

int main (void)

{

char code;

for (;7) A
printf ("Enter operation code: ");
scanf (" %c", &code);
while (getchar () != '\n'") /* skips to end of line */

o
14

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

switch (code) {

case 'i': insert () ;
break;
case 's': search();
break;
case 'u': update();
break;
case 'p': print();
break;
case 'g': return 0O;

default: printf("Illegal code\n");

}
printf ("\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

/**

* find part: Looks up a part number 1n the inventory *
x array. Returns the array index 1f the part *
* number 1is found; otherwise, returns -1. *

**/

int find part (int number)

{

int 1i;
for (1 = 0; 1 < num parts; 1++)
1f (inventory[i] .number == number)

return 1i;
return -1;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

/**

* 1nsert: Prompts the user for information about a new *
x part and then inserts the part into the *
x database. Prints an error message and returns *
* prematurely 1f the part already exists or the *
* database 1s full. *
* *

P b A b b b b b b i b b b b b b b b i i i b i i i b i i i b b i i i i b g i i b db i i b i i i i i i g i i i i g /
volid insert (void)
{
int part number;
if (num parts == MAX PARTS) ({
printf ("Database is full; can't add more parts.\n");
return,;
}
Copyright © 2008 W. W. Norton & Company.

All rights reserved.

S7

printf ("Enter part number: ");

scanf ("%d", &part number);

if (find part(part number) >= 0) {
printf ("Part already exists.\n");
return;

inventory[num parts].number = part number;
printf ("Enter part name: ");

read line(inventory[num parts].name, NAME LEN) ;

printf ("Enter quantity on hand: ");
scanf ("%d", &inventory[num parts].on hand);

num parts++;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

/**

* search: Prompts the user to enter a part number, then *

x looks up the part in the database. If the part *
x exlists, prints the name and quantity on hand; *
x 1f not, prints an error message. *

**/

volid search (void)

{

int 1, number;

printf ("Enter part number: ");
scanf ("%d", &number);
1 = find part (number);
if (1 >= 0) |
printf ("Part name: %s\n", inventory[i].name);
printf ("Quantity on hand: %d\n", inventory[i].on hand);
} else
printf ("Part not found.\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

59

/**

* update: Prompts the user to enter a part number. x
x Prints an error message 1f the part doesn't x
x exlst; otherwise, prompts the user to enter *
* change in quantity on hand and updates the *
x database. *
**/

vold update (void)

{

int 1, number, change;

printf ("Enter part number: ");
scanf ("%d", &number);
1 = find part (number);
if (i >= 0) {
printf ("Enter change in quantity on hand: ");

scanf ("sd", &change);

inventory[i] .on hand += change;
} else

printf ("Part not found.\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

/**

* print: Prints a listing of all parts 1n the database,

x showing the part number, part name, and *
x quantity on hand. Parts are printed in the *
* order 1n which they were entered into the *
x database. *
**/
vold print (void)
{

int 1i;

printf ("Part Number Part Name "

"Quantity on Hand\n");
for (1 = 0; 1 < num parts; 1++)
printf ("%7d $-25s%11d\n", inventory[i].number,
inventory[i] .name, inventory[i].on hand);
}
Copyright © 2008 W. W. Norton & Company. 61

All rights reserved.

Program: Maintaining a Parts Database

* The version of read 1line in Chapter 13 won’t work properly
in the current program. 13%2| read_line= J4& & 0tat

e Consider what happens when the user inserts a part:
Cr2ME RIEstE 8%8 0| & EX}

Enter part number: 528
Enter part name: Disk drive

* The user presses the Enter key after entering the part number,
leaving an invisible new-line character that the program must
read.
part numberE Y EH [=X} 20 =0 ¢tEO|= SHHE 7|2 (ANH)E 2 HT

* When scanf reads the part number, it consumes the 5, 2, and

8, but leaves the new-line character unread.
scanf’} Y= [l 5,2, 82 HX|At ZHHE 7|2 AKX A S

62

Program: Maintaining a Parts Database

* If we try to read the part name using the original read line
function, it will encounter the new-line character immediately

and stop reading. B
A2l read_line &= £ = 0|&2 212 Il ESHEm 7|2 & A€ 2
&S =M 7t UlE; 2UtE L 2 OFF A Y HOHA| RRUX|BH § Of&f 814

)
oo
Lo O

* This problem is common when numerical input is followed by
character input. <X} €& = At Y&5t= ¢ 29| &d5t= =X
* One solution is to write a version of read 1ine that skips

white-space characters before it begins storing characters. sl 2
S B ot 2AE A2 = 3 22X FAISHEE read_lineg 78

* This solves the new-line problem and also allows us to avoid

storing blanks that precede the part name.
EHE X 0|2 SHME MAS= 2147t U=

63

readline.h

#ifndef READLINE H
#define READLINE H

/**

* read line: Skips leading white-space characters, then *
* reads the remainder of the 1nput line and *
x stores 1t in str. Truncates the line if its *
x length exceeds n. Returns the number of *
x characters stored. x
**/
int read line(char str[], 1nt n);
#endif
Copyright © 2008 W. W. Norton & Company.

All rights reserved.

64

readline.c

#include <ctype.h>
#include <stdio.h>
#include "readline.h"

int read line(char str[], int n)

{ _

int ch, 1 = 0;
while (isspace(ch = getchar()))
while (ch ! '"\n' && ch != EOF) {

if (1 < n)
str[i++] = ch;
ch = getchar ()
}
str[i] = '"\O';
return 1i;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.

65

Unions

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

66

Unions

* A union, like a structure, consists of one or more members,
possibly of different types.
union T EM QL ZO0| M2 CHE @S 4= ot O] BHHEZE +d

 The compiler allocates only enough space for the largest of the

members, which overlay each other within this space.
Ay 7ty 2 S AV[E ED SEct S¢S 2ot HHE O
St et MEe

L -

* Assighing a new value to one member alters the values of the

other members as well.
ot HHO| ME2 42 dYSIH LI E HEo| 4t 2 B s

67

Unions

 An example of a union variable: FL|& H=a=2| M 0f

union
int 1;
double d;
bou;

* The declaration of a union closely resembles a structure
declaration: /L1 Ho| MAZ2 FEK[Q| M At F AL

struct {
int 1;
double d;
b osi

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

68

Unions

* The structure s and the union u differ in just one way.
TZEH s 7L us SFLE| XpO|BF =Yt

Structure Union

* The members of s are stored f , \

at different addresses in memory.
sO| HMH = M2 CI2 =A 270 HEHE

1< i< |
* The members of u are stored

at the same address. - \ » 3

WO I L= 2t = A2 7t
— E=E - 4= X O

—
S

Copyright © 2008 W. W. Norton & Company. 69
All rights reserved.

Unions

* Members of a union are accessed in the same way as members of
a structure:
FLQ o HZ o2 f AN B Hnt ST
u.l1 = 82;
u.d = 74.8;

* Changing one member of a union alters any value previously
stored in any of the other members.
Lo ot M HaF MESHH O Hof| MEE[AE HHO| 40 S =
e Storing a value in u. d causes any value previously stored in
u.1i to be lost.

u.dofl 2tS MESHH it MY E ¢S AHE

 Changing u. i corrupts u.d.
ui A &oHH uddf| §EE 42 E

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

70

Unions

* The properties of unions are almost identical to the properties of
structures.
LR g2 RN dENORE &5

* We can declare union tags and union types in the same way we
declare structure tags and types.
LA B AL FLA ES MASIH =2 = /U=

* Like structures, unions can be copied using the = operator, passed

to functions, and returned by functions.
FL2 = ALMXZ SAE[D &0 QIX 2 ME, 2[H &=+ US

Copyright © 2008 W. W. Norton & Company. 71
All rights reserved.

Unions

Only the first member of a union can be given an initial value.
CH R LIS A B B xV|oHE = UF

How to initialize the 1 member of u to O:
ul| HIH £ 02 2 X7|3}81= O
union
int 1;
double d;
bu = {0};

The expression inside the braces must be constant. (The rules are
slightly different in C99.)

S22 o B2 g 0O0F & (c99= LHE 3 = [IHS)

Copyright © 2008 W. W. Norton & Company. 79
All rights reserved.

Unions

* Designated initializers can also be used with unions.
unionOME X|H 27|t E &2 = US

* A designated initializer allows us to specify which member of a
union should be initialized: | HHE 7|2} & X| X X27|2t2 F&

union
int 1;
double d;
}u = {.d = 10.0};

* Only one member can be initialized, but it doesn’t have to be the
first one. tt, Of2f HH 5 StLEO| it V(o & 5= /U F

Copyright © 2008 W. W. Norton & Company. 73
All rights reserved.

Unions

* Applications for unions: 9L 212 &&X
* Saving space 57t 2
* Building mixed data structures 2g& Xtz 7+ 49

* Viewing storage in different ways (discussed in Chapter 20)
MNEEKE E= ECHE Al (20T 0| M XEA[B] CHT)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

74

Using Unions to Save Space

* Unions can be used to save space in structures.
TZM Ll StE =0|7] R FLIYE AR 7t

L—

e Suppose that we’re designing a structure that will contain
information about an item that’s sold through a gift catalog.
o2, M=7IEF21 MAto| Or0|H | HE E X &dte 2N & Ui 2 X}

* Each item has a stock number and a price, as well as other
information that depends on the type of the item:

Ztofo|gje 2, 2, 1 9 HB YRE LS

Books: Title, author, number of pages A=, A%}, 10| X| &=
Mugs: Design C|XtQl

Shirts: Design, colors available, sizes available C|XIQl, H2 MAH 2
INES

75

Using Unions to Save Space

* Afirst attempt at designing the catalog item
structure: & HM catalog item 24| ZMH Al

struct catalog i1tem {
int stock number;
double price;
int 1ltem type;
char title[TITLE LEN+1];
char author [AUTHOR LEN+1];
int num pages;
char design[DESIGN LEN+1];
int colors;
int sizes;

s

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

76

Using Unions to Save Space

* The item type member would have one of the values BOOK,
MUG, or SHIRT. item_type® H{-= BOOK, MUG, SHIRT & SFLI2t 410 AS

* The colors and sizes members would store encoded
combinations of colors and sizes.
colors2f sizes I = M1t 3 7[0] gf= A&

* This structure wastes space, since only part of the information in
the structure is common to all items in the catalog.
O + =M= &7t gH|7t e R 7He| SET 2= OO Hi0| S22 AHEE

o o —

* By putting a union inside the catalog item structure, we can

reduce the space required by the structure.
catalog_item Tt 2N 0| FL{QE B2 S8 BELdL = US

77

Using Unions to Save Space

struct catalog item ({
int stock number;
double price;
int 1tem type;
union {
struct {
char title [TITLE_LEI\H—l] ;
char author [AUTHOR LEN+1];
int num pages;
} book;
struct {
char design[DESIGN LEN+1];
} mug;
struct {
char design[DESIGN LEN+1];
int colors;
int sizes;
} shirt;
} 1tem;

Y

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

78

Using Unions to Save Space

* If cisacatalog itemstructure thatrepresents a book, we
can print the book’s title in the following way:
c/t M2 LIEFLH = catalog_item Tt M| 2t ™ ChZ1F Z0| LIEHE o= AZ
printf ("%s", c.item.book.title);

* As this example shows, accessing a union that’s nested inside a

structure can be awkward.
TANOf FL|AH0| QD QO EE 227 U= 58 A E H2ot= A0
O|aol HY == RS

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

79

Using Unions to Save Space

* The catalog itemstructure can be used to illustrate an
interesting aspect of unions.
catalog_itemTt £ 4| = FL| 2| AMO|Y= HdE =S EHE

 Normally, it’s not a good idea to store a value into one
member of a union and then access the data through a

different member.
it oz ot KL S| M E X HOILL L= HHE S0l 442 HO L+
A2 AHSHK| L2

80

Using Unions to Save Space

 However, there is a special case: two or more of the
members of the union are structures, and the structures

begin with one or more matching members.
STt 82 M Ll: 27 oo M7t =X 0|1 Zf L XN OrC = &2t

HHE 4= 8<%
* If one of the structures is currently valid, then the matching

members in the other structures will also be valid.
ot NIt R RaolHLCHE 2N g2

81

Using Unions to Save Space

* The union embedded in the catalog item structure
contains three structures as members.
catalog_itemTt A= LIS E M| 7HO| =N BIHE 4=

* Two of these (mug and shirt) begin with a matching
member (design). mugltshirt= &L HH(design)E Z11 US

* Now, suppose that we assign a value to one of the design
members: design HH & StLIO| 2fS M &5H= O
strcpy(c.item.mug.design, "Cats");

* The design member in the other structure will be defined
and have the same value:
CHE T 22| design HHE H2 €2 WS A2
printf ("%s", c.i1tem.shirt.design);
/* prints "Cats" */

82

Using Unions to Build Mixed Data Structures

Unions can be used to create data structures that contain a

mixture of data of different types.
SLAS MELCIE MO Yoz AME XIE AXE DtE = 4 ¢

* Suppose that we need an array whose elements are a mixture of

int and double values.

O HY 2Ol int E£= double ¢t Z=Ct1 S EX}

First, we define a union type whose members represent the
different kinds of data to be stored in the array:

MEOQEdS A4 Bz 2dE U dS UHSH HIES Mo = /UZ

- o= X L—

typedef union {
int 1;
double d;

} Number;

83

Using Unions to Build Mixed Data Structures

* Next, we create an array whose elements are Number values:
FLAESE UHEZ, 1S 0|85 HiEs doe

o= L-L- T, L—

Number number array[1000];

e A Number union can store either an 1nt value or a double

value. O|X| Number S LI HO 2 Ot=E HIE 2 int@ double 4= A4S = A2

* This makes it possible to store a mixture of int and double
values in number array:

number_array B E0| =/ HF= 42 NS =}

o
=

number array[0].1 = 5;
number array[l].d = 8.395;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

84

Adding a “Tag Field” to a Union

* There’s no easy way to tell which member of a union was last

changed and therefore contains a meaningful value.
7L 2o M & O A0| o|0| U&= 4fE A1 A=A Ihyst= A0 EX| s

* Consider the problem of writing a function that displays the value

stored in a Number union:
Number S L| A0 MZ =l Zf2 EHSI= & +E A/ttt 5HX}
n

)

vold print number (Number
{
i1f (n contains an integer)
printf ("%d", n.i);
else
printf ("%g", n.d);
}
There’s no way for print number to determine whether n

contains an integer or a floating-point number.

. 11 re) o
print_number= nO| =21 X| & =QIX| LtCteh = 1 &

85

Adding a “Tag Field” to a Union

* In order to keep track of this information, we can embed the
union within a structure that has one other member: a “tag field”
or “discriminant.”

T WO Ol HEE MU = UE FEA E A EESE XS L = US

* The purpose of a tag field is to remind us what’s currently stored
in the union.

El 1 EE= U0 FA0| MEEU=A| LT
* item type served this purpose inthe catalog item

structure.
catalog_itemT- =N 0| A| = item_typeO| 1 G =

86

Adding a “Tag Field” to a Union

* The Number type as a structure with an embedded union:

Number @ = 72N 2 MRS 1 Q0| S LS =StA|Z

#define INT KIND 0
#define DOUBLE KIND 1

typedef struct {
int kind; /* tag field */
union {
int 1;
double d;
bou;
} Number;

* The value of kind will be either INT KIND or

DOUBLE KIND.
kind2| ZtOll INT_KIND 5= DOUBLE_KINDE HEA|Zt

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

87

Adding a “Tag Field” to a Union

* Each time we assign a value to a member of u, we’ll also change
kind to remind us which member of u we modified.

ul| HH Of 2t= 2 WOCH kind2| 44S dLlooFet

* An example that assigns a value to the 1 member of u:
ul| B 2 9] ¢{= Hr =
n.kind = INT KIND;
n.u.1 = 82;

n is assumed to be a Number variable.
n= Number & H2f 7+

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

88

Adding a “Tag Field” to a Union

e When the number stored in a Number variable is retrieved,
kind will tell us which member of the union was the last to be
assigned a value.

Number & B kind2| 2422 O FL{Q 10| OiX | o= MA=X| L U

e A function that takes advantage of this capability:

182 S &80t &2 o

vold print number (Number n)

{

1f (n.kind == INT KIND)
printf ("sd", n.u.1);
else

printf ("$g", n.u.d);

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 89

Enumerations

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

90

Enumerations

* In many programs, we’ll need variables that have only a small set

of meaningful values.
O Z2 152 O0|/U= 4o HR7I o8 = U=
* Avariable that stores the suit of a playing card should have only

four potential values: “clubs,” “diamonds,” “hearts,” and “spades.”
o: 7t Ao M= “2 =, “Ci0|0{ = E”, "StE”, 2|0 “A 0| =78 QF

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

91

Enumerations

e A “suit” variable can be declared as an integer, with a set of codes

that represent the possible values of the variable:

suit’BHE Bas HAE MO 9 8 XYoo T2 £ US

int s; /* s will store a suit */

s = 2; /* 2 represents "hearts" */

* Problems with this technique:

Olet €2 &= EA0 =X

 We can’t tell that s has only four possible values.

sO| 22 = 47l 0|2[9| ¢fBF =X &iled = Y=

* The significance of 2 isn’t apparent.
29[o[0| 7F HA|HO[X| =

LIS &3

92

Enumerations

* Using macros to define a suit “type” and names for the various

suits is a step in the right direction:
O3 2 F2| & Sl “type”dt O| 5= ot A2 HEZ2 RS

#define SUIT int
#define CLUBS 0

#define DIAMONDS 1
#define HEARTS 2
#define SPADES 3

* An updated version of the previous example: & A 02| 7§ =l H 7
SUIT s;

s = HEARTS;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

93

Enumerations

* Problems with this technique:

Ol &l A

* There’s no indication to someone reading the program that the
macros represent values of the same “type.”
O3 22| o7t &2 “type”2| A& LH2| 44 CIX| I}5H| O 2=

* |f the number of possible values is more than a few, defining a
separate macro for each will be tedious.
15 Lol 240 of &=71 7t OfL{2t M O3 2 HO| & A-d5t= A BHEHX| @i =

* The names CLUBS, DIAMONDS, HEARTS, and SPADES will be
removed by the preprocessor, so they won’t be available during

debugging.
HHE| APE oM D122 Fo|= AREHK] 7] Th=0f| A 0|2 CiH Z a7 o A

= St A o
SESEZEZ TS

94

Enumerations

* C provides a special kind of type designed specifically for variables
that have a small number of possible values.

oo ARt ot A B S EIRS MSE

 An enumerated type is a type whose values are listed
(“enumerated”) by the programmer. enumerated type(27{ &)0| 2}
FEN g2 oz O2iio) o5 LtEE

e Each value must have a name (an enumeration constant).

o = O o
2 0|lE2 LS

95

Enumerations

* Although enumerations have little in common with structures and

unions, they’re declared in a similar way:
SAH FO| FL AL 2N Qf wArSHE 2 GIA| B, A A2 FAE

L -

enum {CLUBS, DIAMONDS, HEARTS, SPADES} sl1, s2;

e The names of enumeration constants must be different from

other identifiers declared in the enclosing scope.
A G ArEE 2| 0| F2 HE LA 7+ &5HOf &

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

96

Enumerations

e Enumeration constants are similar to constants created with the
#define directive, but they’re not equivalent.
#defineL 2 M A=l & =2 H[ZOIX| 2 S LA = L=

e If an enumeration is declared inside a function, its constants

won’t be visible outside the function.
S HO| g LHO| Al M AL UCHH ST ot= oM 20| X| 4

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

97

Enumeration Tags and Type Names

* As with structures and unions, there are two ways to name an
enumeration: by declaring a tag or by using t ypede f to create a

genuine type name.
RNt FL AN S USHA Ef 2t typedefS 2 MZE2 HO|0|ES A= = US

* Enumeration tags resemble structure and union tags:
SAGE I FHAL AN EfAQr 2 LA 2 MO

enum suit {CLUBS, DIAMONDS, HEARTS, SPADES};

* suit variables would be declared in the following way:
suit 84 & Haye CrEar 40| MO

enum sult sl, s2;

98

Enumeration Tags and Type Names

* As an alternative, we could use typedef to make Suit atype

Name:
typedef2 Z SuitO|2t= O|Z2 MER2 A= U= T U=

typedef enum {CLUBS, DIAMONDS, HEARTS, SPADES} Suit;
Suit sl1l, s2;
* In C89, using t ypedef to name an enumeration is an excellent

way to create a Boolean type:
c80|A= ES2[H Y2 TtEE 7 £E2 HH 2 typedef 2 A= A &

typedef enum {FALSE, TRUE} Bool;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

99

Enumerations as Integers

 Behind the scenes, C treats enumeration variables and constants

as integers.

COlME= G & Ha0f M2 H4a2 TEkst

—

[Fl
Mok

* By default, the compiler assigns the integers 0, 1, 2, ... to the
constants in a particular enumeration.
A0 LtEE =AM 0 mt2to, 1,2, .2l ks 2 &2

* Inthe suit enumeration, CLUBS, DIAMONDS, HEARTS, and
SPADES represent 0, 1, 2, and 3, respectively.

suit 274 HoM= 28, CIHO|0{ 2 &, 8L E, AH0| =7 Z+2t 0,1, 2,39 S %2

Copyright © 2008 W. W. Norton & Company. 100
All rights reserved.

Enumerations as Integers

* The programmer can choose different values for enumeration
constants: Z2 12l = @AHL|= &0 CHE 44E X8 = US
enum suit {CLUBS = 1, DIAMONDS = 2,

HEARTS = 3, SPADES = 4};

* The values of enumeration constants may be arbitrary integers,
listed in no particular order: &9 {2 =A2t &2 S
enum dept {RESEARCH = 20,
PRODUCTION = 10, SALES = 25};

* It's even legal for two or more enumeration constants to have the
same value. = 72| €A g{0| £ 2 ¥ S 7IHE &

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

101

Enumerations as Integers

* When no value is specified for an enumeration constant, its value
is one greater than the value of the previous constant.

O @A (0] &= X GRA| ZUCEHH, O|H &=+ AEL1 E U= &S

* The first enumeration constant has the value 0 by default.
7/(1 I:II_-|MH OEE|7-| ALA O 7|EI—I oz OO 7I-O

O T HA L — 11—

 Example:

enum EGA colors {BLACK, LT GRAY = 7,
DK GRAY, WHITE = 15};

BLACK has the value 0, LT GRAYis7, DK GRAY is 8, and

WHITE is 15.
BLACK= 0, LT_GRAYE 7, DK_GRAYE 8, WHITEE 15&

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 102

Enumerations as Integers

* Enumeration values can be mixed with ordinary integers:

A USHE Sl 220 22 5 US

int 1i;
enum {CLUBS, DIAMONDS, HEARTS, SPADES} s;

i = DIAMONDS; /* 1 1s now 1 * /
s = 0; /* s 1s now O (CLUBS) */
s++; /* s 1s now 1 (DIAMONDS) */
i =s + 2; /* 1 1is now 3 * /

* s is treated as a variable of some integer type.
L M EFQIO| Ak x| D=

ST

e CLUBS, DIAMONDS, HEARTS, and SPADES are names
for the integers O, 1, 2, and 3.

=8, CIO|0{2 5, StE, AH0|E=0,1,2,39 42 X1 /US

103

Enumerations as Integers

* Although it’s convenient to be able to use an enumeration value

as an integer, it’s dangerous to use an integer as an enumeration

value.
SH Y Hp7 40|t B Hae 2 FZ01Y 4f2 X &SHH eFE

* For example, we might accidentally store the number 4—which

doesn’t correspond to any suit—into s.

EA g B0 Bl el et Myor &I Falojet 4= Mgt E

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

104

Using Enumerations to Declare “Tag Fields’

/]

Enumerations are perfect for determining which member of a

union was the last to be assigned a value.
SAHY Hre FLHAU S O BHIL ALEER=X| EAISH| £5

In the Number structure, we can make the kind member an

enumeration instead of an int:
Number - ZX| 0| M kindE EH & H,= M2t O
typedef struct {
enum {INT KIND, DOUBLE KIND} kind;
union {
int 1i;
double d;
bouy
} Number;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

105

Using Enumerations to Declare “Tag Fields”

* The new structure is used in exactly the same way as the old one.
MEE T2 = 2tA0| Folel +xHet st 7|52 &

* Advantages of the new structure:
MZ2 FZ2M 2l HH

* Does away with the INT KIND and DOUBLE KIND macros
3= 52| Blof ¢ &

 Makes it obvious that kind has only two possible values:
INT KINDand DOUBLE KIND

= 7f9| QY ol WS S

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

106

