
Structures, Unions,
and Enumerations

adopted from KNK C Programming : A Modern Approach

Structure (구조체) Variables
• The properties of a structure are different from those of an array.
구조체는배열과다름

• The elements of a structure (its members) aren’t required to
have the same type.
구조체의구성요소(멤버)는서로다른형을갖을수있음

• The members of a structure have names; to select a particular
member, we specify its name, not its position.
구조체의멤버는이름을갖고있고, 그멤버를사용하기위해선이름을사용함
(비교: 배열은인덱스번호로활용)

• In some languages, structures are called records, and members
are known as fields.
어떤언어는구조체를레코드, 멤버는필드라고부름

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 2

Declaring Structure Variables
• A structure is a logical choice for storing a collection of related

data items.
구조체는관련있는데이터를묶을수있는틀을제공

• A declaration of two structure variables that store information
about parts in a warehouse:
창고에있는부품정보를저장하기위해두개의구조체변수를선언하는예

struct {
int number;
char name[NAME_LEN+1];
int on_hand;

} part1, part2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 3

Declaring Structure Variables
• The members of a structure are stored in memory in the order in

which they’re declared.
구조체의멤버는선언된순서대로메모리에배치됨

• Appearance of part1(메모리에 표현된 모습)

• Assumptions(가정):

• part1 is located at address 2000.
시작주소 2000

• Integers occupy four bytes.
정수는 4바이트

• NAME_LEN has the value 25. NAME_LEN = 25

• There are no gaps between the members.
멤버들사이에는공백이없음

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

4

Declaring Structure Variables
• Abstract representations of a structure:
추상화된구조체의표현

• Member values will go in the boxes later.
실제값은이후에저장됨

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 5

Declaring Structure Variables
• Each structure represents a new scope.
각구조체는새로운범위를갖고있음

• Any names declared in that scope won’t conflict with other
names in a program.
구조체내에서선언된이름은프로그램다른곳에서사용된이름과충돌하지않음

• In C terminology, each structure has a separate name space for its
members.
각구조체의멤버는독립적인이름공간을갖음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 6

Declaring Structure Variables
• For example, the following declarations can appear in the same

program:
예를들어아래와같이두개의구조체가한프로그램에서선언됨
number, name 의이름이같지만충돌하지않음

struct {
int number;
char name[NAME_LEN+1];
int on_hand;

} part1, part2;

struct {
char name[NAME_LEN+1];
int number;
char sex;

} employee1, employee2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 7

Initializing Structure Variables
• A structure declaration may include an initializer:
구조체선언시초기화할수있음
struct {

int number;
char name[NAME_LEN+1];
int on_hand;

} part1 = {528, "Disk drive", 10},
part2 = {914, "Printer cable", 5};

• Appearance of part1 after initialization: 초기화후모습

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 8

Initializing Structure Variables
• Structure initializers follow rules similar to those for array

initializers.
구조체초기화하는배열의초기화와유사한규칙을따름

• Expressions used in a structure initializer must be constant. (This
restriction is relaxed in C99.)
구조체초기화에사용한수식은상수여야함(c99에서는규칙이완화됨)

• An initializer can have fewer members than the structure it’s
initializing.
구조체의전체멤버보다는적은수의멤버를초기화할수있음

• Any “leftover” members are given 0 as their initial value.
초기화에 제외된멤버는 0으로초기화됨

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 9

Designated Initializers (C99)
• C99’s designated initializers can be used with structures.

c99는구조체의멤버를지정하여지정초기화가능

• The initializer for part1 shown in the previous example:
part1의일반적초기화는다음과같음

{528, "Disk drive", 10}

• In a designated initializer, each value would be labeled by
the name of the member that it initializes:
지정초기화하는다음과갖이멤버의이름을지목하여초기화할수있음

{.number = 528, .name = "Disk drive", .on_hand = 10}

• The combination of the period and the member name is
called a designator.
지정하는방법: .(점) + 멤버이름예, .number

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 10

Designated Initializers (C99)
• Designated initializers are easier to read and check for

correctness.
지정초기화를하면값을쉽고정확함

• Also, values in a designated initializer don’t have to be placed in
the same order that the members are listed in the structure.
지정초기화를하면구조체에나온멤버의순서대로나열하지않아도됨

• The programmer doesn’t have to remember the order in which
the members were originally declared.
프로그래머는멤버의순서를기억할필요없음

• The order of the members can be changed in the future
without affecting designated initializers.
멤버의순서가시간이지나바뀌더라도지정초기화의순서는바뀌지않아도됨

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 11

Designated Initializers (C99)
• Not all values listed in a designated initializer need be prefixed by

a designator.
지정초기화할때멤버이름을써야하는것은아님

• Example:
{.number = 528, "Disk drive", .on_hand = 10}

The compiler assumes that "Disk drive" initializes the
member that follows number in the structure.
”disk drive”는 number 다음에나오는멤버의값이라고가정함

• Any members that the initializer fails to account for are set to
zero.
초기화가실패한경우 0으로초기화

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 12

Operations on Structures
• To access a member within a structure, we write the name of the

structure first, then a period, then the name of the member.
구조체의멤버를접근하기위해구조체의이름, 점, 그리고멤버이름을씀

• Statements that display the values of part1’s members:
part1이라는구조체의멤버를읽어오는방법예

printf("Part number: %d\n", part1.number);
printf("Part name: %s\n", part1.name);
printf("Quantity on hand: %d\n", part1.on_hand);

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 13

Operations on Structures
• The members of a structure are lvalues.
구조체의멤버는 lvalue임

• They can appear on the left side of an assignment or as the
operand in an increment or decrement expression:
구조체의멤버는할당문에왼쪽에올수있고증감연산자도사용할수있음

part1.number = 258;
/* changes part1's part number */

part1.on_hand++;
/* increments part1's quantity on hand */

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 14

Operations on Structures
• The period used to access a structure member is actually a C

operator.
점은 c에서연산자이고구조체의멤버를접근할수있도록함

• It takes precedence over nearly all other operators.
점은거의대부분의연산자보다우선순위가높음

• Example:
scanf("%d", &part1.on_hand);

The . operator takes precedence over the & operator, so &
computes the address of part1.on_hand.
& 연산자보다점의우선순위가높음 &part1.on_hand라고하면 part1.on_hand의
주소임

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 15

Operations on Structures
• The other major structure operation is assignment:
구조체의할당예

part2 = part1;
• The effect of this statement is to copy part1.number into
part2.number, part1.name into part2.name, and so on.
part1 구조체의모든멤버의값을 part2의모든멤버로복사

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 16

Operations on Structures
• Arrays can’t be copied using the = operator, but an array

embedded within a structure is copied when the enclosing
structure is copied.
배열은 = 연산자로복사안됨

• Some programmers exploit this property by creating “dummy”
structures to enclose arrays that will be copied later:
어떤프로그래머는구조체의기능을이용해배열의값복사에활용하기도함

struct { int a[10]; } a1, a2;
a1 = a2;

/* legal, since a1 and a2 are structures */

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 17

Operations on Structures
• The = operator can be used only with structures of compatible

types. =연산자는호환가능한구조체에서만활용가능

• Two structures declared at the same time (as part1 and part2
were) are compatible. 동시에선언된구조체변수들만호환가능

• Structures declared using the same “structure tag” or the same
type name are also compatible. 같은구조체태그를써서선언된변수도호환됨

• Other than assignment, C provides no operations on entire
structures. 할당외에는구조체전부를다루는연산자는없음

• In particular, the == and != operators can’t be used with
structures. 예를들어 ==나 != 연산자는쓸수없음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 18

Structure Types
• Suppose that a program needs to declare several structure

variables with identical members.
같은멤버를갖는구조체변수를여러개써야한다고가정해보자

• We need a name that represents a type of structure, not a
particular structure variable.
구조체를형으로쓰기위해서는이름이필요함, 구조체변수이름이아님

• Ways to name a structure: 구조체에이름을부여하기

• Declare a “structure tag”구조체태그를선언

• Use typedef to define a type name typedef으로형의이름저정

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 19

Declaring a Structure Tag
• A structure tag is a name used to identify a particular kind of

structure.
구조체태그는구조체들을구분하기위한이름

• The declaration of a structure tag named part:
part라는이름의구조체태그의선언

struct part {
int number;
char name[NAME_LEN+1];
int on_hand;

};

• Note that a semicolon must follow the right brace.
오른쪽끝에세미콜론이붙었음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 20

Declaring a Structure Tag
• The part tag can be used to declare variables:
이제 part 태그를써서변수들을선언할수있음

struct part part1, part2;

• We can’t drop the word struct:
part part1, part2; /*** WRONG ***/

part isn’t a type name; without the word struct, it is
meaningless.
만약 struct라는단어를안쓰면오류가생김; part는구조체구별용태그이름일뿐

• Since structure tags aren’t recognized unless preceded by the
word struct, they don’t conflict with other names used in a
program.
struct 없는태그이름은의미없음; 프로그램내에다른것의이름으로쓸수있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 21

Declaring a Structure Tag
• The declaration of a structure tag can be combined with the

declaration of structure variables:
구조체태그와구조체변수의이름을같이쓸수있음

struct part {
int number;
char name[NAME_LEN+1];
int on_hand;

} part1, part2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 22

Declaring a Structure Tag
• All structures declared to have type struct part are

compatible with one another:
struct part라는태그를갖는구조체로선언된변수는모두호환가능

struct part part1 = {528, "Disk drive", 10};
struct part part2;

part2 = part1;
/* legal; both parts have the same type */

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 23

Defining a Structure Type
• As an alternative to declaring a structure tag, we can use
typedef to define a genuine type name.
구조체태그를선언하는대신 typedef으로새로운타입을지정할수있음

• A definition of a type named Part: Part 형의정의

typedef struct {
int number;
char name[NAME_LEN+1];
int on_hand;

} Part;

• Part can be used in the same way as the built-in types:
다른기본형들과같이 Part 형도쓸수있음

Part part1, part2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 24

Defining a Structure Type
• When it comes time to name a structure, we can usually choose

either to declare a structure tag or to use typedef.
구조체의이름을정할때는구조체태그또는 typedef를쓸수있음

• However, declaring a structure tag is mandatory when the
structure is to be used in a linked list (Chapter 17).
단, 연결리스트(linked list)를쓸때는꼭구조체태그를사용해야함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 25

Structures as Arguments and Return Values
• Functions may have structures as arguments and return values.
함수리턴값과인자로구조체사용가능

• A function with a structure argument: 구조체를인자로갖는함수예

void print_part(struct part p)
{

printf("Part number: %d\n", p.number);
printf("Part name: %s\n", p.name);
printf("Quantity on hand: %d\n", p.on_hand);

}

• A call of print_part: 호출예

print_part(part1);

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 26

Structures as Arguments and Return Values
• A function that returns a part structure:

part 구조체를리턴하는함수

struct part build_part(int number,
const char *name,
int on_hand)

{
struct part p;

p.number = number;
strcpy(p.name, name);
p.on_hand = on_hand;
return p;

}

• A call of build_part: 호출예

part1 = build_part(528, "Disk drive", 10);

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 27

Structures as Arguments and Return Values
• Passing a structure to a function and returning a structure from a

function both require making a copy of all members in the
structure.
구조체를함수인자로전달또는리턴값으로 받으면, 구조체모든멤버가복사됨

• To avoid this overhead, it’s sometimes advisable to pass a pointer
to a structure or return a pointer to a structure.
복사비용을줄이려면구조체에대한포인터를인자또는리턴값으로사용

• Chapter 17 gives examples of functions that have a pointer to a
structure as an argument and/or return a pointer to a structure.
17장에활용예가있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 28

Structures as Arguments and Return Values
• There are other reasons to avoid copying structures.
구조체복사를피해야할또다른이유가있음

• For example, the <stdio.h> header defines a type named
FILE, which is typically a structure.
<stdio.h> 헤더정보에는 FILE이라는구조체가정의됨

• Each FILE structure stores information about the state of an
open file and therefore must be unique in a program.
각 FILE 구조체는열어놓은파일의상태정보를갖고있음; 모든프로그램에서
FILE의정보는유일해야함

• Every function in <stdio.h> that opens a file returns a
pointer to a FILE structure.
<stdio.h> 내의함수들중파일열기를하는함수들은모두 FILE 구조체의
포인터를리턴함

• Every function that performs an operation on an open file
requires a FILE pointer as an argument.
열어놓은파일을조작하는함수들은 FILE의포인터를인자로받음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 29

Structures as Arguments and Return Values
• Within a function, the initializer for a structure variable can be

another structure:
void f(struct part part1)
{

struct part part2 = part1;
…

}

• The structure being initialized must have automatic storage
duration.

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 30

Compound Literals (C99)
• Chapter 9 introduced the C99 feature known as the compound

literal.
복합문자열을 9장에서살펴봄

• A compound literal can be used to create a structure “on the fly,”
without first storing it in a variable.
복합문자열을쓰면즉석해서구조체를만들어값을저장할수있음

• The resulting structure can be passed as a parameter, returned by
a function, or assigned to a variable.
이렇게생성된구조체는매개변수로쏘이거나함수의리턴또는변수에할당될수
있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 31

Compound Literals (C99)
• A compound literal can be used to create a

structure that will be passed to a function:
print_part((struct part) {528, "Disk drive", 10});

The compound literal is shown in bold.
복합문자열을써서함수에전달할구조체를만들수있음; 굵은글씨가예

• A compound literal can also be assigned to a variable:
part1 = (struct part) {528, "Disk drive", 10};
변수 할당에도 활용할 수 있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 32

Compound Literals (C99)
• A compound literal consists of a type name within

parentheses, followed by a set of values in braces.
복합문자열은괄호로묶인형의이름과중괄호로묶인값들의집합으로
구성

• When a compound literal represents a structure, the type
name can be a structure tag preceded by the word struct
or a typedef name.
복합문자열이구조체를나타낸다면, 형의이름은 struct 키워드와구조체
태그가있거나 typedef 이름으로정의된것이어야함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 33

Compound Literals (C99)
• A compound literal may contain designators, just like a

designated initializer:
복합문자열은지정초기화될수있음

print_part((struct part) {.on_hand = 10,
.name = "Disk drive",
.number = 528});

• A compound literal may fail to provide full initialization, in
which case any uninitialized members default to zero.
복합문자열선언으로일부만초기화할경우, 초기화안된멤버는 0으로
초기화됨

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 34

Nested Arrays and Structures
• Structures and arrays can be combined without restriction.
구조체와배열은제한된조건으로병합될수있음

• Arrays may have structures as their elements, and structures may
contain arrays and structures as members.
배열은구조체를요소로갖을수있음, 구조체는배열뿐만아니라구조체도멤버로
갖을수있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 35

Nested Structures
• Nesting one structure inside another is often useful.
한구조체를다른구주체의일부로쓰는것은유용함

• Suppose that person_name is the following structure:
person_name이라는구조체를살펴보자

struct person_name {
char first[FIRST_NAME_LEN+1];
char middle_initial;
char last[LAST_NAME_LEN+1];

};

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 36

Nested Structures
• We can use person_name as part of a larger structure:

person_name을다른큰구조체의일부로쓸수있음

struct student {
struct person_name name;
int id, age;
char sex;

} student1, student2;

• Accessing student1’s first name, middle initial, or last name
requires two applications of the . operator:
student1의이름(first, middle, last)를접근하기위해서는점연산자를두번사용

strcpy(student1.name.first, "Fred");

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 37

Nested Structures
• Having name be a structure makes it easier to treat names

as units of data.
name은구조체이기때문에이름을하나의데이터단위로처리가능

• A function that displays a name could be passed one
person_name argument instead of three arguments:
person_name을인자로쓸때는변수 3개가아니라하나면됨

display_name(student1.name);

• Copying the information from a person_name structure to
the name member of a student structure would take one
assignment instead of three:매개변수로복사될때도한번으로
복사가능

struct person_name new_name;
…
student1.name = new_name;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 38

Arrays of Structures
• One of the most common combinations of arrays and structures is

an array whose elements are structures.
배열과구조체의혼합의가장흔한조합은배열의요소가구조체인경우

• This kind of array can serve as a simple database.
배열을데이터베이스처럼쓸수있음

• An array of part structures capable of storing information about
100 parts:
part 구조체를배열로선언한경우, 배열의크기만큼자료를저장할수있음

struct part inventory[100];

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 39

Arrays of Structures
• Accessing a part in the array is done by using subscripting:

part 배열중하나를접근하려면첨자를쓰면됨

print_part(inventory[i]);

• Accessing a member within a part structure requires a
combination of subscripting and member selection:
part 구조체의멤버에접근하려면배열첨자와멤버선택을해야함

inventory[i].number = 883;

• Accessing a single character in a part name requires
subscripting, followed by selection, followed by
subscripting:
part 이름의한글자를읽을때는배열요소선택용첨자, 구조체의멤버선택, 멤버
배열의첨자선택을함

inventory[i].name[0] = '\0';

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 40

Initializing an Array of Structures
• Initializing an array of structures is done in much the same way as

initializing a multidimensional array.
구조체배열의초기화는다차원배열초기화와유사한방식으로가능

• Each structure has its own brace-enclosed initializer; the array
initializer wraps another set of braces around the structure
initializers.
각구조체는중괄호로묶어서초기화함; 중괄호가중첩된구조임구조체초기화
중괄호를배열초기화중괄호가둘서쌈

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 41

Initializing an Array of Structures
• One reason for initializing an array of structures is that it contains

information that won’t change during program execution.
배열로구조체를초기화하는이유는프로그램실행되는동안에해당정보가
변경되지않을정보이기때문

• Example: an array that contains country codes used when making
international telephone calls. 예: 각나라별국제전화번호코드

• The elements of the array will be structures that store the name
of a country along with its code:
선언된구조체배열은나라이름과코드번호를저장함

struct dialing_code {
char *country;
int code;

};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Initializing an Array of Structures
const struct dialing_code country_codes[] =
{{"Argentina", 54}, {"Bangladesh", 880},
{"Brazil", 55}, {"Burma (Myanmar)", 95},
{"China", 86}, {"Colombia", 57},
{"Congo, Dem. Rep. of", 243}, {"Egypt", 20},
{"Ethiopia", 251}, {"France", 33},
{"Germany", 49}, {"India", 91},
{"Indonesia", 62}, {"Iran", 98},
{"Italy", 39}, {"Japan", 81},
{"Mexico", 52}, {"Nigeria", 234},
{"Pakistan", 92}, {"Philippines", 63},
{"Poland", 48}, {"Russia", 7},
{"South Africa", 27}, {"South Korea", 82},
{"Spain", 34}, {"Sudan", 249},
{"Thailand", 66}, {"Turkey", 90},
{"Ukraine", 380}, {"United Kingdom", 44},
{"United States", 1}, {"Vietnam", 84}};

• The inner braces around each structure value are optional.
각구조체초기값의중괄호도는선택사항임

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 43

Initializing an Array of Structures
• C99’s designated initializers allow an item to have more than one

designator.
c99의지정초기화는하나이상의지정자를갖을수있음

• A declaration of the inventory array that uses a designated
initializer to create a single part:
지정초기화로하나의부품만 inventory 배열구조체의값을초기화하는예

struct part inventory[100] =
{[0].number = 528, [0].on_hand = 10,
[0].name[0] = '\0'};

The first two items in the initializer use two designators; the last
item uses three.
지정자로첨자 0의구조체의멤버를초기화함, 순서는지정하였기때문에원
구조체정의와다름

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 44

Program: Maintaining a Parts Database
• The inventory.c program illustrates how nested arrays and

structures are used in practice.
inventory.c 프로그램은배열과구조체가중첩된경우의활용예를보임

• The program tracks parts stored in a warehouse.
프로그램은창고의부품들을관리함

• Information about the parts is stored in an array of structures.
부품의정보는구조체배열에저장됨

• Contents of each structure: 각구조체의내용은다음과같음

• Part number
• Name
• Quantity

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 45

Program: Maintaining a Parts Database
• Operations supported by the program:
프로그램이지원하는동작

• Add a new part number, part name, and initial quantity on
hand 새로운부품번호, 이름, 개수를추가

• Given a part number, print the name of the part and the
current quantity on hand 부품번호에대한이름과보유개수를출력

• Given a part number, change the quantity on hand
부품번호에대해보유개수수정

• Print a table showing all information in the database
데이터베이스의모든정보출력

• Terminate program execution 프로그램종료

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 46

Program: Maintaining a Parts Database
• The codes i (insert), s (search), u (update), p (print), and q

(quit) will be used to represent these operations.
각기능은 I (삽입), s (검색), u (갱신), p (출력) q (종료)로조작가능

• A session with the program: 실행예

Enter operation code: i
Enter part number: 528
Enter part name: Disk drive
Enter quantity on hand: 10

Enter operation code: s
Enter part number: 528
Part name: Disk drive
Quantity on hand: 10

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 47

Program: Maintaining a Parts Database
Enter operation code: s
Enter part number: 914
Part not found.

Enter operation code: i
Enter part number: 914
Enter part name: Printer cable
Enter quantity on hand: 5

Enter operation code: u
Enter part number: 528
Enter change in quantity on hand: -2

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 48

Program: Maintaining a Parts Database
Enter operation code: s
Enter part number: 528
Part name: Disk drive
Quantity on hand: 8

Enter operation code: p
Part Number Part Name Quantity on Hand

528 Disk drive 8
914 Printer cable 5

Enter operation code: q

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 49

Program: Maintaining a Parts Database
• The program will store information about each part in a structure.
각부품정보를구조체에저장

• The structures will be stored in an array named inventory.
inventory라는구조체배열로정보취합

• A variable named num_parts will keep track of the number of
parts currently stored in the array.
num_parts 변수가배열에저장된부품의개수를관리

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 50

Program: Maintaining a Parts Database
• An outline of the program’s main loop: 프로그램의메인루프

for (;;) {
prompt user to enter operation code;//동작 코드

read code; // 코드 읽기

switch (code) {
case 'i': perform insert operation; break;// 삽입

case 's': perform search operation; break;// 검색

case 'u': perform update operation; break;// 갱신

case 'p': perform print operation; break;// 출력

case 'q': terminate program;// 종료

default: print error message;// 에러 출력
}

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 51

Program: Maintaining a Parts Database
• Separate functions will perform the insert, search, update,

and print operations.
각동작에맞게새로운함수정의

• Since the functions will all need access to inventory
and num_parts, these variables will be external.
inventory와 num_parts는모든함수에서활용해야함; external로선언

• The program is split into three files: 3 부분으로구성함

• inventory.c (the bulk of the program) 프로그램의메인코드

• readline.h (contains the prototype for the read_line
function) read_line함수의프로토타입/원형이있음

• readline.c (contains the definition of read_line)
read_line의구현/정의가됨

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 52

inventory.c
/* Maintains a parts database (array version) */

#include <stdio.h>
#include "readline.h"

#define NAME_LEN 25
#define MAX_PARTS 100

struct part {
int number;
char name[NAME_LEN+1];
int on_hand;

} inventory[MAX_PARTS];

int num_parts = 0; /* number of parts currently stored */

int find_part(int number);
void insert(void);
void search(void);
void update(void);
void print(void);

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 53

/**
* main: Prompts the user to enter an operation code, *
* then calls a function to perform the requested *
* action. Repeats until the user enters the *
* command 'q'. Prints an error message if the user *
* enters an illegal code. *
**/
int main(void)
{
char code;
for (;;) {
printf("Enter operation code: ");
scanf(" %c", &code);
while (getchar() != '\n') /* skips to end of line */
;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 54

switch (code) {
case 'i': insert();

break;
case 's': search();

break;
case 'u': update();

break;
case 'p': print();

break;
case 'q': return 0;
default: printf("Illegal code\n");

}
printf("\n");

}
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 55

/**
* find_part: Looks up a part number in the inventory *
* array. Returns the array index if the part *
* number is found; otherwise, returns -1. *
**/
int find_part(int number)
{
int i;

for (i = 0; i < num_parts; i++)
if (inventory[i].number == number)
return i;

return -1;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 56

/**
* insert: Prompts the user for information about a new *
* part and then inserts the part into the *
* database. Prints an error message and returns *
* prematurely if the part already exists or the *
* database is full. *
**/
void insert(void)
{
int part_number;

if (num_parts == MAX_PARTS) {
printf("Database is full; can't add more parts.\n");
return;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 57

printf("Enter part number: ");
scanf("%d", &part_number);
if (find_part(part_number) >= 0) {
printf("Part already exists.\n");
return;

}

inventory[num_parts].number = part_number;
printf("Enter part name: ");
read_line(inventory[num_parts].name, NAME_LEN);
printf("Enter quantity on hand: ");
scanf("%d", &inventory[num_parts].on_hand);
num_parts++;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 58

/**
* search: Prompts the user to enter a part number, then *
* looks up the part in the database. If the part *
* exists, prints the name and quantity on hand; *
* if not, prints an error message. *
**/
void search(void)
{
int i, number;

printf("Enter part number: ");
scanf("%d", &number);
i = find_part(number);
if (i >= 0) {
printf("Part name: %s\n", inventory[i].name);
printf("Quantity on hand: %d\n", inventory[i].on_hand);

} else
printf("Part not found.\n");

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 59

/**
* update: Prompts the user to enter a part number. *
* Prints an error message if the part doesn't *
* exist; otherwise, prompts the user to enter *
* change in quantity on hand and updates the *
* database. *
**/
void update(void)
{
int i, number, change;

printf("Enter part number: ");
scanf("%d", &number);
i = find_part(number);
if (i >= 0) {
printf("Enter change in quantity on hand: ");
scanf("%d", &change);
inventory[i].on_hand += change;

} else
printf("Part not found.\n");

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 60

/**
* print: Prints a listing of all parts in the database, *
* showing the part number, part name, and *
* quantity on hand. Parts are printed in the *
* order in which they were entered into the *
* database. *
**/
void print(void)
{
int i;

printf("Part Number Part Name "
"Quantity on Hand\n");

for (i = 0; i < num_parts; i++)
printf("%7d %-25s%11d\n", inventory[i].number,

inventory[i].name, inventory[i].on_hand);
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 61

Program: Maintaining a Parts Database
• The version of read_line in Chapter 13 won’t work properly

in the current program. 13장의 read_line은정상동작안함

• Consider what happens when the user inserts a part:
다음처럼입력하는경우의예를보자

Enter part number: 528
Enter part name: Disk drive

• The user presses the Enter key after entering the part number,
leaving an invisible new-line character that the program must
read.
part number를입력할때숫자외에눈에안보이는줄바꿈기호(엔터)도입력함

• When scanf reads the part number, it consumes the 5, 2, and
8, but leaves the new-line character unread.
scanf가읽을때 5, 2, 8을읽지만줄바꿈기호는읽지않음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 62

Program: Maintaining a Parts Database
• If we try to read the part name using the original read_line

function, it will encounter the new-line character immediately
and stop reading.
원래의 read_line 함수는부품이름을읽을때줄바꿈기호를문자열로
인식하는문제가있음; 결과적으로아무것도입력하지않았지만, 더이상읽지
않음

• This problem is common when numerical input is followed by
character input. 숫자입력후글자입력하는경우흔히발생하는문제임

• One solution is to write a version of read_line that skips
white-space characters before it begins storing characters. 해결
방법중하나는글자를읽을때는공백글자무시하도록 read_line을수정

• This solves the new-line problem and also allows us to avoid
storing blanks that precede the part name.
줄바꿈및이름앞의공백을제거하는효과가있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 63

readline.h
#ifndef READLINE_H
#define READLINE_H

/**
* read_line: Skips leading white-space characters, then *
* reads the remainder of the input line and *
* stores it in str. Truncates the line if its *
* length exceeds n. Returns the number of *
* characters stored. *
**/
int read_line(char str[], int n);

#endif

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 64

readline.c
#include <ctype.h>
#include <stdio.h>
#include "readline.h"

int read_line(char str[], int n)
{
int ch, i = 0;

while (isspace(ch = getchar()))
;

while (ch != '\n' && ch != EOF) {
if (i < n)
str[i++] = ch;

ch = getchar();
}
str[i] = '\0';
return i;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 65

Unions

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 66

Unions
• A union, like a structure, consists of one or more members,

possibly of different types.
union도구조체와같이서로다른형을갖는하나이상의멤버들로구성

• The compiler allocates only enough space for the largest of the
members, which overlay each other within this space.
컴파일러는가장큰멤버들의크기를보고충분한공간을할당하고, 멤버를그
공간안에저장함

• Assigning a new value to one member alters the values of the
other members as well.
한멤버에새로운값을할당하면다른멤들의값도영향을받음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 67

Unions
• An example of a union variable: 유니언변수의선언예

union {
int i;
double d;

} u;

• The declaration of a union closely resembles a structure
declaration: 유니언변수의선언은구조체의선언과유사함

struct {
int i;
double d;

} s;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 68

Unions
• The structure s and the union u differ in just one way.
구조체 s와유니언 u는하나의차이만존재함

• The members of s are stored
at different addresses in memory.
s의멤버는서로다른주소공간에저장됨

• The members of u are stored
at the same address.
u의멤버는같은주소를갖음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 69

Unions
• Members of a union are accessed in the same way as members of

a structure:
유니언멤버의접근방법은구조체멤버의접근과동일함

u.i = 82;
u.d = 74.8;

• Changing one member of a union alters any value previously
stored in any of the other members.
유니언의한멤버변수를저장하면그전에저장되었던멤버의값에영향을줌

• Storing a value in u.d causes any value previously stored in
u.i to be lost.
u.d에값을저장하면 u.i에저장된값은소멸됨

• Changing u.i corrupts u.d.
u.i 저장하면 u.d에저장된값은깨짐

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 70

Unions
• The properties of unions are almost identical to the properties of

structures.
유니언의성질은구조체의성질과대부분같음

• We can declare union tags and union types in the same way we
declare structure tags and types.
유니언태그나유니언형을선언하여쓸수있음

• Like structures, unions can be copied using the = operator, passed
to functions, and returned by functions.
유니언은 = 연산자로복사되고함수의인자로전달, 리턴받을수있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 71

Unions
• Only the first member of a union can be given an initial value.
단, 유니언의첫번째멤버만초기화될수있음

• How to initialize the i member of u to 0:
u의멤버 i를 0으로초기화하는예

union {
int i;
double d;

} u = {0};

• The expression inside the braces must be constant. (The rules are
slightly different in C99.)
중괄호안의표현식은상수여야함 (c99는다른규칙을따름)

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 72

Unions
• Designated initializers can also be used with unions.

union에서도지정초기화를쓸수있음

• A designated initializer allows us to specify which member of a
union should be initialized: 어떤멤버를초기화할지지정초기화로정함

union {
int i;
double d;

} u = {.d = 10.0};
• Only one member can be initialized, but it doesn’t have to be the

first one. 단, 여러멤버중하나의값만초기화할수있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 73

Unions
• Applications for unions: 유니언의응용처

• Saving space 공간절약

• Building mixed data structures 혼합된자료구조생성

• Viewing storage in different ways (discussed in Chapter 20)
저장장치를보는또다른시각 (20장에서자세히다룸)

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 74

Using Unions to Save Space
• Unions can be used to save space in structures.
구조체의공간을줄이기위해유니언을사용가능

• Suppose that we’re designing a structure that will contain
information about an item that’s sold through a gift catalog.
예로, 선물카탈로그책자의아이템의정보를저장하는구조체를생각해보자

• Each item has a stock number and a price, as well as other
information that depends on the type of the item:
각아이템은품명, 금액, 그외관련정보를갖음

Books: Title, author, number of pages 제목, 저자, 페이지수

Mugs: Design 디자인

Shirts: Design, colors available, sizes available 디자인, 남은색상, 남은
치수

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 75

Using Unions to Save Space
• A first attempt at designing the catalog_item

structure: 첫번째 catalog_item 구조체작성시도

struct catalog_item {
int stock_number;
double price;
int item_type;
char title[TITLE_LEN+1];
char author[AUTHOR_LEN+1];
int num_pages;
char design[DESIGN_LEN+1];
int colors;
int sizes;

};

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 76

Using Unions to Save Space
• The item_type member would have one of the values BOOK,
MUG, or SHIRT. item_type멤버는 BOOK, MUG, SHIRT 중하나만값이있음

• The colors and sizes members would store encoded
combinations of colors and sizes.
colors와 sizes 멤버는색과크기의값을저장

• This structure wastes space, since only part of the information in
the structure is common to all items in the catalog.
이구조체는공간낭비가심함; 몇개의정보만모든아이템에공통으로사용됨

• By putting a union inside the catalog_item structure, we can
reduce the space required by the structure.
catalog_item구조체에유니언을씀으로공간을절약할수있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 77

Using Unions to Save Space
struct catalog_item {
int stock_number;
double price;
int item_type;
union {
struct {
char title[TITLE_LEN+1];
char author[AUTHOR_LEN+1];
int num_pages;

} book;
struct {
char design[DESIGN_LEN+1];

} mug;
struct {
char design[DESIGN_LEN+1];
int colors;
int sizes;

} shirt;
} item;

};

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 78

Using Unions to Save Space
• If c is a catalog_item structure that represents a book, we

can print the book’s title in the following way:
c가책을나타내는 catalog_item 구조체라면다음과같이나타낼수있음

printf("%s", c.item.book.title);

• As this example shows, accessing a union that’s nested inside a
structure can be awkward.
구조체에유니언이있고그안에또구조체가있는중첩구조를접근하는것이
이상해보일수있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 79

Using Unions to Save Space
• The catalog_item structure can be used to illustrate an

interesting aspect of unions.
catalog_item구조체는유니언의재미있는성질을보여줌

• Normally, it’s not a good idea to store a value into one
member of a union and then access the data through a
different member.
일반적으로한유니언의멤버를저장하고다른멤버를통해값을읽어오는
것은현명하지못함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 80

Using Unions to Save Space
• However, there is a special case: two or more of the

members of the union are structures, and the structures
begin with one or more matching members.
특수한경우제외: 2개이상의멤버가구조체이고각구조체마다동일한
멤버를갖는경우

• If one of the structures is currently valid, then the matching
members in the other structures will also be valid.
한구조체가유효하면다른구조체도유효함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 81

Using Unions to Save Space
• The union embedded in the catalog_item structure

contains three structures as members.
catalog_item구조체는유니언으로세개의구조체멤버를갖음

• Two of these (mug and shirt) begin with a matching
member (design). mug와 shirt는동일한멤버(design)를갖고있음

• Now, suppose that we assign a value to one of the design
members: design 멤버중하나에값을저장하는예

strcpy(c.item.mug.design, "Cats");

• The design member in the other structure will be defined
and have the same value:
다른구조체의 design 멤버를접근해도같은값을갖음

printf("%s", c.item.shirt.design);
/* prints "Cats" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 82

Using Unions to Build Mixed Data Structures
• Unions can be used to create data structures that contain a

mixture of data of different types.
유니언은서로다른데이터형으로구성된자료구조를만드는데쓰임

• Suppose that we need an array whose elements are a mixture of
int and double values.
어떤배열이 int 또는 double 값을갖는다고해보자

• First, we define a union type whose members represent the
different kinds of data to be stored in the array:
서로다른형을갖는멤버로구성된유니언형을만들어배열을선언할수있음

typedef union {
int i;
double d;

} Number;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 83

Using Unions to Build Mixed Data Structures
• Next, we create an array whose elements are Number values:
유니언형을만든후, 그형을이용해배열을선언함

Number number_array[1000];

• A Number union can store either an int value or a double
value. 이제 Number 유니언형으로만든배열은 int와 double 값을갖을수있음

• This makes it possible to store a mixture of int and double
values in number_array:
number_array 배열에정수 / 실수값을저장할수있음

number_array[0].i = 5;
number_array[1].d = 8.395;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 84

Adding a “Tag Field” to a Union
• There’s no easy way to tell which member of a union was last

changed and therefore contains a meaningful value.
유니언의멤버중어떤것이의미있는값을갖고있는지파악하는것이쉽지않음

• Consider the problem of writing a function that displays the value
stored in a Number union:
Number 유니언에저장된값을출력하는함수를작성한다고하자

void print_number(Number n)
{

if (n contains an integer)
printf("%d", n.i);

else
printf("%g", n.d);

}

There’s no way for print_number to determine whether n
contains an integer or a floating-point number.
print_number는 n이정수인지실수인지판단할수없음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 85

Adding a “Tag Field” to a Union
• In order to keep track of this information, we can embed the

union within a structure that has one other member: a “tag field”
or “discriminant.”
구조체내에이정보를파악할수있도록구분자또는태그정보를포함할수있음

• The purpose of a tag field is to remind us what’s currently stored
in the union.
태그필드는유니언에무엇이저장되었는지알려줌

• item_type served this purpose in the catalog_item
structure.
catalog_item구조체에서는 item_type이그역할을함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 86

Adding a “Tag Field” to a Union
• The Number type as a structure with an embedded union:

Number 형을구조체로선언하고그안에유니언을포함시킴

#define INT_KIND 0
#define DOUBLE_KIND 1

typedef struct {
int kind; /* tag field */
union {

int i;
double d;

} u;
} Number;

• The value of kind will be either INT_KIND or
DOUBLE_KIND.
kind의값에 INT_KIND 또는 DOUBLE_KIND로표시함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 87

Adding a “Tag Field” to a Union
• Each time we assign a value to a member of u, we’ll also change
kind to remind us which member of u we modified.
u의멤버에값을할당할때마다 kind의값을갱신해야함

• An example that assigns a value to the i member of u:
u의멤버로 i의값을바꾸는예

n.kind = INT_KIND;
n.u.i = 82;
n is assumed to be a Number variable.
n은 Number 형변수라가정

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 88

Adding a “Tag Field” to a Union
• When the number stored in a Number variable is retrieved,
kind will tell us which member of the union was the last to be
assigned a value.
Number 형변수 kind의값으로 어떤유니언값이마지막으로쓰였는지알수있음

• A function that takes advantage of this capability:
그정보를활용하는함수의예

void print_number(Number n)
{

if (n.kind == INT_KIND)
printf("%d", n.u.i);

else
printf("%g", n.u.d);

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 89

Enumerations

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 90

Enumerations
• In many programs, we’ll need variables that have only a small set

of meaningful values.
어떤프로그램들은의미있는값의범위가한정적일수있음

• A variable that stores the suit of a playing card should have only
four potential values: “clubs,” “diamonds,” “hearts,” and “spades.”
예: 카드게임에서는 “클럽”, “다이어몬드”, ”하트”, 그리고 “스페이드”만있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 91

Enumerations
• A “suit” variable can be declared as an integer, with a set of codes

that represent the possible values of the variable:
“suit”라는변수는정수를저장하고패와수를지정하여구분할수있음

int s; /* s will store a suit */
…
s = 2; /* 2 represents "hearts" */

• Problems with this technique:
이와같은접근방식에문제점

• We can’t tell that s has only four possible values.
s의값으로 4개이외의값만있는지확신할수없음

• The significance of 2 isn’t apparent.
2의의미가명시적이지않음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 92

Enumerations
• Using macros to define a suit “type” and names for the various

suits is a step in the right direction:
매크로정의를통해 “type”과이름을정하는것은괜찮은방법임

#define SUIT int
#define CLUBS 0
#define DIAMONDS 1
#define HEARTS 2
#define SPADES 3

• An updated version of the previous example: 앞선예의개선된버전

SUIT s;
…
s = HEARTS;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 93

Enumerations
• Problems with this technique:
이방법의문제점

• There’s no indication to someone reading the program that the
macros represent values of the same “type.”
매크로의정의가같은 “type”의그룹내의값인지파악하기어려움

• If the number of possible values is more than a few, defining a
separate macro for each will be tedious.
그룹내에값이한두개가아니라면매크로정의를작성하는것도만만치않음

• The names CLUBS, DIAMONDS, HEARTS, and SPADES will be
removed by the preprocessor, so they won’t be available during
debugging.
전처리과정에서매크로정의는사라지기때문에컴파일이후디버깅과정에서
정보를활용할수없음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 94

Enumerations
• C provides a special kind of type designed specifically for variables

that have a small number of possible values.
값의범위가한정되어있는변수용타입을제공함

• An enumerated type is a type whose values are listed
(“enumerated”) by the programmer. enumerated type(열거형)이라
부르고값은프로그래머에의해나열됨

• Each value must have a name (an enumeration constant).
각값은이름을갖음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 95

Enumerations
• Although enumerations have little in common with structures and

unions, they’re declared in a similar way:
열거형이유니언과구조체와유사한점은없지만, 선언방식은유사함

enum {CLUBS, DIAMONDS, HEARTS, SPADES} s1, s2;

• The names of enumeration constants must be different from
other identifiers declared in the enclosing scope.
열거형에사용된상수의이름은범위내에서유일해야함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 96

Enumerations
• Enumeration constants are similar to constants created with the
#define directive, but they’re not equivalent.
#define으로선언된상수와비슷하지만동일하지는않음

• If an enumeration is declared inside a function, its constants
won’t be visible outside the function.
열거형이함수내에서선언되었다면해당함수밖에서보이지않음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 97

Enumeration Tags and Type Names
• As with structures and unions, there are two ways to name an

enumeration: by declaring a tag or by using typedef to create a
genuine type name.
구조체와유니언과동일하게태그와 typedef으로새로운형의이름을만들수있음

• Enumeration tags resemble structure and union tags:
열거형태그는유니언과구조체의태그와같은방식으로선언

enum suit {CLUBS, DIAMONDS, HEARTS, SPADES};

• suit variables would be declared in the following way:
suit 열거형변수는다음과같이선언

enum suit s1, s2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 98

Enumeration Tags and Type Names
• As an alternative, we could use typedef to make Suit a type

name:
typedef으로 Suit이라는이름의새로운형을만들수도있음

typedef enum {CLUBS, DIAMONDS, HEARTS, SPADES} Suit;
Suit s1, s2;

• In C89, using typedef to name an enumeration is an excellent
way to create a Boolean type:
c89에서는불리언형을만드는가장좋은방법은 typedef 을쓰는것임

typedef enum {FALSE, TRUE} Bool;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 99

Enumerations as Integers
• Behind the scenes, C treats enumeration variables and constants

as integers.
C에서는열거형변수와상수를정수로판단함

• By default, the compiler assigns the integers 0, 1, 2, … to the
constants in a particular enumeration.
열거형에나열된순서에따라 0, 1, 2, …의값을할당받음

• In the suit enumeration, CLUBS, DIAMONDS, HEARTS, and
SPADES represent 0, 1, 2, and 3, respectively.
suit 열거형에서는클럽, 다이어몬드, 하트, 스페이드가각각 0, 1, 2, 3의값을갖음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 100

Enumerations as Integers
• The programmer can choose different values for enumeration

constants: 프로그래머는열거되는상수에다른값을지정할수있음

enum suit {CLUBS = 1, DIAMONDS = 2,
HEARTS = 3, SPADES = 4};

• The values of enumeration constants may be arbitrary integers,
listed in no particular order: 상수의값은순서와상관없음

enum dept {RESEARCH = 20,
PRODUCTION = 10, SALES = 25};

• It’s even legal for two or more enumeration constants to have the
same value. 두개의열거값이같은값을가져도됨

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 101

Enumerations as Integers
• When no value is specified for an enumeration constant, its value

is one greater than the value of the previous constant.
어떤열거값이값을지정받지못했다면, 이전상수값보다 1 큰값을받음

• The first enumeration constant has the value 0 by default.
첫번째열거상수값은기본적으로 0을갖음

• Example:
enum EGA_colors {BLACK, LT_GRAY = 7,

DK_GRAY, WHITE = 15};

BLACK has the value 0, LT_GRAY is 7, DK_GRAY is 8, and
WHITE is 15.
BLACK은 0, LT_GRAY는 7, DK_GRAY는 8, WHITE는 15임

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 102

Enumerations as Integers
• Enumeration values can be mixed with ordinary integers:
열거값은다른정수들과혼합되어쓰일수있음

int i;
enum {CLUBS, DIAMONDS, HEARTS, SPADES} s;

i = DIAMONDS; /* i is now 1 */
s = 0; /* s is now 0 (CLUBS) */
s++; /* s is now 1 (DIAMONDS) */
i = s + 2; /* i is now 3 */

• s is treated as a variable of some integer type.
s는정수타입의변수처럼취급됨

• CLUBS, DIAMONDS, HEARTS, and SPADES are names
for the integers 0, 1, 2, and 3.
클럽, 다이어몬드, 하트, 스페이드는 0, 1, 2, 3의값을갖고있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 103

Enumerations as Integers
• Although it’s convenient to be able to use an enumeration value

as an integer, it’s dangerous to use an integer as an enumeration
value.
열거형변수가정수형이더라도, 정수형변수로취급하여값을저장하면안됨

• For example, we might accidentally store the number 4—which
doesn’t correspond to any suit—into s.
열거형변수의범위밖의값을저장하게되면무의미한값을저장하게됨

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 104

Using Enumerations to Declare “Tag Fields”
• Enumerations are perfect for determining which member of a

union was the last to be assigned a value.
열거형변수는유니언중어떤멤버가사용되었는지표시하기좋음

• In the Number structure, we can make the kind member an
enumeration instead of an int:
Number 구조체에서 kind를열거형변수로선언한예

typedef struct {
enum {INT_KIND, DOUBLE_KIND} kind;
union {

int i;
double d;

} u;
} Number;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 105

Using Enumerations to Declare “Tag Fields”
• The new structure is used in exactly the same way as the old one.
새로운구조체는과거에정의된구조체와동일한기능을함

• Advantages of the new structure:
새로운구조체의장점

• Does away with the INT_KIND and DOUBLE_KIND macros
매크로정의없이선언됨

• Makes it obvious that kind has only two possible values:
INT_KIND and DOUBLE_KIND
두 개의 유일한 값의 범위를 갖음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 106

