
Pointers and Arrays
adopted from KNK C Programming : A Modern Approach

Introduction
• C allows us to perform arithmetic—addition and subtraction—on

pointers to array elements.
C는배열요소에대한포인터덧셈뺄셈을지원함

• This leads to an alternative way of processing arrays in which
pointers take the place of array subscripts.
배열첨자를사용하지않고포인터로배열을조작할수있음

• The relationship between pointers and arrays in C is a close one.
C에서포인터와배열은밀접한관계가있음

• Understanding this relationship is critical for mastering C.
이관계를이해하는것이 C를마스터하는데중요함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 2

Pointer Arithmetic 포인터연산

• Chapter 11 showed that pointers can point to array elements:
11장에서포인터는배열의요소를가리킬수있음을보였음

int a[10], *p;
p = &a[0];

• A graphical representation:그림으로표현해보자

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 3

Pointer Arithmetic
• We can now access a[0] through p; for example, we can store

the value 5 in a[0] by writing
*p = 5;
a[0]을포인터로접근할수있음; 그리고상기문장을통해 a[0]을접근할수있음

• An updated picture: 위문장을반영한그림

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 4

Pointer Arithmetic
• If p points to an element of an array a, the other elements of a

can be accessed by performing pointer arithmetic (or address
arithmetic) on p.
p가배열 a의요소를가리킬때포인터연산을통해 a의다른요소도접근가능

• C supports three (and only three) forms of pointer arithmetic:
c에서포인터는 3가지만있음

• Adding an integer to a pointer 포인터에정수더하기

• Subtracting an integer from a pointer 포인터에정수빼기

• Subtracting one pointer from another 포인터빼기포인터

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 5

Adding an Integer to a Pointer 포인터에정수더하기

• Adding an integer j to a pointer p yields a pointer to the element
j places after the one that p points to.
포인터 p에정수 j 를더하면 p 에서 j번째다음요소를가리킴

• More precisely, if p points to the array element a[i], then p + j
points to a[i+j].
P가 a[i]요소를가리킬때, p+j는 a[i+j]를가리킴

• Assume that the following declarations are in effect:
다음과같이선언했다고하자.

int a[10], *p, *q, i;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 6

Adding an Integer to a Pointer
• Example of pointer addition: 포인터덧셈의예

p = &a[2];

q = p + 3;

p += 6;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 7

Subtracting an Integer from a Pointer 포인터뺄셈

• If p points to a[i], then p - j points to a[i-j].
P가 a[i]를가리킬때 p-j는 a[i-j]를가리킴

• Example:
p = &a[8];

q = p - 3;

p -= 6;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 8

Subtracting One Pointer from Another포인터-포인터

• When one pointer is subtracted from another, the result is the
distance (measured in array elements) between the pointers.
포인터에서포인터를빼면배열요소를단위로한포인터간의차를구함

• If p points to a[i] and q points to a[j], then p - q is equal
to i - j. p가 a[i]를, q가 a[j]를가리킬때 p-q는 i-j와같음

• Example:
p = &a[5];
q = &a[1];

i = p - q; /* i is 4 */
i = q - p; /* i is -4 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 9

Subtracting One Pointer from Another
• Operations that cause undefined behavior:
정의되지않은동작을일으키는연산

• Performing arithmetic on a pointer that doesn’t point to an
array element배열의요소를가리키지않는포인터에연산을하는경우

• Subtracting pointers unless both point to elements of the same
array 같은배열을가리키지않는포인터들을서로빼는경우

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 10

Comparing Pointers 포인터비교

• Pointers can be compared using the relational operators (<,
<=, >, >=) and the equality operators (== and !=).
포인터는관계연산자나등호연산자로비교가능

• Using relational operators is meaningful only for pointers to elements
of the same array.
관계연산자는같은배열을가리키는포인터들에한에의미있음

• The outcome of the comparison depends on the relative
positions of the two elements in the array.
비교에결과는배열의두요소의상대적위치에의존함

• After the assignments 다음과같은할당문의결과는
p = &a[5]; // p<=q 는 0
q = &a[1]; // p>=q는 1

the value of p <= q is 0 and the value of p >= q is 1.

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 11

Pointers to Compound Literals (C99)
• It’s legal for a pointer to point to an element within an array

created by a compound literal:
포인터변수로배열을선언할수있음

int *p = (int []){3, 0, 3, 4, 1};
• Using a compound literal saves us the trouble of first declaring an

array variable and then making p point to the first element of that
array:
이와같은방식으로배열을선언하면배열을선언하고배열의첫요소를포인터로
가리키도록하는수고를덜수있음

int a[] = {3, 0, 3, 4, 1};
int *p = &a[0];

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 12

Using Pointers for Array Processing
• Pointer arithmetic allows us to visit the elements of an array by

repeatedly incrementing a pointer variable.
포인터연산으로포인터변수를증가시켜서배열의요소들을순회할수있음

• A loop that sums the elements of an array a:
배열 a의요소들을더하는루프

#define N 10
…
int a[N], sum, *p;
…
sum = 0;
for (p = &a[0]; p < &a[N]; p++)

sum += *p;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 13

Using Pointers for Array Processing
At the end of the first iteration:
첫번째반복의끝

At the end of the second iteration:
두번째반복의끝

At the end of the third iteration:
세번째반복의끝

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 14

Using Pointers for Array Processing
• The condition p < &a[N] in the for statement deserves special

mention. for문의 p <&[N] 비교조건에주의해야함

• It’s legal to apply the address operator to a[N], even though this
element doesn’t exist.
존재하지않는 a[N]에주소연산자를붙였지만비교문장으로는사용가능

• Pointer arithmetic may save execution time.
포인터연산은실행시간을줄일수있음

• However, some C compilers produce better code for loops that
rely on subscripting.
어떤 c 컴파일러는반복문에첨자를사용한코드를만들어내기도함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 15

Combining the * and ++ Operators
• C programmers often combine the * (indirection) and ++

operators. C 개발자들은 *(역참조)와 ++ 연산자를결합하기도함

• A statement that modifies an array element and then advances to
the next element: 다음문장은배열의요소를변경하고다음요소를방문

a[i++] = j;
• The corresponding pointer version: 포인터를사용한방법

*p++ = j;
• Because the postfix version of ++ takes precedence over *, the

compiler sees this as
연산자우선순위상 ++가 *보다우선순위가높기때문에다음과같이해석됨

*(p++) = j;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 16

Combining the * and ++ Operators
• Possible combinations of * and ++: 결합방법

Expression Meaning
*p++ or *(p++) Value of expression is *p before increment;

increment p later
*p를사용하고 p를증가

(*p)++ Value of expression is *p before increment;
increment *p later
*p를사용하고 *p를증가

*++p or *(++p) Increment p first;
value of expression is *p after increment
p를증가하고; 증가된 *p를사용

++*p or ++(*p) Increment *p first;
value of expression is *p after increment
*p를증가하고; 증가된 *p를사용

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 17

Combining the * and ++ Operators
• The most common combination of * and ++ is *p++, which is

handy in loops. 가장흔한 * 와 ++의결합방식은 *p++으로루프에유용함

• Instead of writing 배열 a의요소를합산을위해아래와같이작성하는대신

for (p = &a[0]; p < &a[N]; p++)
sum += *p;

to sum the elements of the array a, we could write
다음과같이작성할수있음

p = &a[0];
while (p < &a[N])

sum += *p++;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 18

Combining the * and ++ Operators
• The * and -- operators mix in the same way as * and ++.

*과 --연산자도 *와 ++의결합과같은방식으로사용가능

• For an application that combines * and --, let’s return to the
stack example of Chapter 10. 10장의스택을활용하여 *와 --를응용해보자

• The original version of the stack relied on an integer variable
named top to keep track of the “top-of-stack” position in the
contents array. 스택의 top의위치를추적하기위해정수변수를사용했었음

• Let’s replace top by a pointer variable that points initially to
element 0 of the contents array:
top을포인터변수로바꾸고 contents배열의 0번요소를가리키도록하자

int *top_ptr = &contents[0];

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 19

Combining the * and ++ Operators
• The new push and pop functions:
새로운 push 와 pop 함수
void push(int i)
{

if (is_full())
stack_overflow();

else
*top_ptr++ = i;

}

int pop(void)
{

if (is_empty())
stack_underflow();

else
return *--top_ptr;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 20

Using an Array Name as a Pointer
• Pointer arithmetic is one way in which arrays and pointers are

related.
포인터연산이배열과포인터를연관지어줌

• Another key relationship: 또다른관계

The name of an array can be used as a pointer to the first element
in the array.
배열의이름은배열의첫번째요소에대한포인터로쓸수있음

• This relationship simplifies pointer arithmetic and makes both
arrays and pointers more versatile.
이관계가포인터연산을단순하게만들고배열과포인터를좀더유용하게만듬

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 21

Using an Array Name as a Pointer
• Suppose that a is declared as follows: 다음과같이 a를선언했음

int a[10];

• Examples of using a as a pointer: a를포인터로쓰는방법

a = 7; / stores 7 in a[0] */
(a+1) = 12; / stores 12 in a[1] */

• In general, a + i is the same as &a[i]. 일반적으로 a+i는 &a[i]와같음

• Both represent a pointer to element i of a.
둘다배열 a의 i번째요소에대한포인터를나타냄

• Also, *(a+i) is equivalent to a[i]. *(a+i)는 a[i]와같음

• Both represent element i itself. 둘다요소 i를가리킴

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 22

Using an Array Name as a Pointer
• The fact that an array name can serve as a pointer makes it easier

to write loops that step through an array.
배열이름을포인터로쓸수있기때문에이를활용하여배열의요소를순회가능

• Original loop: 일반적루프

for (p = &a[0]; p < &a[N]; p++)
sum += *p;

• Simplified version: 간략화버전

for (p = a; p < a + N; p++)
sum += *p;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 23

Using an Array Name as a Pointer
• Although an array name can be used as a pointer, it’s not possible

to assign it a new value.
배열의이름을포인터로쓸수는있지만, 새로운값을할당할수는없음

• Attempting to make it point elsewhere is an error:
다른위치를가리키려고하면오류발생

while (*a != 0)
a++; /*** WRONG ***/

• This is no great loss; we can always copy a into a pointer variable,
then change the pointer variable:
대신포인터변수에배열 a를복사하는것으로활용

p = a;
while (*p != 0)

p++;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 24

Program: Reversing a Series of Numbers (Revisited)
• The reverse.c program of Chapter 8 reads 10 numbers, then

writes the numbers in reverse order.
8장에서 reverse.c프로그램은숫자를역순으로출력함

• The original program stores the numbers in an array, with
subscripting used to access elements of the array.
원프로그램은수를배열에저장하였고, 역순으로배열첨자를순회하였음

• reverse3.c is a new version of the program in which
subscripting has been replaced with pointer arithmetic.
reverse3.c는첨자대신포인터연산을활용함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 25

reverse3.c
/* Reverses a series of numbers (pointer version) */

#include <stdio.h>

#define N 10

int main(void)
{
int a[N], *p;

printf("Enter %d numbers: ", N);
for (p = a; p < a + N; p++)
scanf("%d", p);

printf("In reverse order:");
for (p = a + N - 1; p >= a; p--)
printf(" %d", *p);

printf("\n");

return 0;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 26

배열을함수의인자로전달

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 27

Array Arguments (Revisited)
• When passed to a function, an array name is treated as a pointer.
배열을함수로전달할때, 배열의이름이포인터로처리됨

• Example:
int find_largest(int a[], int n)
{
int i, max;

max = a[0];
for (i = 1; i < n; i++)
if (a[i] > max)
max = a[i];

return max;
}

• A call of find_largest: find_largest 호출문은다음과같음

largest = find_largest(b, N);

This call causes a pointer to the first element of b to be assigned to a;
the array itself isn’t copied. 이호출문은배열 b의첫요소의포인터를 a에할당

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 28

Array Arguments (Revisited)
• The fact that an array argument is treated as a pointer has some

important consequences.
배열을인자로쓸때포인터로처리된다는것에는중요한의미가있음

• Consequence 1: When an ordinary variable is passed to a
function, its value is copied; any changes to the corresponding
parameter don’t affect the variable.
첫번째중요성: 일반변수는함수로전달되면값이복사됨; 매개변수는원래
변수에영향을주지않음

• In contrast, an array used as an argument isn’t protected against
change.
반면, 배열이인자로사용되면원래배열의값이매개변수에의해변경됨

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 29

Array Arguments (Revisited)
• For example, the following function modifies an array by storing

zero into each of its elements:
다음함수는배열의모든요소에 0을저장함

void store_zeros(int a[], int n)
{

int i;

for (i = 0; i < n; i++)
a[i] = 0;

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 30

Array Arguments (Revisited)
• To indicate that an array parameter won’t be changed, we can

include the word const in its declaration:
매개변수배열이원래배열을못바꾸도록하려면 const라는키워드를선언에넣자

int find_largest(const int a[], int n)
{

…
}

• If const is present, the compiler will check that no assignment
to an element of a appears in the body of find_largest.
const 키워드가존재하면, 컴파일러가 find_largest함수내용에 a의요소에어떤
값을할당하는지검사함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 31

Array Arguments (Revisited)
• Consequence 2: The time required to pass an array to a function

doesn’t depend on the size of the array.
두번째중요성: 배열을함수의인자로전달하는데배열의크기는관계없음

• There’s no penalty for passing a large array, since no copy of the
array is made.
아주긴배열을전달하더라도배열의복사본을만드는것이아니기때문에
오버헤드가없음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 32

Array Arguments (Revisited)
• Consequence 3: An array parameter can be declared as a pointer

if desired.
세번째중요성: 매개변수를배열이아니라포인터로선언할수있음

• find_largest could be defined as follows: 다음과같이변경가능

int find_largest(int *a, int n)
{

…
}

• Declaring a to be a pointer is equivalent to declaring it to be an
array; the compiler treats the declarations as though they were
identical.
이경우 a를포인터로선언하는것은배열로선언하는것과똑같은의미를같음;
컴파일러가둘을동일하게처리함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 33

Array Arguments (Revisited)
• Although declaring a parameter to be an array is the same as

declaring it to be a pointer, the same isn’t true for a variable.
단, 포인터를선언하는것이배열을매개변수로쓰는것과같은효과가있지만,
같은것은아님

• The following declaration causes the compiler to set aside space
for 10 integers:
다음선언문은만나면, 컴파일러는 10개의정수를저장할공간을만듬

int a[10];
• The following declaration causes the compiler to allocate space

for a pointer variable:
다음선언문을만나면컴파일러는정수형포인터변수를저장할공간을만듬

int *a;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 34

Array Arguments (Revisited)
• In the latter case, a is not an array; attempting to use it as an

array can have disastrous results.
두번째경우 a는배열이아니기때문에, 배열처럼값을저장하려고하면절대안됨

• For example, the assignment
*a = 0; /*** WRONG ***/

will store 0 where a is pointing.
위의문장은 a가가리키는위치에값을 0으로저장함

• Since we don’t know where a is pointing, the effect on the
program is undefined.
a가어디를가리키는지알수없음으로, 결과적으로정의되지않은동작을하게됨

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 35

Array Arguments (Revisited)
• Consequence 4: A function with an array parameter can be passed

an array “slice”—a sequence of consecutive elements.
네번째중요성: 배열의일부만함수에전달할수있음

• An example that applies find_largest to elements 5 through
14 of an array b:
다음의예제는 find_largest에배열의 5부터 14까지의요소만전달함

largest = find_largest(&b[5], 10);

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 36

Using a Pointer as an Array Name
• C allows us to subscript a pointer as though it were an array

name:
c는배열의이름인것처럼포인터에첨자를사용가능

#define N 10
…
int a[N], i, sum = 0, *p = a;
…
for (i = 0; i < N; i++)

sum += p[i];

The compiler treats p[i] as *(p+i).
컴파일러는 p[i]를 *(p+i)로처리함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 37

심화내용

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 38

다차원배열

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 39

Pointers and Multidimensional Arrays
• Just as pointers can point to elements of one-dimensional arrays,

they can also point to elements of multidimensional arrays.
포인터가일차원배열의요소를가리킬수있듯이다차원배열의요소도가리킴

• This section explores common techniques for using pointers to
process the elements of multidimensional arrays.
포인터를다차원배열에사용하는일반적인기법을설명함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 40

Processing the Elements of a Multidimensional Array

• Chapter 8 showed that C stores two-dimensional arrays in
row-major order.
8장에서 2차원배열은줄단위로데이터를저장한다고했음

• Layout of an array with r rows: r개의줄을갖는배열의모습

• If p initially points to the element in row 0, column 0, we can
visit every element in the array by incrementing p
repeatedly.
최초에 p가배열의 0, 0 위치의요소를가리킨다면, p를반복적으로증가시켜서
배열의요소를순회할수있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 41

Processing the Elements of a Multidimensional Array
• Consider the problem of initializing all elements of the following array

to zero: 다음의배열의모든요소를 0으로초기화한다고하자

int a[NUM_ROWS][NUM_COLS];

• The obvious technique would be to use nested for loops:
for루프를사용할수있을것임
int row, col;
…
for (row = 0; row < NUM_ROWS; row++)
for (col = 0; col < NUM_COLS; col++)
a[row][col] = 0;

• If we view a as a one-dimensional array of integers, a single loop is
sufficient: 만약 a를 1차원배열로인식한다면루프하나면충분히초기화가능
int *p;
…
for (p = &a[0][0]; p <= &a[NUM_ROWS-1][NUM_COLS-1]; p++)
*p = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 42

Processing the Elements of a Multidimensional Array

• Although treating a two-dimensional array as one-dimensional
may seem like cheating, it works with most C compilers.
2차원배열을 1차원배열처럼다루는것이이상해보여도많은컴파일러가허용함

• Techniques like this one definitely hurt program readability, but—
at least with some older compilers—produce a compensating
increase in efficiency.
이렇게쓰면프로그램을읽기가어려워지겠지만, 옛날컴파일러에서는성능이
좋아질수있음

• With many modern compilers, though, there’s often little or no
speed advantage.
현대의컴파일러는성능이득을찾아보기어려움

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 43

Processing the Rows of a Multidimensional Array
• A pointer variable p can also be used for processing the elements

in just one row of a two-dimensional array.
포인터변수 p는 2차원배열의줄의시작만가리키도록할수있음

• To visit the elements of row i, we’d initialize p to point to
element 0 in row i in the array a:
i번째줄의요소를방문하기위해 p가배열 a의 i번째줄의 0번째요소를가리키도록
하면됨

p = &a[i][0];
or we could simply write
또는간단하게다음처럼쓸수있음

p = a[i];

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 44

Processing the Rowsof a Multidimensional Array
• For any two-dimensional array a, the expression a[i] is a

pointer to the first element in row i.
모든 2차원배열 a에대해, a[i]는 i번째줄의첫번째요소에대한포인터임

• To see why this works, recall that a[i] is equivalent to
*(a + i).
a[i]는 *(a+i)로바꿔쓸수있다고했음

• Thus, &a[i][0] is the same as &(*(a[i] + 0)),
which is equivalent to &*a[i].
그러므로 &a[i][0]은 &(*(a[i]+0))과같고정리하면 &*a[i]가됨

• This is the same as a[i], since the & and * operators
cancel. &와 *연산자가서로상쇄하므로 a[i]가됨

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 45

Processing the Rows of a Multidimensional Array
• A loop that clears row i of the array a:
배열 a의 i번째줄을초기화하는루프

int a[NUM_ROWS][NUM_COLS], *p, i;
…
for (p = a[i]; p < a[i] + NUM_COLS; p++)

*p = 0;

• Since a[i] is a pointer to row i of the array a, we can pass
a[i] to a function that’s expecting a one-dimensional array as
its argument.
a[i]가배열 a의 i번째줄의포인터이기때문에, a[i]를함수에전달한다는의미는 1차원
배열을인자로전달한다는의미로쓸수있음

• In other words, a function that’s designed to work with one-
dimensional arrays will also work with a row belonging to a
two-dimensional array.
다시말하면 1차원배열에사용가능한함수에 2차원배열을전달해도쓸수있음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 46

Processing the Rows of a Multidimensional Array
• Consider find_largest, which was originally designed to find

the largest element of a one-dimensional array.
find_largest는 1차원배열에서가장큰값을찾는함수였음

• We can just as easily use find_largest to determine the
largest element in row i of the two-dimensional array a:
다음처럼 2차원배열의한줄을인자로전달하여 i번째줄의가장큰값을찾도록할
수있음

largest = find_largest(a[i], NUM_COLS);

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 47

Processing the Columns of a Multidimensional Array

• Processing the elements in a column of a two-dimensional array
isn’t as easy, because arrays are stored by row, not by column.
배열을열단위로처리하는것은간단한문제가아님; 배열요소가줄단위로
저장되어있기때문임

• A loop that clears column i of the array a:
배열 a의 i번째열의값을초기화하는코드

int a[NUM_ROWS][NUM_COLS], (*p)[NUM_COLS], i;
…
for (p = &a[0]; p < &a[NUM_ROWS]; p++)

(*p)[i] = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 48

Using the Name of a Multidimensional Array as a Pointer

• The name of any array can be used as a pointer, regardless of how
many dimensions it has, but some care is required.
배열의차원과관계없이배열의이름을포인터로사용할수있음

• Example:
int a[NUM_ROWS][NUM_COLS];

a is not a pointer to a[0][0]; instead, it’s a pointer to a[0].
a는 a[0][0]에대한포인터가아니라 a[0]에대한포인터임

• C regards a as a one-dimensional array whose elements are one-
dimensional arrays.
C는 a를일차원배열로인식함

• When used as a pointer, a has type int (*)[NUM_COLS]
(pointer to an integer array of length NUM_COLS).
포인터로사용할경우 a는 int (*)[NUM_COLS]로이해함; 해석하면
NUM_COLS길이를갖는정수형배열에대한포인터

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 49

Using the Name of a Multidimensional Array as a Pointer

• Knowing that a points to a[0] is useful for simplifying loops that
process the elements of a two-dimensional array.
a[0]의위치를 a가가리킨다는사실을활용하면 2차원배열의순회하는루프를
작성이간단해짐

• Instead of writing
for (p = &a[0]; p < &a[NUM_ROWS]; p++)

(*p)[i] = 0;

to clear column i of the array a, we can write
배열 a의 i 번째열을초기화하기위해아래처럼쓸수있음

for (p = a; p < a + NUM_ROWS; p++)
(*p)[i] = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 50

Using the Name of a Multidimensional Array as a Pointer

• We can “trick” a function into thinking that a multidimensional array
is really one-dimensional.
2차원배열이마치 1차원배열인것처럼인식하도록할수있음

• A first attempt at using using find_largest to find the largest
element in a: find_largest함수로 a의가장큰요소를찾는문장을보자

largest = find_largest(a, NUM_ROWS * NUM_COLS);
/* WRONG */

This an error, because the type of a is int (*)[NUM_COLS] but
find_largest is expecting an argument of type int *.
위문장에서 find_largest는 int * 타입을인자로기대하는데 a는 int
(*)[NUM_COLS]의타입을갖고있기때문에오류가발생함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 51

Using the Name of a Multidimensional Array as a Pointer

• We can “trick” a function into thinking that a multidimensional array
is really one-dimensional.
2차원배열이마치 1차원배열인것처럼인식하도록할수있음

largest = find_largest(a, NUM_ROWS * NUM_COLS);
/* WRONG */

• The correct call:
largest = find_largest(a[0], NUM_ROWS * NUM_COLS);

a[0] points to element 0 in row 0, and it has type int * (after
conversion by the compiler).
제대로부르려면 1차원배열로전달해야함; a[0]은 0번줄에 0번째요소를
가리키고있고 int * 타입을갖음

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 52

포인터와가변길이배열

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 53

Pointers and Variable-Length Arrays (C99)
• Pointers are allowed to point to elements of variable-length

arrays (VLAs).
포인터는가변길이의배열의요소를가리킬수있음

• An ordinary pointer variable would be used to point to an
element of a one-dimensional VLA:
평범한포인터변수로일차원가변길이배열의요소를가리킬수있음

void f(int n)
{

int a[n], *p;
p = a;
…

}

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 54

Pointers and Variable-Length Arrays (C99)
• When the VLA has more than one dimension, the type of

the pointer depends on the length of each dimension
except for the first.
가변길이배열이다차원인경우포인터의종류는각차원의길이에의존함

• A two-dimensional example: 2차원가변길이의예제

void f(int m, int n)
{

int a[m][n], (*p)[n];
p = a;
…

}

Since the type of p depends on n, which isn’t constant, p
is said to have a variably modified type.
p의타입은 n에의존하기때문에 p는가변적으로변형되는타입이라부름

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 55

Pointers and Variable-Length Arrays (C99)
• The validity of an assignment such as p = a can’t always be

determined by the compiler.
p = a과같은할당은컴파일러에의해유효성이항상검증되는것은아님

• The following code will compile but is correct only if m and n are
equal:
아래와같은문장은컴파일은되지만, m과 n과동일한경우만제대로동작함

int a[m][n], (*p)[m];
p = a;

• If m is not equal to n, any subsequent use of p will cause
undefined behavior.
m과 n이동일하지않d은데 p를사용하게되면오동작을함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 56

Pointers and Variable-Length Arrays (C99)
• Variably modified types are subject to certain restrictions.
가변적으로변형되는타입은제한사항이있음

• The most important restriction: the declaration of a variably
modified type must be inside the body of a function or in a
function prototype.
가장중요한제한사항: 가변길이배열에대한선언은함수내용중에포함되어
있거나함수프로토타입에정의되어야함

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 57

Pointers and Variable-Length Arrays (C99)
• Pointer arithmetic works with VLAs.
포인터연산은가변길이배열에서도적용됨

• A two-dimensional VLA: 2차원가변길이배열이있다고하자

int a[m][n];

• A pointer capable of pointing to a row of a:
a의어떤줄을가리킬수있는 p는다음처럼선언함

int (*p)[n];

• A loop that clears column i of a:
a의 i번째열의초기화는다음같음

for (p = a; p < a + m; p++)
(*p)[i] = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved. 58

