Pointers and Arrays

adopted from KNK C Programming : A Modern Approach

Introduction

* Callows us to perform arithmetic—addition and subtraction—on

pointers to array elements.

CoHIY QA0 CHSH ZQIE CiM M S x| 25t

Mok

* This leads to an alternative way of processing arrays in which
pointers take the place of array subscripts.
Hi Y XS AFESHA] R0 ZOIHZ g3 =4e = UZ

* The relationship between pointers and arrays in C is a close one.
COlM QI HI S = E ™ot 2 A 7t U=

* Understanding this relationship is critical for mastering C.
O] &4 Z O|3li5t= A0| cE OtAHSI=H 52

Pointer Arithmetic ZQIE{ HAl

e Chapter 11 showed that pointers can point to array elements:
YO Z2EH=HIES 2S5 7122 = UAs= EUS

int al[l0], *p;
p = &al0];

* A graphical representation: 1822 B3| £ X}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Pointer Arithmetic

* We can now access a [0] through p; for example, we can store
the value5ina[0] by writing

p

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Pointer Arithmetic

* If p points to an element of an array a, the other elements of a
can be accessed by performing pointer arithmetic (or address

arithmetic) on p.
p7tHIE a2l 245 72| Z W E2IE HAE Sl a2 LHE R4 B2 75

* Csupports three (and only three) forms of pointer arithmetic:
cOl M ZQIE{= 37FX| Bt U Z
e Adding an integer to a pointer Z2IE0f| == Hs}7|
e Subtracting an integer from a pointer Z I E 0] g == e 7|
e Subtracting one pointer from another Z QI E 7| i QI £

Adding an Integer to a Pointer zoigo ®4 gjst7)

* Adding an integer j to a pointer p yields a pointer to the element

j places after the one that p points to.
i°|E1 pOl &= & HoStE p 0| A jB W Ch5 245 72| Z

* More precisely, if p points to the array elementa[i], thenp +]
pointstoa[i+]].
P7tali]22E 7I2| & M, p+j= a[i+] & 7t2| &

* Assume that the following declarations are in effect:
Cr=1r 0| M AMRCELT SHAL,

L— AA

int afl0], *p, *qgq, 1;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Adding an Integer to a Pointer

* Example of pointer addition: Z QI S 9| o

IS

&al2];
p + 3;
6;

il

0 1 2 3 4 5 6 7 8 9

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Subtracting an

nteger from a Pointer =oigf wu

e Ifppointstoa [i’

* Example:
p = &al3];
qa=p - 3;
p —= 6;

,thenp - J pointstoa[i-7].

P7talilE 72l Z M p-j= ali-j]E 7F2l &

a
0 1 2 5 6 7 8 9
p p] I
. |
0 1 2 5 6 7 8 9
p L] I L |

a

0

Copyright © 2008 W. W. Norton & Company.

All rights reserved.

1

2

Subtracting One Pointer from Anotherzeg .z

* When one pointer is subtracted from another, the result is the

distance (measured in array eIements) between the pointers.
ZOIE{O A ZQIE{S WD U Y @ AZ T2 3} IQIE 7Ho| A2 &t

 Ifppointstoa[i] and gpointstoa[]j], thenp - gis equal
to 1 — J. p7talilE, g7t allE 7t2|1Z W p-g= -2 &S

 Example:
p = &al5]; ? ’
q = &al[l];

i=p - qg; /* 1 is 4 */
i =qg - p; /* 1 is -4 */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Subtracting One Pointer from Another

* Operations that cause undefined behavior:
YOEX| =2 &= €27|= gt

I - O 1 =2 - L— L

* Performing arithmetic on a pointer that doesn’t point to an
array element H{ 2| @4 Z 7t2|7|X| = ZQIHO| A2 S5t 82

e Subtracting pointers unless both point to elements of the same
array €2 8l 2= 7I2|7|X| = ZHSS ME M= 87

Copyright © 2008 W. W. Norton & Company. 10
All rights reserved.

Comparing Pointers ZQlg H|

* Pointers can be compared using the relational operators (<,
<=, >, >=) and the equality operators (== and ! =).
Ol &= 2tA ALMXGL S2 HAXLZ H[W 7ts
* Using relational operators is meaningful only for pointers to elements

of the same array.
oA ALRE 2 IS E 7HE| 7= ZQIHE0| oo 2|0] U=

— E —

* The outcome of the comparison depends on the relative

positions of the two elements in the array.
H| WO Zut=H1 22| F= 249 JThHA f{X|0f o=

* After the assignments Ctg1t €2 22 22| Zit=

p = &al[d]; // p<=qg & O
q = &all]; // p>=q 1

the value of p <= g is 0 and the value of p >= gis 1.

11

Pointers to Compound Literals (C99)

* It’s legal for a pointer to point to an element within an array

created by a compound literal:
ZOH He= HigS Mo = US

int *p = (int []) {3, 0, 3, 4, 1};

* Using a compound literal saves us the trouble of first declaring an
array variable and then making p point to the first element of that

array.

Olt &2 YA o2 HiE S MOISIH HIE S MOSI D HiEo| W A5 ZQIHE
He7| 25 dle =18 8 = Us

int afl] = {3, 0, 3, 4, 1};

int *p = &al[0];

12

Using Pointers for Array Processing

e Pointer arithmetic allows us to visit the elements of an array by

repeatedly incrementing a pointer variable.
HOIH AL 2 ZOIH HpF SIIAFAM HIEe| 2458 =2|ed = US

-

* Aloop that sums the elements of an array a:

% a0 Q4SS Ciote £

#define N 10

int a[N], sum, *p;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Using Pointers for Array Processing

At the end of the first iteration: P

AN ER Br=ol 2

At the end of the second iteration:

T A geo) B

At the end of the third iteration:

Ml R Hr=0| &

A
alll | 34 | 82 64 | 98 |47 | 18 | 79 | 20
0 1 2 4 5 6 7 8 9
sum 11
p
y
al|ll| 34 |82 64 | 98 | 47 |18 | 79 | 20
0 1 2 4 5 6 7 8 9
sum 45
p
y
al|ll| 34 |82 64 | 98 | 47 |18 | 79 | 20
0 1 2 4 5 6 7 8 9
sum 127

Copyright © 2008 W. W. Norton & Company.

All rights reserved.

14

Using Pointers for Array Processing

* The condition p < &a [N] in the for statement deserves special
mention. forE2| p <&[N] H| ! =7 0| Z=2|5}{OF &t

* |t's legal to apply the address operator to a [N], even though this
element doesn’t exist.
EMSHA] GE= a[N]Of| =& HLAE ERX| U HUZHOZEE ALE 7t

LS =
e Pointer arithmetic may save execution time.
ZOIE A2 HAANIS 2L = US
* However, some C compilers produce better code for loops that
rely on subscripting.

Ol c ALt E = =20 BXE A8 ZES U= W7|E &

— L= /= —

15

Combining the * and ++ Operators

e C programmers often combine the * (indirection) and ++
operators. c /HZAIE2 *(FE)2t ++ HLAALE BE5t7| = &

e A statement that modifies an array element and then advances to
the next element: Ct2 E& 2 HIE2 RAE HES I LIZ QAE HE

ali++] = J;
* The corresponding pointer version: ZQIEHE Aot EHH
*pt++ = 3
* Because the postfix version of ++ takes precedence over *, the

compiler sees this as
ALK M =8 & ++71 &0 &M =217 =7| =0 Cr223F 20| 5|4 =

*(pt+) = J;

16

Combining the * and ++ Operators

 Possible combinations of * and ++: Zdgh gt

Expression
p++or (p++)

(*p) ++

++por (++p)

++*p or ++ (*p)

Meaning

Value of expression is *p before increment;
increment p later

*pE ALE0tA pE St

Value of expression is *p before increment;

increment *p later
*p= ArEStL *pE Tt

Increment p first;

value of expression is * p after increment
pa o7|'0|'—TI— _7|'E| * A"'g'

Increment *p first;

value of expression is * p after increment
pa o7|'0|'—|— _7|'E| * A"'g'

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

Combining the * and ++ Operators

* The most common combination of * and ++ is *p++, which is

handy in loops. 7t& 2%t * 2F ++2| Ao YA 2 *p++ 22 220 FEE

* Instead of writing Hi Y a2 245 sHAS I3l Of2iF ZH0| AHdSt= CHA

for (p = &al0]; p < &al[N]; p++)
sum += *p;

to sum the elements of the array a, we could write

Cr2at 20l &g 2 =+ UAS

p = &al0];
while (p < &al[N])
sum += *p++;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

18

Combining the * and ++ Operators

* The * and —- operators mix in the same way as * and ++.
*0f -HAMKEE *QF +4+0| A 22 A A2 AFR Vs

* For an application that combines * and ——, let’s return to the
stack example of Chapter 10. 10&2| AEZ 2&510] *of --E S &S| E X}

* The original version of the stack relied on an integer variable

named top to keep track of the “top-of-stack” position in the

contents array. 2E19| top2| & X|Z FH}LY| Rl D HF ALERUSZ

* Let’s replace top by a pointer variable that points initially to

element O of the contents array:
top= ZOIE =2 HHLD contentsHf 2| 0| R A E 7t2|7| =& SIAt

int *top ptr = &contents[0];

19

Combining the * and ++ Operators

* The new push and pop functions:
MZE push 2} pop &=

vold push (int 1)

{
if (is full())

stack overflow();
else

*top ptr++ = 1;
}

int pop (void)
{
if (is empty())
stack underflow();
else
return *--top ptr;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Using an Array Name as a Pointer

Pointer arithmetic is one way in which arrays and pointers are

related.
LOIE GHAO| B E 1} L OIE{ S AHIX| 0T

* Another key relationship: = Ct2 2HA

The name of an array can be used as a pointer to the first element

in the array.
iSO/ 0|2 i Zof X A R20) Lot ZPIHZ & + 2

* This relationship simplifies pointer arithmetic and makes both

arrays and pointers more versatile.
O 2tA 7t QI A4S TSt A TS0 HiE 0 Z9IHE & O 7 E25HA T

21

Using an Array Name as a Pointer

* Suppose that a is declared as follows: CtS1t 20| aE MAM S
int al[l0];

* Examples of using a as a pointer: aE€ ZQHE M=t
a = 7; / stores 7 in a[0] */
(a+l) = 12; / stores 12 in a[l] */

* Ingeneral,a + i isthesameas ¢a[1]. YO Z a+iE Rali]2 &S

* Both represent a pointer to element i of a.
= CHH S a2l iAW 2 A0f Ciot ZQIE & LIErH

e Also, * (a+1i) isequivalenttoa[1]. *(a+)=alil2t €S
* Both represent element i itself. & Ct 24 i 7t2|Z

Copyright © 2008 W. W. Norton & Company. 29
All rights reserved.

Using an Array Name as a Pointer

* The fact that an array name can serve as a pointer makes it easier
to write loops that step through an array.

HE 0|52 ZAHZE 2 = 7| 20 Ol = 2EotO HiE2| R4~ &5 =2| /ts

e Original loop: Y&t 2o
0

for (p = &al
sum += *p;

]; p < &alN]; p++)

e Simplified version: 723} HH

for (p = a; p < a + N; pt++)
sum += *p;

Copyright © 2008 W. W. Norton & Company. 23
All rights reserved.

Using an Array Name as a Pointer

* Although an array name can be used as a pointer, it’s not possible

to assign it a new value.
HiZ2| O|§& Z£2HE & == UKL MER S 28 == 83

-_—

e Attempting to make it point elsewhere is an error:
£ ?XIE 7I2[7|2{1 ot H @ F &
while (*a != 0)
at+; /*** WRONG ***/

* This is no great loss; we can always copy a into a pointer variable,

then change the pointer variable:
CHAl Z QI =0 Hi & oS SAOlE A2 &

-

p = ay
while (*p !'= 0)
pt++;

24

Program: Reversing a Series of Numbers (Revisited)

* The reverse. c program of Chapter 8 reads 10 numbers, then

writes the numbers in reverse order.
SO A reverse.cEE2 1S =XIE =02 EHT

* The original program stores the numbers in an array, with

subscripting used to access elements of the array.

HEZEJH2 S 20 MR, =22 Hi @ HALE =2/t

o
AT

* reverse3.cisanew version of the program in which
subscripting has been replaced with pointer arithmetic.

reverse3.c—= AL LAl ZOIH AAMZ =HE T

25

reverseil.cC

/* Reverses a series of numbers
#include <stdio.h>

#define N 10

int main (void)

{
int a[N], *p;

printf ("Enter %d numbers: ",
for (p = a; p < a + N; p++)
scanf ("%d", p);

printf ("In reverse order:");

(pointer wversion)

N) ;

for (p =a +N - 1; p >= a; p--)

printf (" %d", *p);
printf ("\n");

return 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

*/

26

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Array Arguments (Revisited)

* When passed to a function, an array name is treated as a pointer.
Hig S et= MEY O, i g2 0| 50| Z2/H = M| &

* Example:

int find largest(int a[], 1int n)

{

int 1, max;

max = al[0];
for (1 = 1; 1 < n; 1++)
if (a[i1i] > max)
max = al[i];

return max;

}

Acallof find largest:find_largest 2E 22 LIS £ 3

largest = find largest (b, N);

This call causes a pointer to the first element of b to be assigned to a;
the array itself isn’t copied. 0| @ZEEZ2 HIE bl X Q42| ZQIHZ a0 &<

Copyright © 2008 W. W. Norton & Company. 28
All rights reserved.

Array Arguments (Revisited)

* The fact that an array argument is treated as a pointer has some
important consequences.
HiES QIAtZE & I ZRIHZ ME|&=lCh= A0= 523 o|0|7t U=

* Consequence 1: When an ordinary variable is passed to a
function, its value is copied; any changes to the corresponding

parameter don’t affect the variable.
HNEM S2d: gt e ot 2 THE[WH 40| AL, D7 He= 22l

=
H0f| s A HS

* In contrast, an array used as an argument isn’t protected against

change.
HFEH, HI 20| QIArZ ARS X 22l B E S| ££0| Oh7H H==0f 2|5} HE &

29

Array Arguments (Revisited)

* For example, the following function modifies an array by storing
zero into each of its elements:
Che g G2 2= 240 05 MY

volid store zeros(int al[], 1int n)

{

int 1;
for (i = 0; i < n; i++)
ali] = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Array Arguments (Revisited)

* To indicate that an array parameter won’t be changed, we can
include the word const in its declaration:
07 H- HiEO| Rl HiE S E HI =5 St H const2te 7| RIEE A 10| 2t

int find largest(const 1nt al], 1nt n)

{

}

* If const is present, the compiler will check that no assignment

to an element of a appears in the body of find largest.

const 7| Y E Tt =X SHH, HIF U 2| 7} find_largestEH2: LI 0f 2] £ 40] 0f ™

W= 2Yot=A| dArg

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

Array Arguments (Revisited)

* Consequence 2: The time required to pass an array to a function

doesn’t depend on the size of the array.
T HN sS4 HEs 2ol QIXE MES=0 {2 27| = 24 8=

* There’s no penalty for passing a large array, since no copy of the

array is made.
O ZI Hi €= HHSIH 2t Hi €2 FAIE S T E= A0 OrL 7| M = 0f
QHH =Tt BlS

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Array Arguments (Revisited)

Consequence 3: An array parameter can be declared as a pointer

if desired.
MHER M. 0j7HH=E B E0| OtL| 2} ZQIH=E MAS 4= US

find largest could be defined as follows: Ct21 20| HE 7ts

int find largest(int *a, 1nt n)

{

}

Declaring a to be a pointer is equivalent to declaring it to be an
array; the compiler treats the declarations as though they were

identical.
0| 2% aS EQEH=E MAASHE=

= A2 HE=2 dot= A}
A’ 2= 3ot A

IR

€2 90| €5;

ot

33

Array Arguments (Revisited)

e Although declaring a parameter to be an array is the same as

declaring it to be a pointer, the same isn’t true for a variable.
CH ZQIHE M QISt= AO| HIE S D7 | 42 A= A &2 20171 X2
7}8 742 ol

* The following declaration causes the compiler to set aside space
for 10 integers:
Ch2 dE2 0L, Ao e = 10702 =2 e S22 Us
int a[l0];

* The following declaration causes the compiler to allocate space

for a pointer variable:
Cre MOl RHLH AL e = 8 20 He-E MY

o (@]

mot

rsUs TE

int *a;

34

Array Arguments (Revisited)

* |n the latter case, a is not an array; attempting to use it as an

array can have disastrous results.
= HW B2 ac HIEO| OL 7| M=0f, Bi BN E 4= MEora{ L ofH 2L 2t=

* For example, the assignment
*q = O; /*** WRONG ***/

will store O where a is pointing.
ol 82 aZt 7| 7| = /X0 44 022 MY

* Since we don’t know where a is pointing, the effect on the
program is undefined.

a’t OIL|E 71217 | =X &€ = Qe 22, 2NN 2 = FOL[X| B2 &= ot/ &

Vi

35

Array Arguments (Revisited)

* Consequence 4: A function with an array parameter can be passed
an array “slice” —a sequence of consecutive elements.
|_-|| |:|-|;;(H 3_9_)&1 I:IHOE‘O| ol |:|I:I|- oLAoﬂ MEISHE A Ol

== T AMO

* An example that applies £ind largest to elements 5 through
14 of an array b:
Ct=2 | O | = find_largestO| Hf 2| s E 1477} X[2] R A0F >

largest = find largest (&b[5], 10);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Using a Pointer as an Array Name

* Callows us to subscript a pointer as though it were an array

name:
ce HI 22| O|F 2 ANME ZAH | MXE AE s

#define N 10
int a[N], 1, sum = 0, *p = a;

for (i = 0; i < N; 1i++)
sum += pl[i];

The compilertreatsp[i] as * (p+1).
ALt = pli|= *(p+i) = M|

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

CHX

o]

H

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Pointers and Multidimensional Arrays

 Just as pointers can point to elements of one-dimensional arrays,
they can also point to elements of multidimensional arrays.
ZOIHII EAR BIEe| @45 712|ZE = UXO| CrAR B E ol @A & 7H2|Z
This section explores common techniques for using pointers to
process the elements of multidimensional arrays.

ZOIHZS AR B S0 At8ot= RN 2l VB 28

- = L

40

Processing the Elements of a Multidimensional Array

* Chapter 8 showed that C stores two-dimensional arrays in

row-major order.
8O 2XH3 HfE2 & THR|2 H|O|HE METHCH L WS

e Layout of an array with rrows: r7le| &2 A= HEQ 2 &
row 0 row 1 row r— 1
A S, A
' N N 'l N

* |If pinitially points to the element in row O, column 0, we can

visit every element in the array by incrementing p

repeatedly.
E| =0 pZt HEE 2| 0

22/0,07 =
HiE2| 245 w22+ /S

X2 245 712[ZI0H, pS SN2 2 SIHAFHNM
o]

41

Processing the Elements of a Multidimensional Array

* Consider the problem of initializing all elements of the following array
to zero: CtZ2| HIE | B & Q@A F 022 X7|2}otCH 1 SFAY
int a[NUM ROWS] [NUM COLS];

* The obvious technique would be to use nested for loops:
for2 T2 ALSE 4 92 U

int row, col;

for (row = 0; row < NUM ROWS; row++)
for (col = 0; col < NUM COLS; col++)
alrow] [col] = 0;

* If we view a as a one-dimensional array of integers, a single loop is

sufficient: Ztef oS 1A+ B E 2 QIASICHHE FE SLH S 29| £7|=} 7ts
int *p;
al0]1[0]; p <= &a[NUM ROWS-1] [NUM COLS-1]1; p++)

for (p

*p 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

Processing the Elements of a Multidimensional Array

e Although treating a two-dimensional array as one-dimensional
may seem like cheating, it works with most C compilers.
2K Hi €S 1K B @XM 3 ChF = A0 O| ol H0j & B2 FIoAH 7t 58
* Techniques like this one definitely hurt program readability, but—
at least with some older compilers—produce a compensating

increase in efficiency.
O|ZAH A Z=AME S17(7F O X[AKX 2 A A 20 M= ds0|

V4
Z.SO'.II A Ol ©
=) = T AAO

* With many modern compilers, though, there’s often little or no

speed advantage.
Aol Aogel= 450|528 A0t 7| 0=

43

Processing the Rows of a Multidimensional Array

* A pointer variable p can also be used for processing the elements
in just one row of a two-dimensional array.
HOIH B p= 2XHE HIEO| S| AR T 7127 | 5 & = /UF

* To visit the elements of row i, we’d initialize p to point to

element Oin row 1 in the array a:
iR Zo| @A HUESH| 25l p7t I € 22| iR ZS2| oA 2AF 7IE|7[EF
StH =

p = &al1][0];

or we could simply write
= ESHA G E & = US

p = al1];

Copyright © 2008 W. W. Norton & Company. 44
All rights reserved.

Processing the Rowsof a Multidimensional Array

* For any two-dimensional array a, the expressiona[i] isa
pointer to the first element in row 1i.
D= 2K Hi B a0l CHSY, alil= iHA =2 A SR 220 Cioh ZIE

* To see why this works, recall that a [1] is equivalent to
*(a+1).
alil= *(a+) 2 HHY = = ULt A3

* Thus, &a[1] [O] isthesameas & (* (a[1] +0)),

which is equivalentto &*a [i].
1212 2 &ali][0]2 &(*(a[i]+0)) 0} Z 1 H2|StH &*a[i]7| &

* Thisisthesameasa[i], since the & and * operators
cancel. &2t *ALMXIIL MZ MHSIE R afi] 7} &

45

Processing the Rows of a Multidimensional Array

* Aloop that cIears row 1 of the array a:
HI S a9 i =5 7|20l B X

int a[NUM ROWS] [NUM COLS], *p, 1;

for (p = al[1]; p < al[i] + NUM COLS; p++)
*p = 0;
 Since a[1] is a pointer to row i of the array a, we can pass
a [1] to afunction that’s expecting a one-dimensional array as

Its argument.
a[i]7F Hi & a2 |HWH Zo| LI O|7| 20, ali] E B =0l M EotCt= 2|0 &= 1%+
i Q2 OIXf 2 MereiCrs of0|2 & 4 9IS
* In other words, a function that’s designed to work with one-
dimensional arrays will also work with a row belonging to a

two-dimensional array.
CrA| 25t 1XH2 B SOl AME7Fsot & =0f 2A R HiE S TEE & = US

46

Processing the Rows of a Multidimensional Array

* Consider £find largest, which was originally designed to find

the largest element of a one-dimensional array.

find_largest= 1AM B RO M 7t 2 S X = 2d+RAS

* We can just as easily use find largest to determine the

largest element in row i of the two-dimensional array a:

CrEX 82X 2 B €| ot == QXAIE MESHY MM =S| /Y 2 U= HE=E
A Ol S
T AA O

F

mot

largest = find largest(a[i1], NUM COLS);

Copyright © 2008 W. W. Norton & Company. 47
All rights reserved.

Processing the Columns of a Multidimensional Array

* Processing the elements in a column of a two-dimensional array

isn’t as easy, because arrays are stored by row, not by column.
HiE S SThR| 2 X 2[5t= A2 7ot =X 71 O E; i @ A7 SR =
MEEO A7 2

* Aloop that clears column i of the array a:
B a2l iy E2| dk& =7[3tol= 2 E

int a[NUM ROWS] [NUM COLS], (*p) [NUM COLS], 1;

for (p = &al
(*p) [1] =

1; p < &a[NUM ROWS]; p++)

°
4

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

48

Using the Name of a Multidimensional Array as a Pointer

* The name of any array can be used as a pointer, regardless of how

many dimensions it has, but some care is required.
Hi Zo| X3 2hA| Q10| Hi B2l O|F & ERHE ALEE = US

 Example:
int a[NUM ROWS] [NUM COLS];

a isnotapointertoa[0] [0]; instead, it’s a pointertoa [0].
at a[0][0]0l| Ci St 2 QIE{ 7} OfL| 2} a[0]Ofl CHSH ZE QIE{

* Cregards a as a one-dimensional array whose elements are one-

dimensional arrays.
CcaE YA HIE 2 Q1A g

* When used as a pointer, a has type int (*) [NUM COLS]

(pointer to an integer array of length NUM COLS).
ZOIHZE AT Z as int (*)[NUM_COLS]Z Ol &t; slj A 5} ™
NUM_COLSZO| & A= =& b ZOof Cff ot £ QI E

49

Using the Name of a Multidimensional Array as a Pointer

* Knowing that a pointsto a [0] is useful for simplifying loops that
process the elements of a two-dimensional array.
al0]8| ¥ X|Z a7t 7IE|ZICt= AHE & 80T 243 Bl € 2| &2|dt= F
214 0f ZFErSH A

|El

=
=

* |Instead of writing
for (p = &al[0]; p < &a[NUM ROWS]; p++)
(*p) [1] = 0;
to clear column 1 of the array a, we can write
B a2l i HA| €= Z=7(215t7| 2[5l O M E & = US
for (p = a; p < a + NUM ROWS; p++)
(*p) [i] = 0; -

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Using the Name of a Multidimensional Array as a Pointer

* We can “trick” a function into thinking that a multidimensional array
is really one-dimensional.
2XH HiEO| OpX| 1XH B E QI AN E QIAISIE E o o= U

=

* Afirst attempt at using using £ind largest to find the largest
element in a: find_largest&f =2 a2| 71T 2 QA E = XS EX}

largest = find largest(a, NUM ROWS * NUM COLS) ;
/* WRONG */

This an error, because the type of ais int (*) [NUM COLS] but
find largest is expecting an argument of type int *.

2 =Y M find_largest= int * EfRIS QIALE 7|CliSt=0| a& int
(*)INUM_COLS]2| Ef= &0 7| 20| LF7F 2l

51

Using the Name of a Multidimensional Array as a Pointer

* We can “trick” a function into thinking that a multidimensional array

is really one-dimensional.

2X2l B 20| OrX| 1Xt&l B ERAAKXEH QM EF &

mot

A OlS

— 1 T AA DO

largest = find largest(a, NUM ROWS * NUM COLS);
/* WRONG */

* The correct call:
largest = find largest(a[0], NUM ROWS * NUM COLS) ;

a[0] points to element Oin row O, and it has type int * (after

conversion by the compiler).
N2 R=22{H 1XH2 B S 2 ™ HSHOF e; al0]2 o =0 oM RAE

Zt2[Z| 2 A0 int*EfRE A=

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 52

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Pointers and Variable-Length Arrays (C99)

* Pointers are allowed to point to elements of variable-length
arrays (VLASs).
ZOIEH =7 ZO[o Bl @aF 7IE|Z = U=
* An ordinary pointer variable would be used to point to an
element of a one-dimensional VLA:
Yot LI He2 AR 7HHAO0[o @AF 7HE|Z = US
vold f (int n)
{
int aln], *p;
p = a;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

Pointers and Variable-Length Arrays (C99)

* When the VLA has more than one dimension, the type of
the pointer depends on the length of each dimension
except for the first.
tHZ0| HYEO| CrAtR @l 82 E RIS SF/F &= 4 AR Q| Z0[0f o|&=g

* A two-dimensional example: 2X+ 7t 20| 2| of| A

volid f(int m, 1nt n)
{
int alm][n], (*p)I[n];

p = aj
}

Since the type of p depends on n, which isn’t constant, p

is said to have a variably modified type.
p2| Et Y2 n0j| 2| FESH7| I 20| p=7tHECE HA L= EIYO|Zt £ E

95

Pointers and Variable-Length Arrays (C99)

* The validity of an assignment such as p = a can’t always be
determined by the compiler.
p=all &2 T2 L0 o5 F=d0| de AT == A2 Otd

* The following code will compile but is correct only if m and n are

* If mis not equal to n, any subsequent use of p will cause
undefined behavior.
mIf nO| S USHA] Hd20 pE ArESHA M LS4 = &

L -

56

Pointers and Variable-Length Arrays (C99)

e Variably modified types are subject to certain restrictions.
JMHM O E HHE L= EfR 2 Ko Ard O] U=

AN O

* The most important restriction: the declaration of a variably

modified type must be inside the body of a function orin a
function prototype.

18 St MotArg: 7HH ZO| Hf EOf ChHot Mol 2 L8 S0 =
QUL stz T 2 EEFRI0)| & o] £|Of Of &t

Mok

=] O]

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

S7

Pointers and Variable-Length Arrays (C99)

* Pointer arithmetic works with VLAs.
HLOIH AME2 7FHZO| HIGHME M E &

A two-dimensional VLA: 2X&l 7tHZ 0| H € 0| QJUCtD SFX}
int a[m][n];

* A pointer capable of pointing to a row of a:
al| OH S S 72| Z = A= p= CrEXNE doE

int (*p) [n];

* Aloop that clears column 1 of a:
a2l it €O x=7|3t= L= £33

for (p = a; p < a + m; pt+)
(*p) [1]1 = 0Oy

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

