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Today’s Lecture

1. The Relational Model & Relational Algebra

2. Relational Algebra Pt. II  [Optional: may skip]
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1. The Relational Model & 
Relational Algebra
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What you will learn about in this section

1. The Relational Model

2. Relational Algebra: Basic Operators

3. Execution

4. ACTIVITY: From SQL to RA & Back
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Motivation

The Relational model is precise, 
implementable, and we can operate on it 

(query/update, etc.)

Database maps internally into this 
procedural language.
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A Little History

• Relational model due to Edgar “Ted” Codd, 
a mathematician at IBM in 1970
• A Relational Model of Data for Large Shared 

Data Banks". Communications of the 
ACM 13 (6): 377–387

• IBM didn’t want to use relational model 
(take money from IMS)
• Apparently used in the moon landing…

Won Turing 
award 1981
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http://www.acm.org/classics/nov95/toc.html
http://en.wikipedia.org/wiki/Communications_of_the_ACM


The Relational Model: Schemata

• Relational Schema:
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Students(sid: string, name: string, gpa: float)

AttributesString, float, int, etc. 
are the domains of 
the attributes

Relation name
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The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

An attribute (or 
column) is a typed 
data entry present 
in each tuple in 
the relation

The number of 
attributes is the arity of 
the relation
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The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

A tuple or row (or record) is a single 
entry in the table having the 
attributes specified by the schema

The number of 
tuples is the 
cardinality of 
the relation
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The Relational Model: Data
Student

A relational instance is a set of tuples 
all conforming to the same schema

Recall: In practice 
DBMSs relax the set 
requirement, and 
use multisets.  

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5
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• A relational schema describes the data that is contained in a 
relational instance

To Reiterate

Let R(f1:Dom1,…,fm:Domm) be a relational schema then, 
an instance of R is a subset of Dom1 x Dom2 x … x Domn
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In this way, a relational schema R is a total function from attribute 
names to types



• A relational schema describes the data that is contained in a 
relational instance

One More Time

A relation R of arity t is a function: 
R : Dom1 x … x Domt à {0,1}
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Then, the schema is simply the signature of the function

I.e. returns whether or not a tuple 
of matching types is a member of it

Note here that order matters, attribute name doesn’t…
We’ll (mostly) work with the other model (last slide) in 

which attribute name matters, order doesn’t!



A relational database

• A relational database schema is a set of relational schemata, one for 
each relation

• A relational database instance is a set of relational instances, one for 
each relation

Two conventions: 
1. We call relational database instances as simply databases
2. We assume all instances are valid, i.e., satisfy the domain constraints
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Remember the CMS

• Relation DB Schema
• Students(sid: string, name: string, gpa: float)
• Courses(cid: string, cname: string, credits: int)
• Enrolled(sid: string, cid: string, grade: string)

Sid Name Gpa
101 Bob 3.2
123 Mary 3.8

Students

cid cname credits
564 564-2 4
308 417 2

Coursessid cid Grade
123 564 A

Enrolled

Relation 
Instances

14

Lecture 14  >  Section 1  >  The Relational Model

Note that the schemas 
impose effective domain / 
type constraints, i.e. Gpa
can’t be “Apple”



2nd Part of the Model: Querying

“Find names of all students 
with GPA > 3.5”

We don’t tell the system how or 
where to get the data- just what we 
want, i.e., Querying is declarative

Actually, I showed how to do this 
translation for a much richer language!
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SELECT S.name
FROM Students S
WHERE S.gpa > 3.5;

To make this happen, we need to 
translate the declarative query into 
a series of operators… we’ll see this 
next!



Virtues of the model

• Physical independence (logical too), Declarative

• Simple, elegant clean: Everything is a relation

• Why did it take multiple years? 
• Doubted it could be done efficiently.
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Relational Algebra
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RDBMS Architecture

How does a SQL engine work ?

SQL 
Query

Relational 
Algebra (RA) 

Plan

Optimized
RA Plan Execution

Declarative 
query (from 
user)

Translate to 
relational algebra 
expresson

Find logically 
equivalent- but 
more efficient- RA 
expression

Execute each 
operator of the 
optimized plan!
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RDBMS Architecture

How does a SQL engine work ?

SQL 
Query

Relational 
Algebra (RA) 

Plan

Optimized
RA Plan Execution

Relational Algebra allows us to translate declarative (SQL) 
queries into precise and optimizable expressions!
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• Five basic operators:
1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:
• Intersection, complement
• Joins (natural,equi-join, theta join, semi-join)
• Renaming: r
• Division

Relational Algebra (RA)

We’ll look at these first!

And also at one example of a 
derived operator (natural 
join) and a special operator 
(renaming)
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Keep in mind: RA operates on sets!

• RDBMSs use multisets, however in relational algebra formalism we 
will consider sets!

• Also: we will consider the named perspective, where every attribute 
must have a unique name
• àattribute order does not matter…

Lecture 14  >  Section 1  >  Relational Algebra

Now on to the basic RA operators…



• Returns all tuples which satisfy a 
condition
• Notation: sc(R)
• Examples
• sSalary > 40000 (Employee)
• sname = “Smith” (Employee)

• The condition c can be =, <, £, >,
³, <>

1. Selection (!)

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:
!"#$ %&.((*+,-./+0)

Students(sid,sname,gpa)
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sSalary > 40000 (Employee)

SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000

Another example:
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• Eliminates columns, then removes 
duplicates
• Notation:   P A1,…,An(R)
• Example: project social-security 

number and names:
• P SSN, Name (Employee)
• Output schema:   Answer(SSN, 

Name)

2. Projection (Π)

SELECT DISTINCT
sname,
gpa

FROM Students;

SQL:

RA:
Π"#$%&,()$(+,-./0,1)

Students(sid,sname,gpa)

Lecture 14  >  Section 1  >  Relational Algebra



P Name,Salary (Employee)

SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000

Name Salary
John 200000
John 600000

Another example:
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Note that RA Operators are Compositional!

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How do we represent 
this query in RA?

Π"#$%&,()$(+()$,-./(01234516))

+()$,-./(Π"#$%&,()$( 01234516))

Are these logically equivalent?
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• Each tuple in R1 with each tuple in 
R2
• Notation: R1 ´ R2
• Example:  

• Employee ´ Dependents
• Rare in practice; mainly used to 

express joins

3. Cross-Product (×)

SELECT *
FROM Students, People;

SQL:

RA:
"#$%&'#( × )&*+,&

Students(sid,sname,gpa)
People(ssn,pname,address)
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ssn pname address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4

002 Bob 1.3

!"#$%&"' × )%*+,%

×

ssn pname address sid sname gpa
1234545 John 216 Rosse 001 John 3.4

5423341 Bob 217 Rosse 001 John 3.4
1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People StudentsAnother example:
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• Changes the schema, not the instance
• A ‘special’ operator- neither basic nor 

derived
• Notation: r B1,…,Bn (R)

• Note: this is shorthand for the proper 
form (since names, not order 
matters!):
• r A1àB1,…,AnàBn (R)

Renaming (!)

SELECT
sid AS studId,
sname AS name,
gpa AS gradePtAvg

FROM Students;

SQL:

RA:
!"#$%&%,()*+,,-)%+.#/0,(23456738)

Students(sid,sname,gpa)

We care about this operator because we 
are working in a named perspective
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sid sname gpa
001 John 3.4

002 Bob 1.3

!"#$%&%,()*+,,-)%+.#/0,(23456738)

Students

studId name gradePtAvg
001 John 3.4

002 Bob 1.3

Students

Another example:
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• Notation: R1 ⋈ R2

• Joins R1 and R2 on equality of all shared 
attributes
• If R1 has attribute set A, and R2 has attribute set 

B, and they share attributes A⋂B = C, can also be 
written: R1 ⋈ # R2

• Our first example of a derived RA operator:
• Meaning:  R1 ⋈ R2 = PA U B(sC=D($%→'(R1) ´ R2))
• Where:

• The rename $%→' renames the shared attributes in 
one of the relations

• The selection sC=D checks equality of the shared 
attributes

• The projection PA U B eliminates the duplicate 
common attributes

Natural Join (⋈)

SELECT DISTINCT
ssid, S.name, gpa,
ssn, address

FROM 
Students S,
People P

WHERE S.name = P.name;

SQL:

RA:
)*+,-.*/ ⋈ 0-123-

Students(sid,name,gpa)
People(ssn,name,address)
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ssn P.name address
1234545 John 216 Rosse
5423341 Bob 217 Rosse

sid S.name gpa
001 John 3.4

002 Bob 1.3

!"#$%&"' ⋈ )%*+,%

⋈

sid S.name gpa ssn address
001 John 3.4 1234545 216 Rosse
002 Bob 1.3 5423341 216 Rosse

People PStudents S
Another example:
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Natural Join

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?

• Given R(A, B, C),  S(D, E), what is R ⋈ S  ?

• Given R(A, B),  S(A, B),  what is  R ⋈ S  ?
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Example: Converting SFW Query -> RA

SELECT DISTINCT
gpa,
address

FROM Students S,
People P

WHERE gpa > 3.5 AND
sname = pname;

How do we represent 
this query in RA?

Π"#$,$&&'())(+"#$,-./(0 ⋈ 2))
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Students(sid,sname,gpa)
People(ssn,sname,address)



Logical Equivalece of RA Plans

• Given relations R(A,B) and S(B,C):

• Here, projection & selection commute: 
• !"#$(Π"(')) = Π"(!"#$('))

• What about here?
• !"#$(Π*(')) ?= Π*(!"#$('))

We’ll look at this in more depth later in the lecture…
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RDBMS Architecture

How does a SQL engine work ?

SQL 
Query

Relational 
Algebra (RA) 

Plan

Optimized
RA Plan Execution

We saw how we can transform declarative SQL queries into 
precise, compositional RA plans
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RDBMS Architecture

How does a SQL engine work ?

SQL 
Query

Relational 
Algebra (RA) 

Plan

Optimized
RA Plan Execution

We’ll look at how to then optimize these 
plans later in this lecture
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RDBMS Architecture

How is the RA “plan” executed?

SQL 
Query

Relational 
Algebra (RA) 

Plan

Optimized
RA Plan Execution

We already know how to execute all the basic operators!
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RA Plan Execution

• Natural Join / Join:
• We saw how to use memory & IO cost considerations to pick the correct algorithm 

to execute a join with (BNLJ, SMJ, HJ…)!

• Selection:
• We saw how to use indexes to aid selection
• Can always fall back on scan / binary search as well

• Projection:
• The main operation here is finding distinct values of the project tuples; we briefly 

discussed how to do this with e.g. hashing or sorting

We already know how to execute all the basic operators!
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DB-WS14a.ipynb
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Lecture_1_1.ipynb


2. Adv. Relational Algebra
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What you will learn about in this section

1. Set Operations in RA

2. Fancier RA

3. Extensions & Limitations

42
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• Five basic operators:
1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:
• Intersection, complement
• Joins (natural,equi-join, theta join, semi-join)
• Renaming: r
• Division

Relational Algebra (RA)

We’ll look at these

And also at some of 
these derived operators
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1. Union (È) and 2. Difference (–)

• R1 È R2
• Example:  

• ActiveEmployees È RetiredEmployees

• R1 – R2
• Example:

• AllEmployees -- RetiredEmployees

R1 R2

R1 R2

Lecture 14  >  Section 2  >  Set Operations



What about Intersection (Ç) ?

• It is a derived operator
• R1 Ç R2 = R1 – (R1 – R2)
• Also expressed as a join!
• Example

• UnionizedEmployees Ç RetiredEmployees

R1 R2
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Fancier RA
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Theta Join (⋈q)

• A join that involves a predicate
• R1 ⋈q R2   =  s q (R1 ´ R2)
• Here q can be any condition 

SELECT *
FROM 

Students,People
WHERE q;

SQL:

RA:
"#$%&'#( ⋈) *&+,-&

Students(sid,sname,gpa)
People(ssn,pname,address)

Note that natural join is a 
theta join + a projection.
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Equi-join (⋈ A=B)

• A theta join where q is an equality
• R1 ⋈ A=B R2   =  s A=B (R1 ´ R2)
• Example:

• Employee ⋈ SSN=SSN Dependents 

SELECT *
FROM 

Students S,
People P

WHERE sname = pname;

SQL:

RA:
" ⋈#$%&'()$%&' *

Students(sid,sname,gpa)
People(ssn,pname,address)

Most common join 
in practice!
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Semijoin (⋉)
• R ⋉ S  = P A1,…,An (R ⋈ S)
• Where A1, …, An are the attributes in R
• Example:

• Employee ⋉ Dependents 

SELECT DISTINCT
sid,sname,gpa

FROM 
Students,People

WHERE
sname = pname;

SQL:

RA:

#$%&'($) ⋉ *'+,-'

Students(sid,sname,gpa)
People(ssn,pname,address)
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Semijoins in Distributed Databases

• Semijoins are often used to compute natural joins in distributed databases

SSN Name
. . . . . .

SSN Dname Age
. . . . . .

Employee

Dependents

network

Employee ⋈ ssn=ssn (s age>71 (Dependents))

T = P SSN s age>71 (Dependents)
R = Employee ⋉ T

Answer = R ⋈ Dependents

Send less data to 
reduce network 
bandwidth!
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RA Expressions Can Get Complex!

Person         Purchase          Person          Product

sname=fred sname=gizmo

P pidP ssn

seller-ssn=ssn

pid=pid

buyer-ssn=ssn

P name
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Multisets
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Recall that SQL uses Multisets

53

Tuple

(1, a)

(1, a)

(1, b)

(2, c)

(2, c)

(2, c)

(1, d)

(1, d)

Tuple !(#)
(1, a) 2

(1, b) 1

(2, c) 3

(1, d) 2Equivalent 
Representations 

of a Multiset

Multiset X

Multiset X

Note: In a set all 
counts are {0,1}.

! # = “Count of tuple in X”
(Items not listed have 
implicit count 0)
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Generalizing Set Operations to Multiset
Operations

54

Tuple !(#)
(1, a) 2

(1, b) 0

(2, c) 3

(1, d) 0

Multiset X

Tuple !(%)
(1, a) 5

(1, b) 1

(2, c) 2

(1, d) 2

Multiset Y

Tuple !(&)
(1, a) 2

(1, b) 0

(2, c) 2

(1, d) 0

Multiset Z

∩ =

! & = )*+(! # , ! % )
For sets, this is 

intersection
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Tuple !(#)
(1, a) 2

(1, b) 0

(2, c) 3

(1, d) 0

Multiset X

Tuple !(%)
(1, a) 5

(1, b) 1

(2, c) 2

(1, d) 2

Multiset Y

Tuple !(&)
(1, a) 7

(1, b) 1

(2, c) 5

(1, d) 2

Multiset Z

∪ =

! & = ! # + ! %
For sets, 

this is union

Generalizing Set Operations to Multiset
Operations

Lecture 14  >  Section 2  >  Extensions & Limitations



Operations on Multisets

All RA operations need to be defined carefully on bags

• sC(R): preserve the number of occurrences

• PA(R): no duplicate elimination

• Cross-product, join: no duplicate elimination

This is important- relational engines work on 
multisets, not sets!
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RA has Limitations !

• Cannot compute “transitive closure”

• Find all direct and indirect relatives of Fred
• Cannot express in RA !!!  

• Need to write C program, use a graph engine, or modern SQL…

Name1 Name2 Relationship
Fred Mary Father
Mary Joe Cousin
Mary Bill Spouse
Nancy Lou Sister

Lecture 14  >  Section 2  >  Extensions & Limitations


