
Lecture 14:
The Relational Model

Lecture 14

Today’s Lecture

1. The Relational Model & Relational Algebra

2. Relational Algebra Pt. II [Optional: may skip]

2

Lecture 14

1. The Relational Model &
Relational Algebra

3

Lecture 14 > Section 1

What you will learn about in this section

1. The Relational Model

2. Relational Algebra: Basic Operators

3. Execution

4. ACTIVITY: From SQL to RA & Back

4

Lecture 14 > Section 1

Motivation

The Relational model is precise,
implementable, and we can operate on it

(query/update, etc.)

Database maps internally into this
procedural language.

Lecture 14 > Section 1 > The Relational Model

A Little History

• Relational model due to Edgar “Ted” Codd,
a mathematician at IBM in 1970
• A Relational Model of Data for Large Shared

Data Banks". Communications of the
ACM 13 (6): 377–387

• IBM didn’t want to use relational model
(take money from IMS)
• Apparently used in the moon landing…

Won Turing
award 1981

Lecture 14 > Section 1 > The Relational Model

http://www.acm.org/classics/nov95/toc.html
http://en.wikipedia.org/wiki/Communications_of_the_ACM

The Relational Model: Schemata

• Relational Schema:

Lecture 14 > Section 1 > The Relational Model

Students(sid: string, name: string, gpa: float)

AttributesString, float, int, etc.
are the domains of
the attributes

Relation name

8

The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

An attribute (or
column) is a typed
data entry present
in each tuple in
the relation

The number of
attributes is the arity of
the relation

Lecture 14 > Section 1 > The Relational Model

9

The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

A tuple or row (or record) is a single
entry in the table having the
attributes specified by the schema

The number of
tuples is the
cardinality of
the relation

Lecture 14 > Section 1 > The Relational Model

10

The Relational Model: Data
Student

A relational instance is a set of tuples
all conforming to the same schema

Recall: In practice
DBMSs relax the set
requirement, and
use multisets.

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Lecture 14 > Section 1 > The Relational Model

• A relational schema describes the data that is contained in a
relational instance

To Reiterate

Let R(f1:Dom1,…,fm:Domm) be a relational schema then,
an instance of R is a subset of Dom1 x Dom2 x … x Domn

Lecture 14 > Section 1 > The Relational Model

In this way, a relational schema R is a total function from attribute
names to types

• A relational schema describes the data that is contained in a
relational instance

One More Time

A relation R of arity t is a function:
R : Dom1 x … x Domt à {0,1}

Lecture 14 > Section 1 > The Relational Model

Then, the schema is simply the signature of the function

I.e. returns whether or not a tuple
of matching types is a member of it

Note here that order matters, attribute name doesn’t…
We’ll (mostly) work with the other model (last slide) in

which attribute name matters, order doesn’t!

A relational database

• A relational database schema is a set of relational schemata, one for
each relation

• A relational database instance is a set of relational instances, one for
each relation

Two conventions:
1. We call relational database instances as simply databases
2. We assume all instances are valid, i.e., satisfy the domain constraints

Lecture 14 > Section 1 > The Relational Model

Remember the CMS

• Relation DB Schema
• Students(sid: string, name: string, gpa: float)
• Courses(cid: string, cname: string, credits: int)
• Enrolled(sid: string, cid: string, grade: string)

Sid Name Gpa
101 Bob 3.2
123 Mary 3.8

Students

cid cname credits
564 564-2 4
308 417 2

Coursessid cid Grade
123 564 A

Enrolled

Relation
Instances

14

Lecture 14 > Section 1 > The Relational Model

Note that the schemas
impose effective domain /
type constraints, i.e. Gpa
can’t be “Apple”

2nd Part of the Model: Querying

“Find names of all students
with GPA > 3.5”

We don’t tell the system how or
where to get the data- just what we
want, i.e., Querying is declarative

Actually, I showed how to do this
translation for a much richer language!

Lecture 14 > Section 1 > The Relational Model

SELECT S.name
FROM Students S
WHERE S.gpa > 3.5;

To make this happen, we need to
translate the declarative query into
a series of operators… we’ll see this
next!

Virtues of the model

• Physical independence (logical too), Declarative

• Simple, elegant clean: Everything is a relation

• Why did it take multiple years?
• Doubted it could be done efficiently.

Lecture 14 > Section 1 > The Relational Model

Relational Algebra

Lecture 14 > Section 1 > Relational Algebra

RDBMS Architecture

How does a SQL engine work ?

SQL
Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan Execution

Declarative
query (from
user)

Translate to
relational algebra
expresson

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

Lecture 14 > Section 1 > Relational Algebra

RDBMS Architecture

How does a SQL engine work ?

SQL
Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan Execution

Relational Algebra allows us to translate declarative (SQL)
queries into precise and optimizable expressions!

Lecture 14 > Section 1 > Relational Algebra

• Five basic operators:
1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:
• Intersection, complement
• Joins (natural,equi-join, theta join, semi-join)
• Renaming: r
• Division

Relational Algebra (RA)

We’ll look at these first!

And also at one example of a
derived operator (natural
join) and a special operator
(renaming)

Lecture 14 > Section 1 > Relational Algebra

Keep in mind: RA operates on sets!

• RDBMSs use multisets, however in relational algebra formalism we
will consider sets!

• Also: we will consider the named perspective, where every attribute
must have a unique name
• àattribute order does not matter…

Lecture 14 > Section 1 > Relational Algebra

Now on to the basic RA operators…

• Returns all tuples which satisfy a
condition
• Notation: sc(R)
• Examples
• sSalary > 40000 (Employee)
• sname = “Smith” (Employee)

• The condition c can be =, <, £, >,
³, <>

1. Selection (!)

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:
!"#$ %&.((*+,-./+0)

Students(sid,sname,gpa)

Lecture 14 > Section 1 > Relational Algebra

sSalary > 40000 (Employee)

SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000

Another example:

Lecture 14 > Section 1 > Relational Algebra

• Eliminates columns, then removes
duplicates
• Notation: P A1,…,An(R)
• Example: project social-security

number and names:
• P SSN, Name (Employee)
• Output schema: Answer(SSN,

Name)

2. Projection (Π)

SELECT DISTINCT
sname,
gpa

FROM Students;

SQL:

RA:
Π"#$%&,()$(+,-./0,1)

Students(sid,sname,gpa)

Lecture 14 > Section 1 > Relational Algebra

P Name,Salary (Employee)

SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000

Name Salary
John 200000
John 600000

Another example:

Lecture 14 > Section 1 > Relational Algebra

Note that RA Operators are Compositional!

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How do we represent
this query in RA?

Π"#$%&,()$(+()$,-./(01234516))

+()$,-./(Π"#$%&,()$(01234516))

Are these logically equivalent?

Lecture 14 > Section 1 > Relational Algebra

• Each tuple in R1 with each tuple in
R2
• Notation: R1 ´ R2
• Example:

• Employee ´ Dependents
• Rare in practice; mainly used to

express joins

3. Cross-Product (×)

SELECT *
FROM Students, People;

SQL:

RA:
"#$%&'#(×)&*+,&

Students(sid,sname,gpa)
People(ssn,pname,address)

Lecture 14 > Section 1 > Relational Algebra

ssn pname address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4

002 Bob 1.3

!"#$%&"' ×)%*+,%

×

ssn pname address sid sname gpa
1234545 John 216 Rosse 001 John 3.4

5423341 Bob 217 Rosse 001 John 3.4
1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People StudentsAnother example:

Lecture 14 > Section 1 > Relational Algebra

• Changes the schema, not the instance
• A ‘special’ operator- neither basic nor

derived
• Notation: r B1,…,Bn (R)

• Note: this is shorthand for the proper
form (since names, not order
matters!):
• r A1àB1,…,AnàBn (R)

Renaming (!)

SELECT
sid AS studId,
sname AS name,
gpa AS gradePtAvg

FROM Students;

SQL:

RA:
!"#$%&%,()*+,,-)%+.#/0,(23456738)

Students(sid,sname,gpa)

We care about this operator because we
are working in a named perspective

Lecture 14 > Section 1 > Relational Algebra

sid sname gpa
001 John 3.4

002 Bob 1.3

!"#$%&%,()*+,,-)%+.#/0,(23456738)

Students

studId name gradePtAvg
001 John 3.4

002 Bob 1.3

Students

Another example:

Lecture 14 > Section 1 > Relational Algebra

• Notation: R1 ⋈ R2

• Joins R1 and R2 on equality of all shared
attributes
• If R1 has attribute set A, and R2 has attribute set

B, and they share attributes A⋂B = C, can also be
written: R1 ⋈ # R2

• Our first example of a derived RA operator:
• Meaning: R1 ⋈ R2 = PA U B(sC=D($%→'(R1) ´ R2))
• Where:

• The rename $%→' renames the shared attributes in
one of the relations

• The selection sC=D checks equality of the shared
attributes

• The projection PA U B eliminates the duplicate
common attributes

Natural Join (⋈)

SELECT DISTINCT
ssid, S.name, gpa,
ssn, address

FROM
Students S,
People P

WHERE S.name = P.name;

SQL:

RA:
)*+,-.*/ ⋈ 0-123-

Students(sid,name,gpa)
People(ssn,name,address)

Lecture 14 > Section 1 > Relational Algebra

ssn P.name address
1234545 John 216 Rosse
5423341 Bob 217 Rosse

sid S.name gpa
001 John 3.4

002 Bob 1.3

!"#$%&"' ⋈)%*+,%

⋈

sid S.name gpa ssn address
001 John 3.4 1234545 216 Rosse
002 Bob 1.3 5423341 216 Rosse

People PStudents S
Another example:

Lecture 14 > Section 1 > Relational Algebra

Natural Join

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?

• Given R(A, B, C), S(D, E), what is R ⋈ S ?

• Given R(A, B), S(A, B), what is R ⋈ S ?

Lecture 14 > Section 1 > Relational Algebra

Example: Converting SFW Query -> RA

SELECT DISTINCT
gpa,
address

FROM Students S,
People P

WHERE gpa > 3.5 AND
sname = pname;

How do we represent
this query in RA?

Π"#$,$&&'())(+"#$,-./(0 ⋈ 2))

Lecture 14 > Section 1 > Relational Algebra

Students(sid,sname,gpa)
People(ssn,sname,address)

Logical Equivalece of RA Plans

• Given relations R(A,B) and S(B,C):

• Here, projection & selection commute:
• !"#$(Π"(')) = Π"(!"#$('))

• What about here?
• !"#$(Π*(')) ?= Π*(!"#$('))

We’ll look at this in more depth later in the lecture…

Lecture 14 > Section 1 > Relational Algebra

RDBMS Architecture

How does a SQL engine work ?

SQL
Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan Execution

We saw how we can transform declarative SQL queries into
precise, compositional RA plans

Lecture 14 > Section 1 > Relational Algebra

RDBMS Architecture

How does a SQL engine work ?

SQL
Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan Execution

We’ll look at how to then optimize these
plans later in this lecture

Lecture 14 > Section 1 > Relational Algebra

RDBMS Architecture

How is the RA “plan” executed?

SQL
Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan Execution

We already know how to execute all the basic operators!

Lecture 14 > Section 1 > Relational Algebra

RA Plan Execution

• Natural Join / Join:
• We saw how to use memory & IO cost considerations to pick the correct algorithm

to execute a join with (BNLJ, SMJ, HJ…)!

• Selection:
• We saw how to use indexes to aid selection
• Can always fall back on scan / binary search as well

• Projection:
• The main operation here is finding distinct values of the project tuples; we briefly

discussed how to do this with e.g. hashing or sorting

We already know how to execute all the basic operators!

Lecture 14 > Section 1 > Relational Algebra

DB-WS14a.ipynb

40

Lecture 14 > Section 1 > ACTIVITY

Lecture_1_1.ipynb

2. Adv. Relational Algebra

41

Lecture 14 > Section 2

What you will learn about in this section

1. Set Operations in RA

2. Fancier RA

3. Extensions & Limitations

42

Lecture 14 > Section 2

• Five basic operators:
1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:
• Intersection, complement
• Joins (natural,equi-join, theta join, semi-join)
• Renaming: r
• Division

Relational Algebra (RA)

We’ll look at these

And also at some of
these derived operators

Lecture 14 > Section 2

1. Union (È) and 2. Difference (–)

• R1 È R2
• Example:

• ActiveEmployees È RetiredEmployees

• R1 – R2
• Example:

• AllEmployees -- RetiredEmployees

R1 R2

R1 R2

Lecture 14 > Section 2 > Set Operations

What about Intersection (Ç) ?

• It is a derived operator
• R1 Ç R2 = R1 – (R1 – R2)
• Also expressed as a join!
• Example

• UnionizedEmployees Ç RetiredEmployees

R1 R2

Lecture 14 > Section 2 > Set Operations

Fancier RA

Lecture 14 > Section 2 > Fancier RA

Theta Join (⋈q)

• A join that involves a predicate
• R1 ⋈q R2 = s q (R1 ´ R2)
• Here q can be any condition

SELECT *
FROM

Students,People
WHERE q;

SQL:

RA:
"#$%&'#(⋈) *&+,-&

Students(sid,sname,gpa)
People(ssn,pname,address)

Note that natural join is a
theta join + a projection.

Lecture 14 > Section 2 > Fancier RA

Equi-join (⋈ A=B)

• A theta join where q is an equality
• R1 ⋈ A=B R2 = s A=B (R1 ´ R2)
• Example:

• Employee ⋈ SSN=SSN Dependents

SELECT *
FROM

Students S,
People P

WHERE sname = pname;

SQL:

RA:
" ⋈#$%&'()$%&' *

Students(sid,sname,gpa)
People(ssn,pname,address)

Most common join
in practice!

Lecture 14 > Section 2 > Fancier RA

Semijoin (⋉)
• R ⋉ S = P A1,…,An (R ⋈ S)
• Where A1, …, An are the attributes in R
• Example:

• Employee ⋉ Dependents

SELECT DISTINCT
sid,sname,gpa

FROM
Students,People

WHERE
sname = pname;

SQL:

RA:

#$%&'($) ⋉ *'+,-'

Students(sid,sname,gpa)
People(ssn,pname,address)

Lecture 14 > Section 2 > Fancier RA

Semijoins in Distributed Databases

• Semijoins are often used to compute natural joins in distributed databases

SSN Name
.

SSN Dname Age
.

Employee

Dependents

network

Employee ⋈ ssn=ssn (s age>71 (Dependents))

T = P SSN s age>71 (Dependents)
R = Employee ⋉ T

Answer = R ⋈ Dependents

Send less data to
reduce network
bandwidth!

Lecture 14 > Section 2 > Fancier RA

RA Expressions Can Get Complex!

Person Purchase Person Product

sname=fred sname=gizmo

P pidP ssn

seller-ssn=ssn

pid=pid

buyer-ssn=ssn

P name

Lecture 14 > Section 2 > Fancier RA

Multisets

Lecture 14 > Section 2 > Extensions & Limitations

Recall that SQL uses Multisets

53

Tuple

(1, a)

(1, a)

(1, b)

(2, c)

(2, c)

(2, c)

(1, d)

(1, d)

Tuple !(#)
(1, a) 2

(1, b) 1

(2, c) 3

(1, d) 2Equivalent
Representations

of a Multiset

Multiset X

Multiset X

Note: In a set all
counts are {0,1}.

! # = “Count of tuple in X”
(Items not listed have
implicit count 0)

Lecture 14 > Section 2 > Extensions & Limitations

Generalizing Set Operations to Multiset
Operations

54

Tuple !(#)
(1, a) 2

(1, b) 0

(2, c) 3

(1, d) 0

Multiset X

Tuple !(%)
(1, a) 5

(1, b) 1

(2, c) 2

(1, d) 2

Multiset Y

Tuple !(&)
(1, a) 2

(1, b) 0

(2, c) 2

(1, d) 0

Multiset Z

∩ =

! & =)*+(! # , ! %)
For sets, this is

intersection

Lecture 14 > Section 2 > Extensions & Limitations

55

Tuple !(#)
(1, a) 2

(1, b) 0

(2, c) 3

(1, d) 0

Multiset X

Tuple !(%)
(1, a) 5

(1, b) 1

(2, c) 2

(1, d) 2

Multiset Y

Tuple !(&)
(1, a) 7

(1, b) 1

(2, c) 5

(1, d) 2

Multiset Z

∪ =

! & = ! # + ! %
For sets,

this is union

Generalizing Set Operations to Multiset
Operations

Lecture 14 > Section 2 > Extensions & Limitations

Operations on Multisets

All RA operations need to be defined carefully on bags

• sC(R): preserve the number of occurrences

• PA(R): no duplicate elimination

• Cross-product, join: no duplicate elimination

This is important- relational engines work on
multisets, not sets!

Lecture 14 > Section 2 > Extensions & Limitations

RA has Limitations !

• Cannot compute “transitive closure”

• Find all direct and indirect relatives of Fred
• Cannot express in RA !!!

• Need to write C program, use a graph engine, or modern SQL…

Name1 Name2 Relationship
Fred Mary Father
Mary Joe Cousin
Mary Bill Spouse
Nancy Lou Sister

Lecture 14 > Section 2 > Extensions & Limitations

