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“If you don’t find it in the index, 
look very carefully through the 
entire catalog”

- Sears, Roebuck and Co., Consumers Guide, 1897
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Today’s Lecture

1. Indexes: Motivations & Basics

2. B+ Trees
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Motivations & Basics
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What you will learn about in this section

1. Indexes: Motivation

2. Indexes: Basics

3. ACTIVITY: Creating indexes
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Index Motivation
• Suppose we want to search for people of a specific age

• First idea: Sort the records by age… we know how to do this fast!

• How many IO operations to search over N sorted records?
• Simple scan: O(N)
• Binary search: O(!"#$ %)

Lecture 11  >  Section 1  >  Indexes: Motivation

Person(name, age)

Could we get even cheaper search?  E.g. go from !"#$ %
à !"#$&& %?



Index Motivation
• What about if we want to insert a new person, but keep the list 

sorted?

• We would have to potentially shift N records, requiring up to ~ 2*N/P 
IO operations (where P = # of records per page)!
• We could leave some “slack” in the pages…
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4,5 6,71,3 3,4 5,61,2
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7,

Could we get faster insertions?



Index Motivation
• What about if we want to be able to search quickly along multiple 

attributes (e.g. not just age)?
• We could keep multiple copies of the records, each sorted by one attribute 

set… this would take a lot of space
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Can we get fast search over multiple attribute 
(sets) without taking too much space?

We’ll create separate data structures called 
indexes to address all these points



Further Motivation for Indexes: NoSQL!
• NoSQL engines are (basically) just indexes!

• A lot more is left to the user in NoSQL… one of the primary remaining 
functions of the DBMS is still to provide index over the data records, for the 
reasons we just saw!

• Sometimes use B+ Trees (covered next), sometimes hash indexes (not covered 
here)
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Indexes are critical across all DBMS types



Indexes: High-level
• An index on a file speeds up selections on the search key fields for the 

index.
• Search key properties

• Any subset of fields
• is not the same as key of a relation

• Example:
On which attributes 

would you build 
indexes?

Product(name, maker, price)
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More precisely
• An index is a data structure mapping search keys to sets of rows in a 

database table

• Provides efficient lookup & retrieval by search key value- usually much faster 
than searching through all the rows of the database table

• An index can store the full rows it points to (primary index) or 
pointers to those rows (secondary index)

• We’ll mainly consider secondary indexes
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Operations on an Index

• Search: Quickly find all records which meet some condition on the 
search key attributes
• More sophisticated variants as well. Why?

• Insert / Remove entries
• Bulk Load / Delete. Why?

Indexing is one the most important features 
provided by a database for performance
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Conceptual Example

What if we want to 
return all books 
published after 1867?  
The above table might 
be very expensive to 
search over row-by-row…

SELECT *
FROM Russian_Novels
WHERE Published > 1867

BID Title Author Published Full_text
001 War and Peace Tolstoy 1869 …

002 Crime and 
Punishment

Dostoyevsky 1866 …

003 Anna Karenina Tolstoy 1877 …

Russian_Novels
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Conceptual Example

BID Title Author Published Full_text
001 War and Peace Tolstoy 1869 …

002 Crime and 
Punishment

Dostoyevsky 1866 …

003 Anna Karenina Tolstoy 1877 …

Published BID
1866 002

1869 001

1877 003

Maintain an index for this, and search over that!

Russian_NovelsBy_Yr_Index

Why might just keeping the table 
sorted by year not be good enough?
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Conceptual Example

BID Title Author Published Full_text
001 War and Peace Tolstoy 1869 …

002 Crime and 
Punishment

Dostoyevsky 1866 …

003 Anna Karenina Tolstoy 1877 …

Published BID
1866 002

1869 001

1877 003

Indexes shown here as tables, but in reality 
we will use more efficient data structures…

Russian_NovelsBy_Yr_Index

Author Title BID
Dostoyevsky Crime and 

Punishment
002

Tolstoy Anna Karenina 003

Tolstoy War and 
Peace

001

By_Author_Title_Index Can have multiple indexes to 
support multiple search keys
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Composite Keys
11 80

12 10

12 20

13 75

Name Age Sal
Bob 12 10

Cal 11 80

Luda 12 20

Tara 13 75

11

12

12

13

80 11

10 12

20 12

75 13

<Age, Sal>

<Sal, Age>

80

10

20

75

<Age> <Sal>

Equality Query:
Age = 12 and Sal = 90?

Range Query:
Age = 5 and Sal > 5?

Composite keys in 
Dictionary Order. 
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On which attributes can we 
do range queries?

<age,sal>
not equal to
<sal,age>



Composite Keys

• Pro:
• When they work they work well
• We’ll see a good case called “index-only” plans or 

covering indexes.
• Con:

• Guesses? (time and space)
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Covering Indexes

Published BID
1866 002

1869 001

1877 003

By_Yr_Index
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We say that an index is covering for a specific query
if the index contains all the needed attributes-
meaning the query can be answered using the 
index alone!

The “needed” attributes are the union of those in 
the SELECT and WHERE clauses…

SELECT Published, BID
FROM Russian_Novels
WHERE Published > 1867

Example:



High-level Categories of Index Types
• B-Trees (covered next)

• Very good for range queries, sorted data
• Some old databases only implemented B-Trees
• We will look at a variant called B+ Trees

• Hash Tables (not covered)
• There are variants of this basic structure to deal with IO
• Called linear or extendible hashing- IO aware!

The data structures 
we present here 
are “IO aware”

Real difference between structures: costs of ops 
determines which index you pick and why
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DB-WS11a.ipynb
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2. B+ Trees
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What you will learn about in this section

1. B+ Trees: Basics

2. B+ Trees: Design & Cost

3. Clustered Indexes
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B+ Trees

• Search trees 
• B does not mean binary!

• Idea in B Trees:
• make 1 node = 1 physical page
• Balanced, height adjusted tree (not the B either)

• Idea in B+ Trees:
• Make leaves into a linked list (for range queries)
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B+ Tree Basics

10 20 30

Each non-leaf (“interior”) 
node has ≥ d and ≤ 2d keys*

*except for root node, which can 
have between 1 and 2d keys

Parameter d = the degree
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B+ Tree Basics

10 20 30

k < 10

10 ≤ " < 20

20 ≤ " < 30
30 ≤ "

The n keys in a node 
define n+1 ranges 
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B+ Tree Basics

10 20 30

Non-leaf or internal node

22 25 28

For each range, in a non-leaf 
node, there is a pointer to 
another node with keys in 
that range
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B+ Tree Basics

10 20 30

Leaf nodes also have 
between d and 2d keys, 
and are different in that:

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17
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B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

Leaf nodes also have 
between d and 2d keys, 
and are different in that:

Their key slots contain 
pointers to data records

21 22 27 28 30 33 35 371511
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B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

21 22 27 28 30 33 35 371511

Leaf nodes also have 
between d and 2d keys, 
and are different in that:

Their key slots contain 
pointers to data records

They contain a pointer 
to the next leaf node as 
well, for faster 
sequential traversal
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B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

Note that the pointers at the 
leaf level will be to the 
actual data records (rows).  

We might truncate these for 
simpler display (as before)…

Name: John
Age: 21

Name: Jake
Age: 15

Name: Bob
Age: 27

Name: Sally
Age: 28

Name: Sue
Age: 33

Name: Jess
Age: 35

Name: Alf
Age: 37Name: Joe

Age: 11

Name: Bess
Age: 22

Name: Sal
Age: 30
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Some finer points of B+ Trees
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Searching a B+ Tree

• For exact key values:
• Start at the root
• Proceed down, to the leaf

• For range queries:
• As above
• Then sequential traversal

SELECT name
FROM people
WHERE age = 25

SELECT name
FROM people
WHERE 20 <= age
AND  age <= 30
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B+ Tree Exact Search Animation

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 60 63 80 84 89

K = 30? 

30 < 80

30 in [20,60)

To the data!
Not all nodes pictured

30 in [30,40)
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B+ Tree Range Search Animation

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 59 63 80 84 89

K in [30,85]? 

30 < 80

30 in [20,60)

To the data!
Not all nodes pictured

30 in [30,40)
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B+ Tree Design

• How large is d?

• Example:
• Key size = 4 bytes
• Pointer size = 8 bytes
• Block size = 4096 bytes

• We want each node to fit on a single block/page
• 2d x 4  + (2d+1) x 8  <=  4096 à d <= 170

NB: Oracle allows 64K = 
2^16 byte blocks
à d <= 2730
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B+ Tree: High Fanout = Smaller & Lower IO

• As compared to e.g. binary search trees, B+ Trees 
have high fanout (between d+1 and 2d+1)

• This means that the depth of the tree is small à
getting to any element requires very few IO 
operations!
• Also can often store most or all of the B+ Tree in main 

memory!

• A TiB = 240 Bytes.  What is the height of a B+ Tree 
(with fill-factor = 1) that indexes it (with 64K 
pages)?
• (2*2730 + 1)h = 240 à h = 4 

The fanout is defined as the 
number of pointers to child 
nodes coming out of a node

Note that fanout is dynamic-
we’ll often assume it’s constant 
just to come up with 
approximate eqns!

The known universe 
contains ~1080 particles… 
what is the height of a B+ 
Tree that indexes these?
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B+ Trees in Practice
• Typical order: d=100.  Typical fill-factor: 67%.

• average fanout = 133

• Typical capacities:
• Height 4: 1334 = 312,900,700 records
• Height 3: 1333 =     2,352,637 records

• Top levels of tree sit in the buffer pool:
• Level 1 =           1 page  =     8 Kbytes
• Level 2 =      133 pages =     1 Mbyte
• Level 3 = 17,689 pages = 133 MBytes

Typically, only 
pay for one IO!

Fill-factor is the percent of 
available slots in the B+ 
Tree that are filled; is 
usually < 1 to leave slack 
for (quicker) insertions
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Simple Cost Model for Search
• Let:

• f = fanout, which is in [d+1, 2d+1] (we’ll assume it’s constant for our cost model…)
• N = the total number of pages we need to index
• F = fill-factor (usually ~= 2/3)

• Our B+ Tree needs to have room to index N / F pages!
• We have the fill factor in order to leave some open slots for faster insertions

• What height (h) does our B+ Tree need to be?
• h=1 à Just the root node- room to index f pages
• h=2 à f leaf nodes- room to index f2 pages
• h=3 à f2 leaf nodes- room to index f3 pages
• …
• h à fh-1 leaf nodes- room to index fh pages!
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à We need a B+ Tree 
of height h = log$ %& !



Simple Cost Model for Search
• Note that if we have B available buffer pages, by the same logic:

• We can store !" levels of the B+ Tree in memory
• where !" is the number of levels such that the sum of all the levels’ nodes fit in 

the buffer:
• # ≥ 1 + ' +⋯+ ')*+, = ∑/01)*+, '2

• In summary: to do exact search:
• We read in one page per level of the tree
• However, levels that we can fit in buffer are free!
• Finally we read in the actual record
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IO Cost: log6 78 − :# + 1

where  # ≥ ∑/01)*+, '2



Simple Cost Model for Search

• To do range search, we just follow the horizontal pointers

• The IO cost is that of loading additional leaf nodes we need to access + 
the IO cost of loading each page of the results- we phrase this as 
“Cost(OUT)”
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IO Cost: log$ %& − () + +,-.(012)

where  ) ≥ ∑6789:;< =>



B+ Tree Range Search Animation

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 59 63 80 84 89

K in [30,85]? 

30 < 80

30 in [20,60)

To the data!
Not all nodes pictured

30 in [30,40)
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How many IOs did our friend do?

Depends on how the 
data are arranged



Clustered Indexes

An index is clustered if the underlying 
data is ordered in the same way as the 

index’s data entries.
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Clustered vs. Unclustered Index

30

22 25 28 29 32 34 37 38

19 22 27 28 30 33 35 37

30

22 25 28 29 32 34 37 38

19 2227 28 3033 3537

Clustered Unclustered

Index Entries

Data Records
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Clustered vs. Unclustered Index

• Recall that for a disk with block access, sequential IO is much faster 
than random IO

• For exact search, no difference between clustered / unclustered

• For range search over R values: difference between 1 random IO + R 
sequential IO, and R random IO:
• A random IO costs ~ 10ms (sequential much much faster)
• For R = 100,000 records- difference between ~10ms and ~17min!
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Fast Insertions & Self-Balancing

• We won’t go into specifics of B+ Tree insertion algorithm, but has 
several attractive qualities:

• ~ Same cost as exact search

• Self-balancing: B+ Tree remains balanced (with respect to height) even after 
insert

B+ Trees also (relatively) fast for single insertions!
However, can become bottleneck if many insertions (if fill-factor 

slack is used up…)
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Bulk Loading
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20 30 30

22 25 28 29 32 34 37 3812 17

21 22 27 28 30 33 35 371511

21 22 27 28 30 33 35 371511

Input: Sorted File 
Output: B+ Tree

To the board!
We will create an 
“equivalent” tree

Message: Bulk Loading is faster!



Summary

• We covered an algorithm + some optimizations for sorting larger-
than-memory files efficiently
• An IO aware algorithm!

• We create indexes over tables in order to support fast (exact and 
range) search and insertion over multiple search keys

• B+ Trees are one index data structure which support very fast exact 
and range search & insertion via high fanout
• Clustered vs. unclustered makes a big difference for range queries too
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