
Lecture 11: B+ Trees:
An IO-Aware Index Structure

Lecture 11

“If you don’t find it in the index,
look very carefully through the
entire catalog”

- Sears, Roebuck and Co., Consumers Guide, 1897

2

Lecture 11

Today’s Lecture

1. Indexes: Motivations & Basics

2. B+ Trees

3

Lecture 11

1. Indexes:
Motivations & Basics

Lecture 11

What you will learn about in this section

1. Indexes: Motivation

2. Indexes: Basics

3. ACTIVITY: Creating indexes

5

Lecture 11 > Section 1

Index Motivation
• Suppose we want to search for people of a specific age

• First idea: Sort the records by age… we know how to do this fast!

• How many IO operations to search over N sorted records?
• Simple scan: O(N)
• Binary search: O(!"#$ %)

Lecture 11 > Section 1 > Indexes: Motivation

Person(name, age)

Could we get even cheaper search? E.g. go from !"#$ %
à !"#$&& %?

Index Motivation
• What about if we want to insert a new person, but keep the list

sorted?

• We would have to potentially shift N records, requiring up to ~ 2*N/P
IO operations (where P = # of records per page)!
• We could leave some “slack” in the pages…

Lecture 11 > Section 1 > Indexes: Motivation

4,5 6,71,3 3,4 5,61,2

2

7,

Could we get faster insertions?

Index Motivation
• What about if we want to be able to search quickly along multiple

attributes (e.g. not just age)?
• We could keep multiple copies of the records, each sorted by one attribute

set… this would take a lot of space

Lecture 11 > Section 1 > Indexes: Motivation

Can we get fast search over multiple attribute
(sets) without taking too much space?

We’ll create separate data structures called
indexes to address all these points

Further Motivation for Indexes: NoSQL!
• NoSQL engines are (basically) just indexes!

• A lot more is left to the user in NoSQL… one of the primary remaining
functions of the DBMS is still to provide index over the data records, for the
reasons we just saw!

• Sometimes use B+ Trees (covered next), sometimes hash indexes (not covered
here)

Lecture 11 > Section 1 > Indexes: Motivation

Indexes are critical across all DBMS types

Indexes: High-level
• An index on a file speeds up selections on the search key fields for the

index.
• Search key properties

• Any subset of fields
• is not the same as key of a relation

• Example:
On which attributes

would you build
indexes?

Product(name, maker, price)

Lecture 11 > Section 1 > Indexes: Basics

More precisely
• An index is a data structure mapping search keys to sets of rows in a

database table

• Provides efficient lookup & retrieval by search key value- usually much faster
than searching through all the rows of the database table

• An index can store the full rows it points to (primary index) or
pointers to those rows (secondary index)

• We’ll mainly consider secondary indexes

Lecture 11 > Section 1 > Indexes: Basics

Operations on an Index

• Search: Quickly find all records which meet some condition on the
search key attributes
• More sophisticated variants as well. Why?

• Insert / Remove entries
• Bulk Load / Delete. Why?

Indexing is one the most important features
provided by a database for performance

Lecture 11 > Section 1 > Indexes: Basics

Conceptual Example

What if we want to
return all books
published after 1867?
The above table might
be very expensive to
search over row-by-row…

SELECT *
FROM Russian_Novels
WHERE Published > 1867

BID Title Author Published Full_text
001 War and Peace Tolstoy 1869 …

002 Crime and
Punishment

Dostoyevsky 1866 …

003 Anna Karenina Tolstoy 1877 …

Russian_Novels

Lecture 11 > Section 1 > Indexes: Basics

Conceptual Example

BID Title Author Published Full_text
001 War and Peace Tolstoy 1869 …

002 Crime and
Punishment

Dostoyevsky 1866 …

003 Anna Karenina Tolstoy 1877 …

Published BID
1866 002

1869 001

1877 003

Maintain an index for this, and search over that!

Russian_NovelsBy_Yr_Index

Why might just keeping the table
sorted by year not be good enough?

Lecture 11 > Section 1 > Indexes: Basics

Conceptual Example

BID Title Author Published Full_text
001 War and Peace Tolstoy 1869 …

002 Crime and
Punishment

Dostoyevsky 1866 …

003 Anna Karenina Tolstoy 1877 …

Published BID
1866 002

1869 001

1877 003

Indexes shown here as tables, but in reality
we will use more efficient data structures…

Russian_NovelsBy_Yr_Index

Author Title BID
Dostoyevsky Crime and

Punishment
002

Tolstoy Anna Karenina 003

Tolstoy War and
Peace

001

By_Author_Title_Index Can have multiple indexes to
support multiple search keys

Lecture 11 > Section 1 > Indexes: Basics

Composite Keys
11 80

12 10

12 20

13 75

Name Age Sal
Bob 12 10

Cal 11 80

Luda 12 20

Tara 13 75

11

12

12

13

80 11

10 12

20 12

75 13

<Age, Sal>

<Sal, Age>

80

10

20

75

<Age> <Sal>

Equality Query:
Age = 12 and Sal = 90?

Range Query:
Age = 5 and Sal > 5?

Composite keys in
Dictionary Order.

Lecture 11 > Section 1 > Indexes: BasicsLecture 11 > Section 1 > Indexes: Basics

On which attributes can we
do range queries?

<age,sal>
not equal to
<sal,age>

Composite Keys

• Pro:
• When they work they work well
• We’ll see a good case called “index-only” plans or

covering indexes.
• Con:

• Guesses? (time and space)

Lecture 11 > Section 1 > Indexes: Basics

Covering Indexes

Published BID
1866 002

1869 001

1877 003

By_Yr_Index

Lecture 11 > Section 1 > Indexes: Basics

We say that an index is covering for a specific query
if the index contains all the needed attributes-
meaning the query can be answered using the
index alone!

The “needed” attributes are the union of those in
the SELECT and WHERE clauses…

SELECT Published, BID
FROM Russian_Novels
WHERE Published > 1867

Example:

High-level Categories of Index Types
• B-Trees (covered next)

• Very good for range queries, sorted data
• Some old databases only implemented B-Trees
• We will look at a variant called B+ Trees

• Hash Tables (not covered)
• There are variants of this basic structure to deal with IO
• Called linear or extendible hashing- IO aware!

The data structures
we present here
are “IO aware”

Real difference between structures: costs of ops
determines which index you pick and why

Lecture 11 > Section 1 > Indexes: Basics

DB-WS11a.ipynb

20

Lecture 11 > Section 1 > ACTIVITY

Lecture_1_1.ipynb

2. B+ Trees

21

Lecture 11 > Section 2

What you will learn about in this section

1. B+ Trees: Basics

2. B+ Trees: Design & Cost

3. Clustered Indexes

22

Lecture 11 > Section 2

B+ Trees

• Search trees
• B does not mean binary!

• Idea in B Trees:
• make 1 node = 1 physical page
• Balanced, height adjusted tree (not the B either)

• Idea in B+ Trees:
• Make leaves into a linked list (for range queries)

Lecture 11 > Section 2 > B+ Tree basics

B+ Tree Basics

10 20 30

Each non-leaf (“interior”)
node has ≥ d and ≤ 2d keys*

*except for root node, which can
have between 1 and 2d keys

Parameter d = the degree

Lecture 11 > Section 2 > B+ Tree basics

B+ Tree Basics

10 20 30

k < 10

10 ≤ " < 20

20 ≤ " < 30
30 ≤ "

The n keys in a node
define n+1 ranges

Lecture 11 > Section 2 > B+ Tree basics

B+ Tree Basics

10 20 30

Non-leaf or internal node

22 25 28

For each range, in a non-leaf
node, there is a pointer to
another node with keys in
that range

Lecture 11 > Section 2 > B+ Tree basics

B+ Tree Basics

10 20 30

Leaf nodes also have
between d and 2d keys,
and are different in that:

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

Lecture 11 > Section 2 > B+ Tree basics

B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

Leaf nodes also have
between d and 2d keys,
and are different in that:

Their key slots contain
pointers to data records

21 22 27 28 30 33 35 371511

Lecture 11 > Section 2 > B+ Tree basics

B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

21 22 27 28 30 33 35 371511

Leaf nodes also have
between d and 2d keys,
and are different in that:

Their key slots contain
pointers to data records

They contain a pointer
to the next leaf node as
well, for faster
sequential traversal

Lecture 11 > Section 2 > B+ Tree basics

B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

Note that the pointers at the
leaf level will be to the
actual data records (rows).

We might truncate these for
simpler display (as before)…

Name: John
Age: 21

Name: Jake
Age: 15

Name: Bob
Age: 27

Name: Sally
Age: 28

Name: Sue
Age: 33

Name: Jess
Age: 35

Name: Alf
Age: 37Name: Joe

Age: 11

Name: Bess
Age: 22

Name: Sal
Age: 30

Lecture 11 > Section 2 > B+ Tree basics

Some finer points of B+ Trees

Lecture 11 > Section 2 > B+ Tree basics

Searching a B+ Tree

• For exact key values:
• Start at the root
• Proceed down, to the leaf

• For range queries:
• As above
• Then sequential traversal

SELECT name
FROM people
WHERE age = 25

SELECT name
FROM people
WHERE 20 <= age
AND age <= 30

Lecture 11 > Section 2 > B+ Tree basics

B+ Tree Exact Search Animation

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 60 63 80 84 89

K = 30?

30 < 80

30 in [20,60)

To the data!
Not all nodes pictured

30 in [30,40)

Lecture 11 > Section 2 > B+ Tree design & cost

B+ Tree Range Search Animation

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 59 63 80 84 89

K in [30,85]?

30 < 80

30 in [20,60)

To the data!
Not all nodes pictured

30 in [30,40)

Lecture 11 > Section 2 > B+ Tree design & cost

B+ Tree Design

• How large is d?

• Example:
• Key size = 4 bytes
• Pointer size = 8 bytes
• Block size = 4096 bytes

• We want each node to fit on a single block/page
• 2d x 4 + (2d+1) x 8 <= 4096 à d <= 170

NB: Oracle allows 64K =
2^16 byte blocks
à d <= 2730

Lecture 11 > Section 2 > B+ Tree design & cost

B+ Tree: High Fanout = Smaller & Lower IO

• As compared to e.g. binary search trees, B+ Trees
have high fanout (between d+1 and 2d+1)

• This means that the depth of the tree is small à
getting to any element requires very few IO
operations!
• Also can often store most or all of the B+ Tree in main

memory!

• A TiB = 240 Bytes. What is the height of a B+ Tree
(with fill-factor = 1) that indexes it (with 64K
pages)?
• (2*2730 + 1)h = 240 à h = 4

The fanout is defined as the
number of pointers to child
nodes coming out of a node

Note that fanout is dynamic-
we’ll often assume it’s constant
just to come up with
approximate eqns!

The known universe
contains ~1080 particles…
what is the height of a B+
Tree that indexes these?

Lecture 11 > Section 2 > B+ Tree design & cost

B+ Trees in Practice
• Typical order: d=100. Typical fill-factor: 67%.

• average fanout = 133

• Typical capacities:
• Height 4: 1334 = 312,900,700 records
• Height 3: 1333 = 2,352,637 records

• Top levels of tree sit in the buffer pool:
• Level 1 = 1 page = 8 Kbytes
• Level 2 = 133 pages = 1 Mbyte
• Level 3 = 17,689 pages = 133 MBytes

Typically, only
pay for one IO!

Fill-factor is the percent of
available slots in the B+
Tree that are filled; is
usually < 1 to leave slack
for (quicker) insertions

Lecture 11 > Section 2 > B+ Tree design & cost

Simple Cost Model for Search
• Let:

• f = fanout, which is in [d+1, 2d+1] (we’ll assume it’s constant for our cost model…)
• N = the total number of pages we need to index
• F = fill-factor (usually ~= 2/3)

• Our B+ Tree needs to have room to index N / F pages!
• We have the fill factor in order to leave some open slots for faster insertions

• What height (h) does our B+ Tree need to be?
• h=1 à Just the root node- room to index f pages
• h=2 à f leaf nodes- room to index f2 pages
• h=3 à f2 leaf nodes- room to index f3 pages
• …
• h à fh-1 leaf nodes- room to index fh pages!

Lecture 11 > Section 2 > B+ Tree design & cost

à We need a B+ Tree
of height h = log$ %& !

Simple Cost Model for Search
• Note that if we have B available buffer pages, by the same logic:

• We can store !" levels of the B+ Tree in memory
• where !" is the number of levels such that the sum of all the levels’ nodes fit in

the buffer:
• # ≥ 1 + ' +⋯+ ')*+, = ∑/01)*+, '2

• In summary: to do exact search:
• We read in one page per level of the tree
• However, levels that we can fit in buffer are free!
• Finally we read in the actual record

Lecture 11 > Section 2 > B+ Tree design & cost

IO Cost: log6 78 − :# + 1

where # ≥ ∑/01)*+, '2

Simple Cost Model for Search

• To do range search, we just follow the horizontal pointers

• The IO cost is that of loading additional leaf nodes we need to access +
the IO cost of loading each page of the results- we phrase this as
“Cost(OUT)”

Lecture 11 > Section 2 > B+ Tree design & cost

IO Cost: log$ %& − () + +,-.(012)

where) ≥ ∑6789:;< =>

B+ Tree Range Search Animation

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 59 63 80 84 89

K in [30,85]?

30 < 80

30 in [20,60)

To the data!
Not all nodes pictured

30 in [30,40)

Lecture 11 > Section 2 > B+ Tree design & cost

How many IOs did our friend do?

Depends on how the
data are arranged

Clustered Indexes

An index is clustered if the underlying
data is ordered in the same way as the

index’s data entries.

Lecture 11 > Section 2 > Clustered Indexes

Clustered vs. Unclustered Index

30

22 25 28 29 32 34 37 38

19 22 27 28 30 33 35 37

30

22 25 28 29 32 34 37 38

19 2227 28 3033 3537

Clustered Unclustered

Index Entries

Data Records

Lecture 11 > Section 2 > Clustered Indexes

Clustered vs. Unclustered Index

• Recall that for a disk with block access, sequential IO is much faster
than random IO

• For exact search, no difference between clustered / unclustered

• For range search over R values: difference between 1 random IO + R
sequential IO, and R random IO:
• A random IO costs ~ 10ms (sequential much much faster)
• For R = 100,000 records- difference between ~10ms and ~17min!

Lecture 11 > Section 2 > Clustered Indexes

Fast Insertions & Self-Balancing

• We won’t go into specifics of B+ Tree insertion algorithm, but has
several attractive qualities:

• ~ Same cost as exact search

• Self-balancing: B+ Tree remains balanced (with respect to height) even after
insert

B+ Trees also (relatively) fast for single insertions!
However, can become bottleneck if many insertions (if fill-factor

slack is used up…)

Lecture 11 > Section 2 > B+ Tree design & cost

Bulk Loading

Lecture 11 > Section 2 > B+ Tree design & cost

20 30 30

22 25 28 29 32 34 37 3812 17

21 22 27 28 30 33 35 371511

21 22 27 28 30 33 35 371511

Input: Sorted File
Output: B+ Tree

To the board!
We will create an
“equivalent” tree

Message: Bulk Loading is faster!

Summary

• We covered an algorithm + some optimizations for sorting larger-
than-memory files efficiently
• An IO aware algorithm!

• We create indexes over tables in order to support fast (exact and
range) search and insertion over multiple search keys

• B+ Trees are one index data structure which support very fast exact
and range search & insertion via high fanout
• Clustered vs. unclustered makes a big difference for range queries too

Lecture 11 > Section 2 > SUMMARY

