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Today’s Lecture

1. External merge sort

2. External merge sort on larger files

3. Optimizations for sorting
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1. External Merge Sort

3

Lecture 10  >  Section 1



Recap: External Merge Algorithm

• Suppose we want to merge two sorted files both much larger 
than main memory (i.e. the buffer)

•We can use the external merge algorithm to merge files of 
arbitrary length in 2*(N+M) IO operations with only 3 buffer 
pages!

Our first example of an “IO aware” 
algorithm / cost model
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Why are Sort Algorithms Important?

• Data requested from DB in sorted order is extremely 
common
• e.g., find students in increasing GPA order

•Why not just use quicksort in main memory??
• What about if we need to sort 1TB of data with 1GB of RAM…

A classic problem in computer science!
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More reasons to sort…

• Sorting useful for eliminating duplicate copies 
in a collection of records (Why?)

• Sorting is first step in bulk loading B+ tree 
index.

• Sort-merge join algorithm involves sorting

Coming up…

Next lecture
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Do people care?

Sort benchmark bears his name

http://sortbenchmark.org
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So how do we sort big files?

1. Split into chunks small enough to sort in memory (“runs”)

2. Merge pairs (or groups) of runs using the external merge algorithm

3. Keep merging the resulting runs (each time = a “pass”) until left 
with one sorted file!
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External Merge Sort Algorithm

27,24 3,1

Example:
• 3 Buffer pages
• 6-page file

Disk Main Memory

Buffer

18,22

F1

F2

33,12 55,3144,10

1. Split into chunks small enough to sort in memory
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Orange file 
= unsorted
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External Merge Sort Algorithm

27,24 3,1
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18,22

F1

F2
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External Merge Sort Algorithm

27,24 3,1

Disk Main Memory

Buffer

18,22

F1

F2

31,33 44,5510,12

Example:
• 3 Buffer pages
• 6-page file

1. Split into chunks small enough to sort in memory
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= unsorted



External Merge Sort Algorithm

Disk Main Memory

Buffer
F1

F2

31,33 44,5510,12

And similarly for F2

27,24 3,118,22
18,22 24,271,3

1. Split into chunks small enough to sort in memory

Example:
• 3 Buffer pages
• 6-page file
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Each sorted 
file is a 
called a run



External Merge Sort Algorithm

Disk Main Memory

Buffer
F1

F2

2.  Now just run the external merge algorithm & we’re done!

31,33 44,5510,12

18,22 24,271,3

Example:
• 3 Buffer pages
• 6-page file

Lecture 10  >  Section 1  >  External Merge Sort



Calculating IO Cost

For 3 buffer pages, 6 page file:

1. Split into two 3-page files and sort in memory 
1. = 1 R + 1 W for each file = 2*(3 + 3) = 12 IO operations

2. Merge each pair of sorted chunks using the external merge 
algorithm 
1. = 2*(3 + 3) = 12 IO operations

3. Total cost = 24 IO
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2. External Merge Sort 
on larger files
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Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

18,43 24,2745,38

Assume we still 
only have 3 buffer 
pages (Buffer not 
pictured)

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31
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Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

18,43 24,2745,38

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31

1. Split into files small enough to 
sort in buffer…

Assume we still 
only have 3 buffer 
pages (Buffer not 
pictured)
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Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

1. Split into files small enough to 
sort in buffer… and sort

Assume we still 
only have 3 buffer 
pages (Buffer not 
pictured)
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Call each of these 
sorted files a run



Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

2. Now merge 
pairs of (sorted) 
files… the 
resulting files 
will be sorted!

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Assume we still 
only have 3 buffer 
pages (Buffer not 
pictured)
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Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

3. And repeat…

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk

10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Assume we still 
only have 3 buffer 
pages (Buffer not 
pictured)
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Call each of these 
steps a pass



Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

4. And repeat!

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk

10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Disk

3,10 10,101,3

12,16 18,1812,12

20,22 22,2318,18

24,24 27,2723,24

31,31 31,3327,31

33,38 39,4033,33

43,44 44,4541,42

48,55 55,5546,47
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Simplified 3-page Buffer Version
Assume for simplicity that we split an N-page file into N 
single-page runs and sort these; then:

• First pass: Merge N/2 pairs of runs each of length 1 page

• Second pass: Merge N/4 pairs of runs each of length 2 
pages

• In general, for N pages, we do !"#$ % passes
• +1 for the initial split & sort

• Each pass involves reading in & writing out all the pages = 
2N IO

Unsorted input file

Split & sort

Merge

Merge

Sorted!

à 2N*( !"#$ % +1) total IO cost!  
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3. Optimizations for sorting
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Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

1. Increase length of initial runs. Sort B+1 at a time!
At the beginning, we can split the N pages into runs of length B+1 and sort 
these in memory
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2"( log' " + 1)

IO Cost:

Starting with runs 
of length 1

2"( log'
+

, + - + 1)

Starting with runs of 
length B+1



Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

2. Perform a B-way merge. 
On each pass, we can merge groups of B runs at a time (vs. merging pairs 
of runs)!
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IO Cost:

2"( log' " + 1) 2"( log'
+

, + - + 1)

Starting with runs 
of length 1

Starting with runs of 
length B+1

2"( log.
+

, + - + 1)

Performing B-way 
merges



Repacking
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Repacking for even longer initial runs

• With B+1 buffer pages, we can now start with B+1-length initial runs
(and use B-way merges) to get 2"( log' (

)*+ + 1) IO cost…

• Can we reduce this cost more by getting even longer initial runs?

• Use repacking- produce longer initial runs by “merging” in buffer as 
we sort at initial stage
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Repacking Example: 3 page buffer

• Start with unsorted single input file, and load 2 pages

57,24 3,98

Disk

Main Memory

Buffer18,22
F1

10,33 44,5531,12
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Repacking Example: 3 page buffer

• Take the minimum two values, and put in output page

57,24 3,98

Disk

Main Memory

Buffer18,22
F1

10,33

44,55

31,12
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F2 31 33 10,12

m=12

Also keep track of 
max (last) value in 
current run…



Repacking Example: 3 page buffer

• Next, repack

57,24 3,98

Disk

Main Memory

BufferF1

33
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F2 31 31,3310,12

m=12
44,55

18,22



Repacking Example: 3 page buffer

• Next, repack, then load another page and continue!

57,24 3,98

Disk

Main Memory

BufferF1
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F2 31,3310,12

m=12
44,55

m=33

18,22



Repacking Example: 3 page buffer

• Now, however, the smallest values are less than the largest (last) in 
the sorted run…

3,98

Disk

Main Memory

BufferF1
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F2 31,3310,12

m=33

18,2218,22

We call these values frozen because 
we can’t add them to this run…

44,55

57,24



Repacking Example: 3 page buffer

• Now, however, the smallest values are less than the largest (last) in 
the sorted run…

Disk

Main Memory

BufferF1
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F2 31,3310,12

m=55

44,55 57,24 18,22

3,98



Repacking Example: 3 page buffer

• Now, however, the smallest values are less than the largest (last) in 
the sorted run…

Disk

Main Memory

BufferF1
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F2 31,3310,12

m=55

44,55 57,24 18,22 3,98



Repacking Example: 3 page buffer

• Now, however, the smallest values are less than the largest (last) in 
the sorted run…

Disk

Main Memory

BufferF1
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F2 31,3310,12

m=55

44,55 3,24 18,22 57,98



Repacking Example: 3 page buffer
• Once all buffer pages have a frozen value, or input file is empty, start 

new run with the frozen values
Disk

Main Memory

BufferF1
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F2 31,3310,12

m=0

44,55 3,24 18,22

57,98

F3



Repacking Example: 3 page buffer
• Once all buffer pages have a frozen value, or input file is empty, start 

new run with the frozen values
Disk

Main Memory

BufferF1

Lecture 10  >  Section 1  >  Optimizations for sorting

F2 31,3310,12

m=0

44,55

57,98

F3

3,18 22,24



Repacking

• Note that, for buffer with B+1 pages:
• If input file is sorted à nothing is frozen à we get a single run!
• If input file is reverse sorted (worst case) à everything is frozen à we get runs of 

length B+1

• In general, with repacking we do no worse than without it! 

• What if the file is already sorted?

• Engineer’s approximation: runs will have ~2(B+1) length

~2#( log(
)

*(+ + -) + 1)
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Summary

• Basics of IO and buffer management.
• See notebook for more fun! (Learn about sequential flooding)

• We introduced the IO cost model using sorting.
• Saw how to do merges with few IOs, 
• Works better than main-memory sort algorithms. 

• Described a few optimizations for sorting
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