
Lecture 10:
External Merge Sort

Lecture 10

Today’s Lecture

1. External merge sort

2. External merge sort on larger files

3. Optimizations for sorting

2

Lecture 10

1. External Merge Sort

3

Lecture 10 > Section 1

Recap: External Merge Algorithm

• Suppose we want to merge two sorted files both much larger
than main memory (i.e. the buffer)

•We can use the external merge algorithm to merge files of
arbitrary length in 2*(N+M) IO operations with only 3 buffer
pages!

Our first example of an “IO aware”
algorithm / cost model

Lecture 10 > Section 1 > External Merge Sort

Why are Sort Algorithms Important?

• Data requested from DB in sorted order is extremely
common
• e.g., find students in increasing GPA order

•Why not just use quicksort in main memory??
• What about if we need to sort 1TB of data with 1GB of RAM…

A classic problem in computer science!

Lecture 10 > Section 1 > External Merge Sort

More reasons to sort…

• Sorting useful for eliminating duplicate copies
in a collection of records (Why?)

• Sorting is first step in bulk loading B+ tree
index.

• Sort-merge join algorithm involves sorting

Coming up…

Next lecture

Lecture 10 > Section 1 > External Merge Sort

Do people care?

Sort benchmark bears his name

http://sortbenchmark.org

Lecture 10 > Section 1 > External Merge Sort

http://sortbenchmark.org

So how do we sort big files?

1. Split into chunks small enough to sort in memory (“runs”)

2. Merge pairs (or groups) of runs using the external merge algorithm

3. Keep merging the resulting runs (each time = a “pass”) until left
with one sorted file!

Lecture 10 > Section 1 > External Merge Sort

External Merge Sort Algorithm

27,24 3,1

Example:
• 3 Buffer pages
• 6-page file

Disk Main Memory

Buffer

18,22

F1

F2

33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Lecture 10 > Section 1 > External Merge Sort

Orange file
= unsorted

External Merge Sort Algorithm

27,24 3,1

Disk Main Memory

Buffer

18,22

F1

F2

33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Example:
• 3 Buffer pages
• 6-page file

Lecture 10 > Section 1 > External Merge Sort

Orange file
= unsorted

External Merge Sort Algorithm

27,24 3,1

Disk Main Memory

Buffer

18,22

F1

F2

33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Example:
• 3 Buffer pages
• 6-page file

Lecture 10 > Section 1 > External Merge Sort

Orange file
= unsorted

External Merge Sort Algorithm

27,24 3,1

Disk Main Memory

Buffer

18,22

F1

F2

31,33 44,5510,12

Example:
• 3 Buffer pages
• 6-page file

1. Split into chunks small enough to sort in memory

Lecture 10 > Section 1 > External Merge Sort

Orange file
= unsorted

External Merge Sort Algorithm

Disk Main Memory

Buffer
F1

F2

31,33 44,5510,12

And similarly for F2

27,24 3,118,22
18,22 24,271,3

1. Split into chunks small enough to sort in memory

Example:
• 3 Buffer pages
• 6-page file

Lecture 10 > Section 1 > External Merge Sort

Each sorted
file is a
called a run

External Merge Sort Algorithm

Disk Main Memory

Buffer
F1

F2

2. Now just run the external merge algorithm & we’re done!

31,33 44,5510,12

18,22 24,271,3

Example:
• 3 Buffer pages
• 6-page file

Lecture 10 > Section 1 > External Merge Sort

Calculating IO Cost

For 3 buffer pages, 6 page file:

1. Split into two 3-page files and sort in memory
1. = 1 R + 1 W for each file = 2*(3 + 3) = 12 IO operations

2. Merge each pair of sorted chunks using the external merge
algorithm
1. = 2*(3 + 3) = 12 IO operations

3. Total cost = 24 IO

Lecture 10 > Section 1 > External Merge Sort

2. External Merge Sort
on larger files

16

Lecture 10 > Section 2

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

18,43 24,2745,38

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31

Lecture 10 > Section 1 > External Merge Sort: Larger files

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

18,43 24,2745,38

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31

1. Split into files small enough to
sort in buffer…

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

Lecture 10 > Section 1 > External Merge Sort: Larger files

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

1. Split into files small enough to
sort in buffer… and sort

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

Lecture 10 > Section 1 > External Merge Sort: Larger files

Call each of these
sorted files a run

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

2. Now merge
pairs of (sorted)
files… the
resulting files
will be sorted!

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

Lecture 10 > Section 1 > External Merge Sort: Larger files

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

3. And repeat…

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk

10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

Lecture 10 > Section 1 > External Merge Sort: Larger files

Call each of these
steps a pass

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

4. And repeat!

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk

10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Disk

3,10 10,101,3

12,16 18,1812,12

20,22 22,2318,18

24,24 27,2723,24

31,31 31,3327,31

33,38 39,4033,33

43,44 44,4541,42

48,55 55,5546,47

Lecture 10 > Section 1 > External Merge Sort: Larger files

Simplified 3-page Buffer Version
Assume for simplicity that we split an N-page file into N
single-page runs and sort these; then:

• First pass: Merge N/2 pairs of runs each of length 1 page

• Second pass: Merge N/4 pairs of runs each of length 2
pages

• In general, for N pages, we do !"#$ % passes
• +1 for the initial split & sort

• Each pass involves reading in & writing out all the pages =
2N IO

Unsorted input file

Split & sort

Merge

Merge

Sorted!

à 2N*(!"#$ % +1) total IO cost!

Lecture 10 > Section 1 > External Merge Sort: Larger files

3. Optimizations for sorting

24

Lecture 10 > Section 3

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

1. Increase length of initial runs. Sort B+1 at a time!
At the beginning, we can split the N pages into runs of length B+1 and sort
these in memory

Lecture 10 > Section 3 > Optimizations for sorting

2"(log' " + 1)

IO Cost:

Starting with runs
of length 1

2"(log'
+

, + - + 1)

Starting with runs of
length B+1

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

2. Perform a B-way merge.
On each pass, we can merge groups of B runs at a time (vs. merging pairs
of runs)!

Lecture 10 > Section 3 > Optimizations for sorting

IO Cost:

2"(log' " + 1) 2"(log'
+

, + - + 1)

Starting with runs
of length 1

Starting with runs of
length B+1

2"(log.
+

, + - + 1)

Performing B-way
merges

Repacking

Lecture 10 > Section 3 > Optimizations for sorting

Repacking for even longer initial runs

• With B+1 buffer pages, we can now start with B+1-length initial runs
(and use B-way merges) to get 2"(log' (

)*+ + 1) IO cost…

• Can we reduce this cost more by getting even longer initial runs?

• Use repacking- produce longer initial runs by “merging” in buffer as
we sort at initial stage

Lecture 10 > Section 3 > Optimizations for sorting

Repacking Example: 3 page buffer

• Start with unsorted single input file, and load 2 pages

57,24 3,98

Disk

Main Memory

Buffer18,22
F1

10,33 44,5531,12

Lecture 10 > Section 3 > Optimizations for sorting

F2

Repacking Example: 3 page buffer

• Take the minimum two values, and put in output page

57,24 3,98

Disk

Main Memory

Buffer18,22
F1

10,33

44,55

31,12

Lecture 10 > Section 3 > Optimizations for sorting

F2 31 33 10,12

m=12

Also keep track of
max (last) value in
current run…

Repacking Example: 3 page buffer

• Next, repack

57,24 3,98

Disk

Main Memory

BufferF1

33

Lecture 10 > Section 3 > Optimizations for sorting

F2 31 31,3310,12

m=12
44,55

18,22

Repacking Example: 3 page buffer

• Next, repack, then load another page and continue!

57,24 3,98

Disk

Main Memory

BufferF1

Lecture 10 > Section 3 > Optimizations for sorting

F2 31,3310,12

m=12
44,55

m=33

18,22

Repacking Example: 3 page buffer

• Now, however, the smallest values are less than the largest (last) in
the sorted run…

3,98

Disk

Main Memory

BufferF1

Lecture 10 > Section 1 > Optimizations for sorting

F2 31,3310,12

m=33

18,2218,22

We call these values frozen because
we can’t add them to this run…

44,55

57,24

Repacking Example: 3 page buffer

• Now, however, the smallest values are less than the largest (last) in
the sorted run…

Disk

Main Memory

BufferF1

Lecture 10 > Section 1 > Optimizations for sorting

F2 31,3310,12

m=55

44,55 57,24 18,22

3,98

Repacking Example: 3 page buffer

• Now, however, the smallest values are less than the largest (last) in
the sorted run…

Disk

Main Memory

BufferF1

Lecture 10 > Section 1 > Optimizations for sorting

F2 31,3310,12

m=55

44,55 57,24 18,22 3,98

Repacking Example: 3 page buffer

• Now, however, the smallest values are less than the largest (last) in
the sorted run…

Disk

Main Memory

BufferF1

Lecture 10 > Section 1 > Optimizations for sorting

F2 31,3310,12

m=55

44,55 3,24 18,22 57,98

Repacking Example: 3 page buffer
• Once all buffer pages have a frozen value, or input file is empty, start

new run with the frozen values
Disk

Main Memory

BufferF1

Lecture 10 > Section 1 > Optimizations for sorting

F2 31,3310,12

m=0

44,55 3,24 18,22

57,98

F3

Repacking Example: 3 page buffer
• Once all buffer pages have a frozen value, or input file is empty, start

new run with the frozen values
Disk

Main Memory

BufferF1

Lecture 10 > Section 1 > Optimizations for sorting

F2 31,3310,12

m=0

44,55

57,98

F3

3,18 22,24

Repacking

• Note that, for buffer with B+1 pages:
• If input file is sorted à nothing is frozen à we get a single run!
• If input file is reverse sorted (worst case) à everything is frozen à we get runs of

length B+1

• In general, with repacking we do no worse than without it!

• What if the file is already sorted?

• Engineer’s approximation: runs will have ~2(B+1) length

~2#(log(
)

*(+ + -) + 1)

Lecture 10 > Section 1 > Optimizations for sorting

Summary

• Basics of IO and buffer management.
• See notebook for more fun! (Learn about sequential flooding)

• We introduced the IO cost model using sorting.
• Saw how to do merges with few IOs,
• Works better than main-memory sort algorithms.

• Described a few optimizations for sorting

Lecture 10 > Section 1 > SUMMARY

