
Lecture 9:
The Buffer & External Merge

Lecture 09

Today’s Lecture

1. The Buffer

2. External Merge

3. External Merge Sort & Sorting Optimizations

2

Lecture 09

1. The Buffer

3

Lecture 09 > Section 1

Transition to Mechanisms

1. So you can understand what the database is doing!
1. Understand the CS challenges of a database and how to use it.
2. Understand how to optimize a query

2. Many mechanisms have become stand-alone systems
• Indexing to Key-value stores
• Embedded join processing
• SQL-like languages take some aspect of what we discuss (PIG, Hive)

Lecture 09 > Section 1

What you will learn about in this section

1. RECAP: Storage and memory model

2. Buffer primer

5

Lecture 09 > Section 1

High-level: Disk vs. Main Memory

Disk:

• Slow: Sequential block access
• Read a blocks (not byte) at a time, so sequential access is cheaper

than random
• Disk read / writes are expensive!

• Durable: We will assume that once on disk, data is safe!

• Cheap 6

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Random Access Memory (RAM) or Main Memory:

• Fast: Random access, byte addressable
• ~10x faster for sequential access
• ~100,000x faster for random access!

• Volatile: Data can be lost if e.g. crash occurs, power goes out,
etc!

• Expensive: For $100, get 16GB of RAM vs. 2TB of disk!

The image part with relationship ID rId3 was not found in the file.

Lecture 09 > Section 1 > Storage & memory model

The Buffer

Lecture 09 > Section 1 > The Buffer

Disk

Main Memory

Buffer
• A buffer is a region of physical memory

used to store temporary data

• In this lecture: a region in main
memory used to store intermediate
data between disk and processes

• Key idea: Reading / writing to disk is slow-
need to cache data!

Main Memory

Buffer

The (Simplified) Buffer
• In this class: We’ll consider a buffer located

in main memory that operates over pages
and files:

Lecture 09 > Section 1 > The Buffer

Disk
1,0,31,0,3

• Read(page): Read page from disk ->
buffer if not already in buffer

Main Memory

Buffer

The (Simplified) Buffer
• In this class: We’ll consider a buffer located

in main memory that operates over pages
and files:

Lecture 09 > Section 1 > The Buffer

Disk
1,0,3

1,0,3
• Read(page): Read page from disk ->

buffer if not already in buffer

02

Processes can then read from /
write to the page in the buffer

Main Memory

Buffer

The (Simplified) Buffer
• In this class: We’ll consider a buffer located

in main memory that operates over pages
and files:

Lecture 09 > Section 1 > The Buffer

Disk
1,0,3

1,2,3
• Read(page): Read page from disk ->

buffer if not already in buffer

• Flush(page): Evict page from buffer &
write to disk

Main Memory

Buffer

The (Simplified) Buffer
• In this class: We’ll consider a buffer located

in main memory that operates over pages
and files:

Lecture 09 > Section 1 > The Buffer

Disk
1,0,3

1,2,3
• Read(page): Read page from disk ->

buffer if not already in buffer

• Flush(page): Evict page from buffer &
write to disk

• Release(page): Evict page from buffer
without writing to disk

Main Memory

Buffer

Lecture 09 > Section 1 > The Buffer

Disk

Managing Disk: The DBMS
Buffer
• Database maintains its own buffer

• Why? The OS already does this…

• DB knows more about access
patterns.
• Watch for how this shows up! (cf. Sequential

Flooding)

• Recovery and logging require ability
to flush to disk.

The Buffer Manager
• A buffer manager handles supporting operations for the buffer:

• Primarily, handles & executes the “replacement policy”
• i.e. finds a page in buffer to flush/release if buffer is full and a new

page needs to be read in

• DBMSs typically implement their own buffer management routines

Lecture 09 > Section 1 > The Buffer

A Simplified Filesystem Model

• For us, a page is a fixed-sized array of memory
• Think: One or more disk blocks
• Interface:

• write to an entry (called a slot) or set to “None”

• DBMS also needs to handle variable length fields
• Page layout is important for good hardware utilization as

well (see 346)

• And a file is a variable-length list of pages
• Interface: create / open / close; next_page(); etc.

Lecture 09 > Section 1 > The Buffer

Disk

1,0,3 1,0,3File

Page

DB-WS09a.ipynb

15

Lecture 09 > Section 1 > ACTIVITY

Lecture_1_1.ipynb

2. External Merge

16

Lecture 09 > Section 2

What you will learn about in this section

17

Lecture 09 > Section 2

1. External Merge- Basics

2. External Merge Algorithm

3. ACTIVITY: External Merge Sort- Demo

Challenge: Merging Big Files with Small Memory

How do we efficiently merge two sorted files when both are much
larger than our main memory buffer?

Lecture 09 > Section 2 > External merge - Basics

External Merge Algorithm

• Input: 2 sorted lists of length M and N

• Output: 1 sorted list of length M + N

• Required: At least 3 Buffer Pages

• IOs: 2(M+N)

Lecture 09 > Section 2 > External merge algorithm

Key (Simple) Idea
To find an element that is no larger than all elements in two lists, one

only needs to compare minimum elements from each list.

Lecture 09 > Section 2 > External merge algorithm

If:
!" ≤ !$ ≤ ⋯ ≤ !&
'" ≤ '$ ≤ ⋯ ≤ '(

Then:
)*+(!", '") ≤ !/
)*+(!", '") ≤ '0

for i=1….N and j=1….M

External Merge Algorithm

Lecture 09 > Section 2 > External merge algorithm

7,11 20,31

23,24 25,30

Input:
Two sorted
files

Output:
One merged
sorted file

Disk

Main Memory

Buffer
1,5

2,22

F1

F2

External Merge Algorithm

Lecture 09 > Section 2 > External merge algorithm

7,11 20,31

23,24 25,30

Disk

Main Memory

Buffer

1,5 2,22
Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

External Merge Algorithm

Lecture 09 > Section 2 > External merge algorithm

7,11 20,31

23,24 25,30

Disk

Main Memory

Buffer

5 22 1,2
Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

External Merge Algorithm

Lecture 09 > Section 2 > External merge algorithm

7,11 20,31

23,24 25,30

Disk

Main Memory

Buffer

5 22

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

External Merge Algorithm

Lecture 09 > Section 2 > External merge algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

522

1,2

This is all the algorithm
“sees”… Which file to load a
page from next?

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

7,11

External Merge Algorithm

Lecture 09 > Section 2 > External merge algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

522

1,2

We know that F2 only contains
values ≥ 22… so we should
load from F1!

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

7,11

External Merge Algorithm

Lecture 09 > Section 2 > External merge algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

522

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

7,11

External Merge Algorithm

Lecture 09 > Section 2 > External merge algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

5,722

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

11

External Merge Algorithm

Lecture 09 > Section 2 > External merge algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

5,7

22

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

11

External Merge Algorithm

Lecture 09 > Section 2 > External merge algorithm

23,24 25,30

Disk

Main Memory

Buffer

5,7

22

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

11

20,31

And so on…
See IPython demo!

We can merge lists of arbitrary
length with only 3 buffer pages.

If lists of size M and N, then
Cost: 2(M+N) IOs

Each page is read once, written once

With B+1 buffer pages, can merge B lists. How?

Lecture 09 > Section 2 > External merge algorithm

EMS-Demo.ipynb

32

Lecture 09 > Section 2 > ACTIVITY

Lecture_1_1.ipynb

