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Today’s Lecture

1. The Buffer

2. External Merge

3. External Merge Sort & Sorting Optimizations
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1. The Buffer

3

Lecture 09  >  Section 1



Transition to Mechanisms

1. So you can understand what the database is doing!
1. Understand the CS challenges of a database and how to use it.
2. Understand how to optimize a query

2. Many mechanisms have become stand-alone systems
• Indexing to Key-value stores
• Embedded join processing
• SQL-like languages take some aspect of what we discuss (PIG, Hive)
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What you will learn about in this section

1. RECAP: Storage and memory model

2. Buffer primer
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High-level: Disk vs. Main Memory

Disk:

• Slow: Sequential block access
• Read a blocks (not byte) at a time, so sequential access is cheaper 

than random
• Disk read / writes are expensive!

• Durable: We will assume that once on disk, data is safe!

• Cheap 6
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Random Access Memory (RAM) or Main Memory:

• Fast: Random access, byte addressable
• ~10x faster for sequential access
• ~100,000x faster for random access!

• Volatile: Data can be lost if e.g. crash occurs, power goes out, 
etc!

• Expensive: For $100, get 16GB of RAM vs. 2TB of disk!

The image part with relationship ID rId3 was not found in the file.
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The Buffer
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Disk

Main Memory

Buffer
• A buffer is a region of physical memory 

used to store temporary data

• In this lecture: a region in  main 
memory used to store intermediate 
data between disk and processes

• Key idea: Reading / writing to disk is slow-
need to cache data!



Main Memory

Buffer

The (Simplified) Buffer
• In this class: We’ll consider a buffer located 

in main memory that operates over pages
and files:
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Disk
1,0,31,0,3

• Read(page): Read page from disk -> 
buffer if not already in buffer



Main Memory

Buffer

The (Simplified) Buffer
• In this class: We’ll consider a buffer located 

in main memory that operates over pages
and files:
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Disk
1,0,3

1,0,3
• Read(page): Read page from disk -> 

buffer if not already in buffer
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Processes can then read from / 
write to the page in the buffer



Main Memory

Buffer

The (Simplified) Buffer
• In this class: We’ll consider a buffer located 

in main memory that operates over pages
and files:
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Disk
1,0,3

1,2,3
• Read(page): Read page from disk -> 

buffer if not already in buffer

• Flush(page): Evict page from buffer & 
write to disk



Main Memory

Buffer

The (Simplified) Buffer
• In this class: We’ll consider a buffer located 

in main memory that operates over pages
and files:
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Disk
1,0,3

1,2,3
• Read(page): Read page from disk -> 

buffer if not already in buffer

• Flush(page): Evict page from buffer & 
write to disk

• Release(page): Evict page from buffer 
without writing to disk



Main Memory

Buffer
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Disk

Managing Disk: The DBMS 
Buffer
• Database maintains its own buffer

• Why? The OS already does this…

• DB knows more about access 
patterns.
• Watch for how this shows up! (cf. Sequential 

Flooding)

• Recovery and logging require ability 
to flush to disk.



The Buffer Manager
• A buffer manager handles supporting operations for the buffer:

• Primarily, handles & executes the “replacement policy” 
• i.e. finds a page in buffer to flush/release if buffer is full and a new 

page needs to be read in

• DBMSs typically implement their own buffer management routines
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A Simplified Filesystem Model

• For us, a page is a fixed-sized array of memory 
• Think: One or more disk blocks
• Interface:

• write to an entry (called a slot) or set to “None”

• DBMS also needs to handle variable length fields
• Page layout is important for good hardware utilization as 

well (see 346)

• And a file is a variable-length list of pages
• Interface: create / open / close; next_page(); etc.
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Disk
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DB-WS09a.ipynb
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2. External Merge
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What you will learn about in this section
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1. External Merge- Basics

2. External Merge Algorithm

3. ACTIVITY: External Merge Sort- Demo



Challenge: Merging Big Files with Small Memory

How do we efficiently merge two sorted files when both are much 
larger than our main memory buffer?
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External Merge Algorithm

• Input: 2 sorted lists of length M and N

• Output: 1 sorted list of length M + N

• Required: At least 3 Buffer Pages

• IOs: 2(M+N)
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Key (Simple) Idea
To find an element that is no larger than all elements in two lists, one 

only needs to compare minimum elements from each list.
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If:
!" ≤ !$ ≤ ⋯ ≤ !&
'" ≤ '$ ≤ ⋯ ≤ '(

Then:
)*+(!", '") ≤ !/
)*+(!", '") ≤ '0

for i=1….N and j=1….M 



External Merge Algorithm

Lecture 09  >  Section 2  >  External merge algorithm

7,11 20,31

23,24 25,30

Input:
Two sorted 
files

Output:
One merged
sorted file

Disk

Main Memory

Buffer
1,5

2,22

F1

F2



External Merge Algorithm
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External Merge Algorithm
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External Merge Algorithm
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External Merge Algorithm
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External Merge Algorithm
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External Merge Algorithm
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External Merge Algorithm

Lecture 09  >  Section 2  >  External merge algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

5,722

1,2

Input:
Two sorted 
files

Output:
One merged
sorted file

F1

F2

11



External Merge Algorithm
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External Merge Algorithm

Lecture 09  >  Section 2  >  External merge algorithm

23,24 25,30

Disk

Main Memory

Buffer

5,7

22

1,2

Input:
Two sorted 
files

Output:
One merged
sorted file

F1

F2

11

20,31

And so on…
See IPython demo!



We can merge lists of arbitrary 
length with only 3 buffer pages.

If lists of size M and N, then
Cost: 2(M+N) IOs

Each page is read once, written once

With B+1 buffer pages, can merge B lists. How?
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EMS-Demo.ipynb
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