
Intro to Databases
Lecture 1: Course Overview

1

The world is increasingly
driven by data…

2

This class teaches the basics of
how to use & manage data.

Key Questions We Will Answer

• How can we collect and store large amounts of data?
• By building tools and data structures to efficiently index and serve data

• How can we efficiently query data?
• By compiling high-level declarative queries into efficient low-level plans

• How can we safely update data?
• By managing concurrent access to state as it is read and written

• How do different database systems manage design trade-offs?
• e.g., at scale, in a distributed environment?

3

When you’ll use this material

• Building almost any software application
• e.g., mobile, cloud, consumer, enterprise, analytics, machine learning
• Corollary: every application you use uses a database
• Bonus: every program consumes data (even if only the program text!)

• Performing data analytics
• Business intelligence, data science, predictive modeling
• (Even if you’re using Pandas, you’re using relational algebra!)

• Building data-intensive tools and applications
• Many core concepts power deep learning frameworks to self-driving cars

4

Today’s Lecture

1. Introduction, admin & setup
• ACTIVITY: Jupyter “Hello World!”

2. Overview of the relational data model
• ACTIVITY: SQL in Jupyter

3. Overview of DBMS topics: Key concepts & challenges

5

1. Introduction, admin & setup

6

Section 1

What you will learn about in this section

1. Motivation for studying DBs

2. Administrative structure

3. Course logistics

4. Overview of lecture coverage

5. ACTIVITY: Jupyter “Hello World!”

7

Section 1

Big Data Landscape…
Infrastructure is Changing

8http://www.bigdatalandscape.com/

New tech. Same Principles.

Section 1 > Introduction

Why should you study databases?

• Mercenary- make more $$$:
• Startups need DB talent right away = low employee #
• Massive industry…

• Intellectual:
• Science: data poor to data rich

• No idea how to handle the data!
• Fundamental ideas to/from all of CS:

• Systems, theory, AI, logic, stats, analysis….

9
Many great computer systems ideas started in DB.

Section 1 > Introduction

What this course is (and is not)

• Discuss fundamentals of data management
• How to design databases, query databases, build applications with them.
• How to debug them when they go wrong!
• Not how to be a DBA or how to tune Oracle 12g.

• We’ll cover how database management systems work

• And some (but not all of) the principles of how to build them

10

Section 1 > Introduction

Who we are…

Instructor (me) Seongjin Lee
• Office hours: Tuesday: 18:00-19:00, 407-314
• Or make an appointment
• Or send an email: insight at gnu dot ac dot kr

11

Section 1 > Administrative > Course Staff

12

open.gnu.ac.kr

Communication w/ Course Staff

• Piazza

• Office hours

• By appointment!

13

Section 1 > Administrative

Piazza

The goal is to get you to answer each other’s questions so you
can benefit and learn from each other.

14

Section 1 > Administrative

https://piazza.com/class/jkt5x58qttc3u9

Course Website:

open.gnu.ac.kr

15

Section 1 > Administrative

http://open.gnu.ac.kr/mediawiki/index.php?title=Database_2018-02

16

Lectures

• Lecture slides cover essential material
• This is your best reference.
• We are trying to get away from book, but do have pointers

• Try to cover same thing in many ways: Lecture, lecture notes,
homework, exams (no shock)
• Attendance makes your life easier…

Section 1 > Logistics

17

Attendance

• I dislike mandatory attendance… but in the past we noticed…
• People who did not attend did worse L
• People who did not attend used more course resources L
• People who did not attend were less happy with the course L

Section 1 > Logistics

Graded Elements

• Attendance (10%)
• Quiz (10%)
• Problem Sets (10%)
• Programming project (10%)
• Midterm (30%)
• Final exam (30%)

18

Assignments are
typically due Tuesday

before class, typically 2
weeks to complete

Section 1 > Logistics

Un-Graded Elements

• Readings provided to help you!
• Only items in lecture, homework, or project are fair game.

• Activities are again mainly to help / be fun!
• Will occur during class- not graded, but count as part of lecture material (fair

game as well)

• Jupyter Notebooks provided
• These are optional but hopefully helpful.
• Redesigned so that you can ‘interactively replay’ parts of lecture

19

Section 1 > Logistics

What is expected from you

• Attend lectures
• If you don’t, it’s at your own peril

• Be active and think critically
• Ask questions, post comments on forums

• Do programming and homework projects
• Start early and be honest

• Study for tests and exams
20

Section 1 > Logistics

Lectures: 1st half - from a user’s perspective

1. Foundations: Relational data models & SQL
• Lectures 2-3
• How to manipulate data with SQL, a declarative language

• reduced expressive power but the system can do more for you

2. Database Design: Design theory and constraints
• Lectures 4-6
• Designing relational schema to keep your data from getting corrupted

3. Transactions: Syntax & supporting systems
• Lectures 7-8
• A programmer’s abstraction for data consistency

21

Section 1 > Lectures

Lectures: 2nd half - understanding how it works

4. Introduction to database systems
• Lectures 12-16
• Indexing
• External Memory Algorithms (IO model) for sorting, joins, etc.
• Basics of query optimization (Cost Estimates)
• Relational algebra

5. Specialized and New Data Processing Systems
• Lectures 17-19
• Key-Value Stores
• Hadoop and its 10 year anniversary
• SparkSQL. The re-rise of SQL
• Next-gen analytics systems & current intersections with ML & AI

22

Section 1 > Lectures

Lectures: A note about format of notes

23

Section 1 > Lectures

These are asides / notes (still
need to know these in general!)

Main point of slide / key takeaway at bottom

Definitions in blue with concept being defined bold & underlined

Warnings- pay attention here!

Take note!!

Jupyter Notebook “Hello World”

• Jupyter notebooks are interactive shells which
save output in a nice notebook format
• They also can display markdown, LaTeX, HTML, js…

• You’ll use these for
• in-class activities
• interactive lecture supplements/recaps
• homeworks, projects, etc.- if helpful!

24

Section 1 > ACTIVITY

FYI: “Jupyter Notebook” are also
called iPython notebooks but they
handle other languages too.

Note: you do need to
know or learn python
for this course!

Jupyter Notebook Setup

25

Section 1 > ACTIVITY

As a general policy in upper-level CS courses, Windows is not officially supported.
However we are making a best-effort attempt to provide some solutions here!

1. HIGHLY RECOMMENDED. Install on your laptop via the instructions on the
next slide / Piazza

2. Other options running via one of the alternative methods:
1. Ubuntu VM.
2. Corn

3. Come to our Installation Office Hours after this class and tomorrow!

Please help out your
peers by posting issues
/ solutions on Piazza!

Jupyter Notebook Setup

26

Section 1 > ACTIVITY

Ask help for setup & installation

http://open.gnu.ac.kr/mediawiki/index.php?title=Da
tabase_2018-02

DB-WS01a.ipynb

27

Section 1 > ACTIVITY

Lecture_1_1.ipynb

2. Overview of the relational data
model

28

Section 2

What you will learn about in this section

1. Definition of DBMS

2. Data models & the relational data model

3. Schemas & data independence

4. ACTIVITY: Jupyter + SQL

29

Section 2

What is a DBMS?

• A large, integrated collection of data

• Models a real-world enterprise
• Entities (e.g., Students, Courses)
• Relationships (e.g., Alice is enrolled in 145)

A Database Management System (DBMS) is a
piece of software designed to store and
manage databases

30

Section 2 > DBMS

31

A Motivating, Running Example

• Consider building a course management system (CMS):

• Students
• Courses
• Professors

• Who takes what
• Who teaches what

Entities

Relationships

Section 2 > Data models

Data models
• A data model is a collection of concepts for describing data

• The relational model of data is the most widely used model today
• Main Concept: the relation- essentially, a table

• A schema is a description of a particular collection of data, using the
given data model

• E.g. every relation in a relational data model has a schema describing types,
etc.

32

Section 2 > Data models

“Relational databases form the
bedrock of western civilization”

- Bruce Lindsay, IBM Research
33

Section 2 > Data models

expert in designing database management systems

Modeling the CMS
• Logical Schema

• Students(sid: string, name: string, gpa: float)
• Courses(cid: string, cname: string, credits: int)
• Enrolled(sid: string, cid: string, grade: string)

sid Name Gpa
101 Bob 3.2
123 Mary 3.8

Students

cid cname credits
564 564-2 4
308 417 2

Coursessid cid Grade
123 564 A

Enrolled

Relations

34

Section 2 > Data models

Modeling the CMS
• Logical Schema

• Students(sid: string, name: string, gpa: float)
• Courses(cid: string, cname: string, credits: int)
• Enrolled(sid: string, cid: string, grade: string)

sid Name Gpa
101 Bob 3.2
123 Mary 3.8

Students

cid cname credits
564 564-2 4
308 417 2

Coursessid cid Grade
123 564 A

Enrolled
35

Corresponding
keys

Section 2 > Data models

Other Schemata…

• Physical Schema: describes data layout
• Relations as unordered files
• Some data in sorted order (index)

• Logical Schema: Previous slide

• External Schema: (Views)
• Course_info(cid: string, enrollment: integer)
• Derived from other tables

Applications

Administrators

36

Section 2 > Schemata

Data independence

Concept: Applications do not need to worry about how the data is
structured and stored

Logical data independence:
protection from changes in the
logical structure of the data

Physical data independence:
protection from physical layout
changes

One of the most important reasons to use a DBMS 37

Section 2 > Schemata

I.e. should not need to ask: can we add a
new entity or attribute without rewriting
the application?

I.e. should not need to ask: which disks
are the data stored on? Is the data
indexed?

DB-WS01b.ipynb

38

Section 2 > ACTIVITY

Lecture_1_1.ipynb

3. Overview of DBMS topics
Key concepts & challenges

39

Section 3

What you will learn about in this section

1. Transactions

2. Concurrency & locking

3. Atomicity & logging

4. Summary

40

Section 3

Challenges with Many Users

• Suppose that our CMS application serves 1000’s of users or more-
what are some challenges?

DBMS allows user to write programs
as if they were the only user

Disk/SSD access is slow, DBMS hide
the latency by doing more CPU work
concurrently

41

Section 3 > DBMS Challenges

• Security: Different users,
different roles

• Performance: Need to provide
concurrent access

• Consistency: Concurrency can
lead to update problems

We won’t look at too much in this
course, but is extremely important

Transactions
• A key concept is the transaction (TXN): an atomic

sequence of db actions (reads/writes)
Atomicity: An action
either completes
entirely or not at all

42

Section 3 > DBMS Challenges

Acct Balance
a10 20,000
a20 15,000

Acct Balance
a10 17,000
a20 18,000

Transfer $3k from a10 to a20:
1. Debit $3k from a10
2. Credit $3k to a20

• Crash before 1,
• After 1 but before 2,
• After 2.

Written naively, in
which states is

atomicity preserved?

DB Always
preserves
atomicity!

Transactions
• A key concept is the transaction (TXN): an atomic

sequence of db actions (reads/writes)
• If a user cancels a TXN, it should be as if nothing

happened!

• Transactions leave the DB in a consistent state
• Users may write integrity constraints, e.g., ‘each course

is assigned to exactly one room’

Atomicity: An action
either completes
entirely or not at all

43

Section 3 > DBMS Challenges

Consistency: An action
results in a state which
conforms to all
integrity constraints

However, note that the DBMS does not understand the
real meaning of the constraints– consistency burden is
still on the user!

Challenge: Scheduling Concurrent
Transactions
• The DBMS ensures that the execution of {T1,…,Tn} is

equivalent to some serial execution

• One way to accomplish this: Locking
• Before reading or writing, transaction requires a lock from

DBMS, holds until the end

• Key Idea: If Ti wants to write to an item x and Tj wants
to read x, then Ti, Tj conflict. Solution via locking:
• only one winner gets the lock
• loser is blocked (waits) until winner finishes

A set of TXNs is
isolated if their effect
is as if all were
executed serially

44

Section 3 > DBMS Challenges

What if Ti and Tj need X and
Y, and Ti asks for X before Tj,

and Tj asks for Y before Ti?
-> Deadlock! One is
aborted…

All concurrency issues handled by the DBMS…

Ensuring Atomicity & Durability
• DBMS ensures atomicity even if a TXN crashes!

• One way to accomplish this: Write-ahead logging
(WAL)

• Key Idea: Keep a log of all the writes done.
• After a crash, the partially executed TXNs are undone

using the log

Write-ahead Logging
(WAL): Before any
action is finalized, a
corresponding log
entry is forced to disk

45

Section 3 > DBMS Challenges

We assume that the log is on
“stable” storage

All atomicity issues also handled by the DBMS…

A Well-Designed DBMS makes many people
happy!

• End users and DBMS vendors
• Reduces cost and makes money

• DB application programmers
• Can handle more users, faster, for cheaper, and with better

reliability / security guarantees!

• Database administrators (DBA)
• Easier time of designing logical/physical schema, handling

security/authorization, tuning, crash recovery, and more…

Must still understand
DB internals

46

Section 3 > Summary

Summary of DBMS

• DBMS are used to maintain, query, and manage large datasets.
• Provide concurrency, recovery from crashes, quick application development,

integrity, and security

• Key abstractions give data independence

• DBMS R&D is one of the broadest, most exciting fields in CS. Fact!

47

Section 3 > Summary

