
Structures,	Unions,
and	Enumerations

adopted	from	KNK	C	Programming	:	A	Modern	Approach

Structure (구조체) Variables
• The	properties	of	a	structure are	different	from	those	of	an	array.
구조체는배열과다름

• The	elements	of	a	structure	(its	members)	aren’t	required	to	
have	the	same	type.
구조체의구성요소(멤버)는서로다른형을갖을수있음

• The	members	of	a	structure	have	names;	to	select	a	particular	
member,	we	specify	its	name,	not	its	position.
구조체의멤버는이름을갖고있고,그멤버를사용하기위해선이름을사용함
(비교:배열은인덱스번호로활용)

• In	some	languages,	structures	are	called	records, and	members	
are	known	as	fields.
어떤언어는구조체를레코드,멤버는필드라고부름

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 2

Declaring	Structure	Variables
• A	structure	is	a	logical	choice	for	storing	a	collection	of	related	
data	items.
구조체는관련있는데이터를묶을수있는틀을제공

• A	declaration	of	two	structure	variables	that	store	information	
about	parts	in	a	warehouse:
창고에있는부품정보를저장하기위해두개의구조체변수를선언하는예

struct {
int number;
char name[NAME_LEN+1];
int on_hand;

} part1, part2;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 3

Declaring	Structure	Variables
• The	members	of	a	structure	are	stored	in	memory	in	the	order	in	
which	they’re	declared.
구조체의멤버는선언된순서대로메모리에배치됨

• Appearance	of	part1(메모리에 표현된 모습)

• Assumptions(가정):
• part1 is	located	at	address	2000.
시작주소 2000

• Integers	occupy	four	bytes.
정수는 4바이트

• NAME_LEN has	the	value	25. NAME_LEN	=	25

• There	are	no	gaps	between	the	members.
멤버들사이에는공백이없음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 4

Declaring	Structure	Variables
• Abstract	representations	of	a	structure:
추상화된구조체의표현

• Member	values	will	go	in	the	boxes	later.
실제값은이후에저장됨

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 5

Declaring	Structure	Variables
• Each	structure	represents	a	new	scope.
각구조체는새로운범위를갖고있음

• Any	names	declared	in	that	scope	won’t	conflict	with	other	
names	in	a	program.
구조체내에서선언된이름은프로그램다른곳에서사용된이름과충돌하지않음

• In	C	terminology,	each	structure	has	a	separate	name	space for	its	
members.
각구조체의멤버는독립적인이름공간을갖음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 6

Declaring	Structure	Variables
• For	example,	the	following	declarations	can	appear	in	the	same	
program:
예를들어아래와같이두개의구조체가한프로그램에서선언됨
number,	name	의이름이같지만충돌하지않음

struct {
int number;
char name[NAME_LEN+1];
int on_hand;

} part1, part2;

struct {
char name[NAME_LEN+1];
int number;
char sex;

} employee1, employee2;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 7

Initializing	Structure	Variables
• A	structure	declaration	may	include	an	initializer:
구조체선언시초기화할수있음
struct {

int number;
char name[NAME_LEN+1];
int on_hand;

} part1 = {528, "Disk drive", 10},
part2 = {914, "Printer cable", 5};

• Appearance	of	part1 after	initialization:초기화후모습

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 8

Initializing	Structure	Variables
• Structure	initializers	follow	rules	similar	to	those	for	array	
initializers.
구조체초기화하는배열의초기화와유사한규칙을따름

• Expressions	used	in	a	structure	initializer	must	be	constant.	(This	
restriction	is	relaxed	in	C99.)
구조체초기화에사용한수식은상수여야함(c99에서는규칙이완화됨)

• An	initializer	can	have	fewer	members	than	the	structure	it’s	
initializing.
구조체의전체멤버보다는적은수의멤버를초기화할수있음

• Any	“leftover”	members	are	given	0	as	their	initial	value.
초기화에 제외된멤버는 0으로초기화됨

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 9

Designated	Initializers	(C99)
• C99’s	designated	initializers	can	be	used	with	structures.
c99는구조체의멤버를지정하여지정초기화가능

• The	initializer	for	part1 shown	in	the	previous	example:
part1의일반적초기화는다음과같음

{528, "Disk drive", 10}

• In	a	designated	initializer,	each	value	would	be	labeled	by	
the	name	of	the	member	that	it	initializes:
지정초기화하는다음과갖이멤버의이름을지목하여초기화할수있음

{.number = 528, .name = "Disk drive", .on_hand = 10}

• The	combination	of	the	period	and	the	member	name	is	
called	a	designator.
지정하는방법: .(점) +멤버이름예, .number

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 10

Designated	Initializers	(C99)
• Designated	initializers	are	easier	to	read	and	check	for	
correctness.
지정초기화를하면값을쉽고정확함

• Also,	values	in	a	designated	initializer	don’t	have	to	be	placed	in	
the	same	order	that	the	members	are	listed	in	the	structure.
지정초기화를하면구조체에나온멤버의순서대로나열하지않아도됨

• The	programmer	doesn’t	have	to	remember	the	order	in	which	
the	members	were	originally	declared.
프로그래머는멤버의순서를기억할필요없음

• The	order	of	the	members	can	be	changed	in	the	future	
without	affecting	designated	initializers.
멤버의순서가시간이지나바뀌더라도지정초기화의순서는바뀌지않아도됨

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 11

Designated	Initializers	(C99)
• Not	all	values	listed	in	a	designated	initializer	need	be	prefixed	by	
a	designator.
지정초기화할때멤버이름을써야하는것은아님

• Example:
{.number = 528, "Disk drive", .on_hand = 10}

The	compiler	assumes	that	"Disk drive" initializes	the	
member	that	follows	number in	the	structure.
”disk	drive”는 number	다음에나오는멤버의값이라고가정함

• Any	members	that	the	initializer	fails	to	account	for	are	set	to	
zero.
초기화가실패한경우 0으로초기화

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 12

Operations	on	Structures
• To	access	a	member	within	a	structure,	we	write	the	name	of	the	
structure	first,	then	a	period,	then	the	name	of	the	member.
구조체의멤버를접근하기위해구조체의이름,점,그리고멤버이름을씀

• Statements	that	display	the	values	of	part1’s	members:
part1이라는구조체의멤버를읽어오는방법예

printf("Part number: %d\n", part1.number);
printf("Part name: %s\n", part1.name);
printf("Quantity on hand: %d\n", part1.on_hand);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 13

Operations	on	Structures
• The	members	of	a	structure	are	lvalues.
구조체의멤버는 lvalue임

• They	can	appear	on	the	left	side	of	an	assignment	or	as	the	
operand	in	an	increment	or	decrement	expression:
구조체의멤버는할당문에왼쪽에올수있고증감연산자도사용할수있음

part1.number = 258;
/* changes part1's part number */

part1.on_hand++;
/* increments part1's quantity on hand */

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 14

Operations	on	Structures
• The	period	used	to	access	a	structure	member	is	actually	a	C	
operator.
점은 c에서연산자이고구조체의멤버를접근할수있도록함

• It	takes	precedence	over	nearly	all	other	operators.
점은거의대부분의연산자보다우선순위가높음

• Example:
scanf("%d", &part1.on_hand);

The	. operator	takes	precedence	over	the	& operator,	so	&
computes	the	address	of	part1.on_hand.
&연산자보다점의우선순위가높음 &part1.on_hand라고하면 part1.on_hand의
주소임

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 15

Operations	on	Structures
• The	other	major	structure	operation	is	assignment:
구조체의할당예

part2 = part1;

• The	effect	of	this	statement	is	to	copy	part1.number into	
part2.number,	part1.name into	part2.name,	and	so	on.
part1구조체의모든멤버의값을 part2의모든멤버로복사

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 16

Operations	on	Structures
• Arrays	can’t	be	copied	using	the	= operator,	but	an	array	
embedded	within	a	structure	is	copied	when	the	enclosing	
structure	is	copied.
배열은 =	연산자로복사안됨

• Some	programmers	exploit	this	property	by	creating	“dummy”	
structures	to	enclose	arrays	that	will	be	copied	later:
어떤프로그래머는구조체의기능을이용해배열의값복사에활용하기도함

struct { int a[10]; } a1, a2;
a1 = a2;
/* legal, since a1 and a2 are structures */

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 17

Operations	on	Structures
• The	= operator	can	be	used	only	with	structures	of	compatible
types. =연산자는호환가능한구조체에서만활용가능

• Two	structures	declared	at	the	same	time	(as	part1 and	part2
were)	are	compatible.동시에선언된구조체변수들만호환가능

• Structures	declared	using	the	same	“structure	tag”	or	the	same	
type	name	are	also	compatible. 같은구조체태그를써서선언된변수도호환됨

• Other	than	assignment,	C	provides	no	operations	on	entire	
structures.할당외에는구조체전부를다루는연산자는없음

• In	particular,	the	== and	!= operators	can’t	be	used	with	
structures.예를들어 ==나 !=연산자는쓸수없음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 18

Structure	Types
• Suppose	that	a	program	needs	to	declare	several	structure	
variables	with	identical	members.
같은멤버를갖는구조체변수를여러개써야한다고가정해보자

• We	need	a	name	that	represents	a	type of	structure,	not	a	
particular	structure	variable.
구조체를형으로쓰기위해서는이름이필요함,구조체변수이름이아님

• Ways	to	name	a	structure:구조체에이름을부여하기

• Declare	a	“structure	tag”구조체태그를선언

• Use	typedef to	define	a	type	name typedef으로형의이름저정

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 19

Declaring	a	Structure	Tag
• A	structure	tag is	a	name	used	to	identify	a	particular	kind	of	
structure.
구조체태그는구조체들을구분하기위한이름

• The	declaration	of	a	structure	tag	named	part:
part라는이름의구조체태그의선언

struct part {
int number;
char name[NAME_LEN+1];
int on_hand;

};

• Note	that	a	semicolon	must	follow	the	right	brace.
오른쪽끝에세미콜론이붙었음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 20

Declaring	a	Structure	Tag
• The	part tag	can	be	used	to	declare	variables:
이제 part태그를써서변수들을선언할수있음

struct part part1, part2;

• We	can’t	drop	the	word	struct:
part part1, part2; /*** WRONG ***/

part isn’t	a	type	name;	without	the	word	struct,	it	is	
meaningless.
만약 struct라는단어를안쓰면오류가생김; part는구조체구별용태그이름일뿐

• Since	structure	tags	aren’t	recognized	unless	preceded	by	the	
word	struct,	they	don’t	conflict	with	other	names	used	in	a	
program.
struct없는태그이름은의미없음;프로그램내에다른것의이름으로쓸수있음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 21

Declaring	a	Structure	Tag
• The	declaration	of	a	structure	tag can	be	combined	with	the	
declaration	of	structure	variables:
구조체태그와구조체변수의이름을같이쓸수있음

struct part {
int number;
char name[NAME_LEN+1];
int on_hand;

} part1, part2;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 22

Declaring	a	Structure	Tag
• All	structures	declared	to	have	type	struct part are	
compatible	with	one	another:
struct part라는태그를갖는구조체로선언된변수는모두호환가능

struct part part1 = {528, "Disk drive", 10};
struct part part2;

part2 = part1;
/* legal; both parts have the same type */

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 23

Defining	a	Structure	Type
• As	an	alternative	to	declaring	a	structure	tag,	we	can	use	
typedef to	define	a	genuine	type	name.
구조체태그를선언하는대신 typedef으로새로운타입을지정할수있음

• A	definition	of	a	type	named	Part:	Part형의정의

typedef struct {
int number;
char name[NAME_LEN+1];
int on_hand;

} Part;

• Part can	be	used	in	the	same	way	as	the	built-in	types:
다른기본형들과같이 Part형도쓸수있음

Part part1, part2;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 24

Defining	a	Structure	Type
• When	it	comes	time	to	name	a	structure,	we	can	usually	choose	
either	to	declare	a	structure	tag	or	to	use	typedef.
구조체의이름을정할때는구조체태그또는 typedef를쓸수있음

• However,	declaring	a	structure	tag	is	mandatory	when	the	
structure	is	to	be	used	in	a	linked	list	(Chapter	17).
단,연결리스트(linked	list)를쓸때는꼭구조체태그를사용해야함

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 25

Structures	as	Arguments	and	Return	Values
• Functions	may	have	structures	as	arguments	and	return	values.
함수리턴값과인자로구조체사용가능

• A	function	with	a	structure	argument:구조체를인자로갖는함수예

void print_part(struct part p)
{
printf("Part number: %d\n", p.number);
printf("Part name: %s\n", p.name);
printf("Quantity on hand: %d\n", p.on_hand);

}

• A	call	of	print_part:호출예

print_part(part1);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 26

Structures	as	Arguments	and	Return	Values
• A	function	that	returns	a	part structure:
part구조체를리턴하는함수

struct part build_part(int number,
const char *name,
int on_hand)

{
struct part p;

p.number = number;
strcpy(p.name, name);
p.on_hand = on_hand;
return p;

}

• A	call	of	build_part: 호출예

part1 = build_part(528, "Disk drive", 10);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 27

Structures	as	Arguments	and	Return	Values
• Passing	a	structure	to	a	function	and	returning	a	structure	from	a	
function	both	require	making	a	copy	of	all	members	in	the	
structure.
구조체를함수인자로전달또는리턴값으로 받으면,구조체모든멤버가복사됨

• To	avoid	this	overhead,	it’s	sometimes	advisable	to	pass	a	pointer	
to	a	structure	or	return	a	pointer	to	a	structure.
복사비용을줄이려면구조체에대한포인터를인자또는리턴값으로사용

• Chapter	17	gives	examples	of	functions	that	have	a	pointer	to	a	
structure	as	an	argument	and/or	return	a	pointer	to	a	structure.
17장에활용예가있음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 28

Structures	as	Arguments	and	Return	Values
• There	are	other	reasons	to	avoid	copying	structures.
구조체복사를피해야할또다른이유가있음

• For	example,	the	<stdio.h> header	defines	a	type	named	
FILE,	which	is	typically	a	structure.
<stdio.h>헤더정보에는 FILE이라는구조체가정의됨

• Each	FILE structure	stores	information	about	the	state	of	an	
open	file	and	therefore	must	be	unique	in	a	program.
각 FILE구조체는열어놓은파일의상태정보를갖고있음;모든프로그램에서
FILE의정보는유일해야함

• Every	function	in	<stdio.h> that	opens	a	file	returns	a	
pointer	to	a	FILE structure.
<stdio.h>내의함수들중파일열기를하는함수들은모두 FILE구조체의
포인터를리턴함

• Every	function	that	performs	an	operation	on	an	open	file	
requires	a	FILE pointer	as	an	argument.
열어놓은파일을조작하는함수들은 FILE의포인터를인자로받음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 29

Structures	as	Arguments	and	Return	Values
• Within	a	function,	the	initializer	for	a	structure	variable	can	be	
another	structure:
void f(struct part part1)
{
struct part part2 = part1;
…

}

• The	structure	being	initialized	must	have	automatic	storage	
duration.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 30

Compound	Literals	(C99)
• Chapter	9	introduced	the	C99	feature	known	as	the	compound	
literal.
복합문자열을 9장에서살펴봄

• A	compound	literal	can	be	used	to	create	a	structure	“on	the	fly,”	
without	first	storing	it	in	a	variable.
복합문자열을쓰면즉석해서구조체를만들어값을저장할수있음

• The	resulting	structure	can	be	passed	as	a	parameter,	returned	by	
a	function,	or	assigned	to	a	variable.
이렇게생성된구조체는매개변수로쏘이거나함수의리턴또는변수에할당될수
있음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 31

Compound	Literals	(C99)
• A	compound	literal	can	be	used	to	create	a
structure	that	will	be	passed	to	a	function:
print_part((struct part) {528, "Disk drive", 10});

The	compound	literal	is	shown	in	bold.
복합문자열을써서함수에전달할구조체를만들수있음;굵은글씨가예

• A	compound	literal	can	also	be	assigned	to	a	variable:
part1 = (struct part) {528, "Disk drive", 10};
변수 할당에도 활용할 수 있음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 32

Compound	Literals	(C99)
• A	compound	literal	consists	of	a	type	name	within	
parentheses,	followed	by	a	set	of	values	in	braces.
복합문자열은괄호로묶인형의이름과중괄호로묶인값들의집합으로
구성

• When	a	compound	literal	represents	a	structure,	the	type	
name	can	be	a	structure	tag	preceded	by	the	word	struct
or	a	typedef name.
복합문자열이구조체를나타낸다면,형의이름은 struct키워드와구조체
태그가있거나 typedef이름으로정의된것이어야함

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 33

Compound	Literals	(C99)
• A	compound	literal	may	contain	designators,	just	like	a	
designated	initializer:
복합문자열은지정초기화될수있음

print_part((struct part) {.on_hand = 10,
.name = "Disk drive",
.number = 528});

• A	compound	literal	may	fail	to	provide	full	initialization,	in	
which	case	any	uninitialized	members	default	to	zero.
복합문자열선언으로일부만초기화할경우,초기화안된멤버는 0으로
초기화됨

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 34

Nested	Arrays	and	Structures
• Structures	and	arrays	can	be	combined	without	restriction.
구조체와배열은제한된조건으로병합될수있음

• Arrays	may	have	structures	as	their	elements,	and	structures	may	
contain	arrays	and	structures	as	members.
배열은구조체를요소로갖을수있음,구조체는배열뿐만아니라구조체도멤버로
갖을수있음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 35

Nested	Structures
• Nesting	one	structure	inside	another	is	often	useful.
한구조체를다른구주체의일부로쓰는것은유용함

• Suppose	that	person_name is	the	following	structure:
person_name이라는구조체를살펴보자

struct person_name {
char first[FIRST_NAME_LEN+1];
char middle_initial;
char last[LAST_NAME_LEN+1];

};

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 36

Nested	Structures
• We	can	use	person_name as	part	of	a	larger	structure:
person_name을다른큰구조체의일부로쓸수있음

struct student {
struct person_name name;
int id, age;
char sex;

} student1, student2;

• Accessing	student1’s	first	name,	middle	initial,	or	last	name	
requires	two	applications	of	the	.	operator:
student1의이름(first,	middle,	last)를접근하기위해서는점연산자를두번사용

strcpy(student1.name.first, "Fred");

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 37

Nested	Structures
• Having	name be	a	structure	makes	it	easier	to	treat	names	
as	units	of	data.
name은구조체이기때문에이름을하나의데이터단위로처리가능

• A	function	that	displays	a	name	could	be	passed	one	
person_name argument	instead	of	three	arguments:
person_name을인자로쓸때는변수 3개가아니라하나면됨

display_name(student1.name);

• Copying	the	information	from	a	person_name structure	to	
the	namemember	of	a	student	structure	would	take	one	
assignment	instead	of	three:매개변수로복사될때도한번으로
복사가능

struct person_name new_name;
…
student1.name = new_name;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 38

Arrays	of	Structures
• One	of	the	most	common	combinations	of	arrays	and	structures	is	
an	array	whose	elements	are	structures.
배열과구조체의혼합의가장흔한조합은배열의요소가구조체인경우

• This	kind	of	array	can	serve	as	a	simple	database.
배열을데이터베이스처럼쓸수있음

• An	array	of	part structures	capable	of	storing	information	about	
100	parts:
part	구조체를배열로선언한경우,배열의크기만큼자료를저장할수있음

struct part inventory[100];

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 39

Arrays	of	Structures
• Accessing	a	part	in	the	array	is	done	by	using	subscripting:
part배열중하나를접근하려면첨자를쓰면됨

print_part(inventory[i]);

• Accessing	a	member	within	a	part structure	requires	a	
combination	of	subscripting	and	member	selection:
part	구조체의멤버에접근하려면배열첨자와멤버선택을해야함

inventory[i].number = 883;

• Accessing	a	single	character	in	a	part	name	requires	
subscripting,	followed	by	selection,	followed	by	
subscripting:
part이름의한글자를읽을때는배열요소선택용첨자,구조체의멤버선택,멤버
배열의첨자선택을함

inventory[i].name[0] = '\0';

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 40

Initializing	an	Array	of	Structures
• Initializing	an	array	of	structures	is	done	in	much	the	same	way	as	
initializing	a	multidimensional	array.
구조체배열의초기화는다차원배열초기화와유사한방식으로가능

• Each	structure	has	its	own	brace-enclosed	initializer;	the	array	
initializer	wraps	another	set	of	braces	around	the	structure	
initializers.
각구조체는중괄호로묶어서초기화함;중괄호가중첩된구조임구조체초기화
중괄호를배열초기화중괄호가둘서쌈

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 41

Initializing	an	Array	of	Structures
• One	reason	for	initializing	an	array	of	structures	is	that	it	contains	
information	that	won’t	change	during	program	execution.
배열로구조체를초기화하는이유는프로그램실행되는동안에해당정보가
변경되지않을정보이기때문

• Example:	an	array	that	contains	country	codes	used	when	making	
international	telephone	calls.예:각나라별국제전화번호코드

• The	elements	of	the	array	will	be	structures	that	store	the	name	
of	a	country	along	with	its	code:
선언된구조체배열은나라이름과코드번호를저장함

struct dialing_code {
char *country;
int code;

};

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 42

Initializing	an	Array	of	Structures
const struct dialing_code country_codes[] =
{{"Argentina", 54}, {"Bangladesh", 880},
{"Brazil", 55}, {"Burma (Myanmar)", 95},
{"China", 86}, {"Colombia", 57},
{"Congo, Dem. Rep. of", 243}, {"Egypt", 20},
{"Ethiopia", 251}, {"France", 33},
{"Germany", 49}, {"India", 91},
{"Indonesia", 62}, {"Iran", 98},
{"Italy", 39}, {"Japan", 81},
{"Mexico", 52}, {"Nigeria", 234},
{"Pakistan", 92}, {"Philippines", 63},
{"Poland", 48}, {"Russia", 7},
{"South Africa", 27}, {"South Korea", 82},
{"Spain", 34}, {"Sudan", 249},
{"Thailand", 66}, {"Turkey", 90},
{"Ukraine", 380}, {"United Kingdom", 44},
{"United States", 1}, {"Vietnam", 84}};

• The	inner	braces	around	each	structure	value	are	optional.
각구조체초기값의중괄호도는선택사항임

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 43

Initializing	an	Array	of	Structures
• C99’s	designated	initializers	allow	an	item	to	have	more	than	one	
designator.
c99의지정초기화는하나이상의지정자를갖을수있음

• A	declaration	of	the	inventory array	that	uses	a	designated	
initializer	to	create	a	single	part:
지정초기화로하나의부품만 inventory	배열구조체의값을초기화하는예

struct part inventory[100] =
{[0].number = 528, [0].on_hand = 10,
[0].name[0] = '\0'};

The	first	two	items	in	the	initializer	use	two	designators;	the	last	
item	uses	three.
지정자로첨자 0의구조체의멤버를초기화함,순서는지정하였기때문에원
구조체정의와다름

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 44

Program:	Maintaining	a	Parts	Database
• The	inventory.c program	illustrates	how	nested	arrays	and	
structures	are	used	in	practice.
inventory.c프로그램은배열과구조체가중첩된경우의활용예를보임

• The	program	tracks	parts	stored	in	a	warehouse.
프로그램은창고의부품들을관리함

• Information	about	the	parts	is	stored	in	an	array	of	structures.
부품의정보는구조체배열에저장됨

• Contents	of	each	structure:각구조체의내용은다음과같음

• Part	number
• Name
• Quantity

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 45

Program:	Maintaining	a	Parts	Database
• Operations	supported	by	the	program:
프로그램이지원하는동작

• Add	a	new	part	number,	part	name,	and	initial	quantity	on	
hand 새로운부품번호,이름,개수를추가

• Given	a	part	number,	print	the	name	of	the	part	and	the	
current	quantity	on	hand 부품번호에대한이름과보유개수를출력

• Given	a	part	number,	change	the	quantity	on	hand
부품번호에대해보유개수수정

• Print	a	table	showing	all	information	in	the	database
데이터베이스의모든정보출력

• Terminate	program	execution 프로그램종료

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 46

Program:	Maintaining	a	Parts	Database
• The	codes	i (insert),	s (search),	u (update),	p (print),	and	q
(quit)	will	be	used	to	represent	these	operations.
각기능은 I (삽입), s	(검색), u	(갱신), p	(출력) q	(종료)로조작가능

• A	session	with	the	program:실행예

Enter operation code: i
Enter part number: 528
Enter part name: Disk drive
Enter quantity on hand: 10

Enter operation code: s
Enter part number: 528
Part name: Disk drive
Quantity on hand: 10

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 47

Program:	Maintaining	a	Parts	Database
Enter operation code: s
Enter part number: 914
Part not found.

Enter operation code: i
Enter part number: 914
Enter part name: Printer cable
Enter quantity on hand: 5

Enter operation code: u
Enter part number: 528
Enter change in quantity on hand: -2

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 48

Program:	Maintaining	a	Parts	Database
Enter operation code: s
Enter part number: 528
Part name: Disk drive
Quantity on hand: 8

Enter operation code: p
Part Number Part Name Quantity on Hand

528 Disk drive 8
914 Printer cable 5

Enter operation code: q

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 49

Program:	Maintaining	a	Parts	Database
• The	program	will	store	information	about	each	part	in	a	structure.
각부품정보를구조체에저장

• The	structures	will	be	stored	in	an	array	named	inventory.
inventory라는구조체배열로정보취합

• A	variable	named	num_parts will	keep	track	of	the	number	of	
parts	currently	stored	in	the	array.
num_parts변수가배열에저장된부품의개수를관리

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 50

Program:	Maintaining	a	Parts	Database
• An	outline	of	the	program’s	main	loop:프로그램의메인루프

for (;;) {
prompt	user	to	enter	operation	code;//동작 코드

read	code; // 코드 읽기

switch (code) {
case 'i': perform	insert	operation; break;// 삽입

case 's': perform	search	operation; break;// 검색

case 'u': perform	update	operation; break;// 갱신

case 'p': perform	print	operation; break;// 출력

case 'q': terminate	program;// 종료

default: print	error	message;// 에러 출력
}

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 51

Program:	Maintaining	a	Parts	Database
• Separate	functions	will	perform	the	insert,	search,	update,	
and	print	operations.
각동작에맞게새로운함수정의

• Since	the	functions	will	all	need	access	to	inventory
and	num_parts,	these	variables	will	be	external.
inventory와 num_parts는모든함수에서활용해야함;	external로선언

• The	program	is	split	into	three	files: 3부분으로구성함

• inventory.c (the	bulk	of	the	program)프로그램의메인코드

• readline.h (contains	the	prototype	for	the	read_line
function) read_line함수의프로토타입/원형이있음

• readline.c (contains	the	definition	of	read_line)
read_line의구현/정의가됨

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 52

inventory.c
/* Maintains a parts database (array version) */

#include <stdio.h>
#include "readline.h"

#define NAME_LEN 25
#define MAX_PARTS 100

struct part {
int number;
char name[NAME_LEN+1];
int on_hand;

} inventory[MAX_PARTS];

int num_parts = 0; /* number of parts currently stored */

int find_part(int number);
void insert(void);
void search(void);
void update(void);
void print(void);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 53

/**
* main: Prompts the user to enter an operation code, *
* then calls a function to perform the requested *
* action. Repeats until the user enters the *
* command 'q'. Prints an error message if the user *
* enters an illegal code. *
**/
int main(void)
{
char code;
for (;;) {
printf("Enter operation code: ");
scanf(" %c", &code);
while (getchar() != '\n') /* skips to end of line */
;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 54

switch (code) {
case 'i': insert();

break;
case 's': search();

break;
case 'u': update();

break;
case 'p': print();

break;
case 'q': return 0;
default: printf("Illegal code\n");

}
printf("\n");

}
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 55

/**
* find_part: Looks up a part number in the inventory *
* array. Returns the array index if the part *
* number is found; otherwise, returns -1. *
**/
int find_part(int number)
{
int i;

for (i = 0; i < num_parts; i++)
if (inventory[i].number == number)
return i;

return -1;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 56

/**
* insert: Prompts the user for information about a new *
* part and then inserts the part into the *
* database. Prints an error message and returns *
* prematurely if the part already exists or the *
* database is full. *
**/
void insert(void)
{
int part_number;

if (num_parts == MAX_PARTS) {
printf("Database is full; can't add more parts.\n");
return;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 57

printf("Enter part number: ");
scanf("%d", &part_number);
if (find_part(part_number) >= 0) {
printf("Part already exists.\n");
return;

}

inventory[num_parts].number = part_number;
printf("Enter part name: ");
read_line(inventory[num_parts].name, NAME_LEN);
printf("Enter quantity on hand: ");
scanf("%d", &inventory[num_parts].on_hand);
num_parts++;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 58

/**
* search: Prompts the user to enter a part number, then *
* looks up the part in the database. If the part *
* exists, prints the name and quantity on hand; *
* if not, prints an error message. *
**/
void search(void)
{
int i, number;

printf("Enter part number: ");
scanf("%d", &number);
i = find_part(number);
if (i >= 0) {
printf("Part name: %s\n", inventory[i].name);
printf("Quantity on hand: %d\n", inventory[i].on_hand);

} else
printf("Part not found.\n");

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 59

/**
* update: Prompts the user to enter a part number. *
* Prints an error message if the part doesn't *
* exist; otherwise, prompts the user to enter *
* change in quantity on hand and updates the *
* database. *
**/
void update(void)
{
int i, number, change;

printf("Enter part number: ");
scanf("%d", &number);
i = find_part(number);
if (i >= 0) {
printf("Enter change in quantity on hand: ");
scanf("%d", &change);
inventory[i].on_hand += change;

} else
printf("Part not found.\n");

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 60

/**
* print: Prints a listing of all parts in the database, *
* showing the part number, part name, and *
* quantity on hand. Parts are printed in the *
* order in which they were entered into the *
* database. *
**/
void print(void)
{
int i;

printf("Part Number Part Name "
"Quantity on Hand\n");

for (i = 0; i < num_parts; i++)
printf("%7d %-25s%11d\n", inventory[i].number,

inventory[i].name, inventory[i].on_hand);
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 61

Program:	Maintaining	a	Parts	Database
• The	version	of	read_line in	Chapter	13	won’t	work	properly	
in	the	current	program. 13장의 read_line은정상동작안함

• Consider	what	happens	when	the	user	inserts	a	part:
다음처럼입력하는경우의예를보자

Enter part number: 528
Enter part name: Disk drive

• The	user	presses	the	Enter	key	after	entering	the	part	number,	
leaving	an	invisible	new-line	character	that	the	program	must	
read.
part	number를입력할때숫자외에눈에안보이는줄바꿈기호(엔터)도입력함

• When	scanf reads	the	part	number,	it	consumes	the	5,	2,	and	
8,	but	leaves	the	new-line	character	unread.
scanf가읽을때 5, 2, 8을읽지만줄바꿈기호는읽지않음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 62

Program:	Maintaining	a	Parts	Database
• If	we	try	to	read	the	part	name	using	the	original	read_line
function,	it	will	encounter	the	new-line	character	immediately	
and	stop	reading.	
원래의 read_line함수는부품이름을읽을때줄바꿈기호를문자열로
인식하는문제가있음;결과적으로아무것도입력하지않았지만,더이상읽지
않음

• This	problem	is	common	when	numerical	input	is	followed	by	
character	input.숫자입력후글자입력하는경우흔히발생하는문제임

• One	solution	is	to	write	a	version	of	read_line that	skips	
white-space	characters	before	it	begins	storing	characters.해결
방법중하나는글자를읽을때는공백글자무시하도록 read_line을수정

• This	solves	the	new-line	problem	and	also	allows	us	to	avoid	
storing	blanks	that	precede	the	part	name.
줄바꿈및이름앞의공백을제거하는효과가있음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 63

readline.h

#ifndef READLINE_H
#define READLINE_H

/**
* read_line: Skips leading white-space characters, then *
* reads the remainder of the input line and *
* stores it in str. Truncates the line if its *
* length exceeds n. Returns the number of *
* characters stored. *
**/
int read_line(char str[], int n);

#endif

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 64

readline.c
#include <ctype.h>
#include <stdio.h>
#include "readline.h"

int read_line(char str[], int n)
{
int ch, i = 0;

while (isspace(ch = getchar()))
;

while (ch != '\n' && ch != EOF) {
if (i < n)
str[i++] = ch;

ch = getchar();
}
str[i] = '\0';
return i;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 65

Unions

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 66

Unions
• A	union, like	a	structure,	consists	of	one	or	more	members,	
possibly	of	different	types.
union도구조체와같이서로다른형을갖는하나이상의멤버들로구성

• The	compiler	allocates	only	enough	space	for	the	largest	of	the	
members,	which	overlay	each	other	within	this	space.
컴파일러는가장큰멤버들의크기를보고충분한공간을할당하고,멤버를그
공간안에저장함

• Assigning	a	new	value	to	one	member	alters	the	values	of	the	
other	members	as	well.
한멤버에새로운값을할당하면다른멤들의값도영향을받음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 67

Unions
• An	example	of	a	union	variable:유니언변수의선언예

union {
int i;
double d;

} u;

• The	declaration	of	a	union	closely	resembles	a	structure	
declaration:유니언변수의선언은구조체의선언과유사함

struct {
int i;
double d;

} s;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 68

Unions
• The	structure	s and	the	union	u differ	in	just	one	way.
구조체 s와유니언 u는하나의차이만존재함

• The	members	of	s are	stored	
at	different	addresses	in	memory.
s의멤버는서로다른주소공간에저장됨

• The	members	of	u are	stored	
at	the	same	address.
u의멤버는같은주소를갖음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 69

Unions
• Members	of	a	union	are	accessed	in	the	same	way	as	members	of	
a	structure:
유니언멤버의접근방법은구조체멤버의접근과동일함

u.i = 82;
u.d = 74.8;

• Changing	one	member	of	a	union	alters	any	value	previously	
stored	in	any	of	the	other	members.
유니언의한멤버변수를저장하면그전에저장되었던멤버의값에영향을줌

• Storing	a	value	in	u.d causes	any	value	previously	stored	in	
u.i to	be	lost.
u.d에값을저장하면 u.i에저장된값은소멸됨

• Changing	u.i corrupts	u.d.
u.i저장하면 u.d에저장된값은깨짐

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 70

Unions
• The	properties	of	unions	are	almost	identical	to	the	properties	of	
structures.
유니언의성질은구조체의성질과대부분같음

• We	can	declare	union	tags	and	union	types	in	the	same	way	we	
declare	structure	tags	and	types.
유니언태그나유니언형을선언하여쓸수있음

• Like	structures,	unions	can	be	copied	using	the	= operator,	passed	
to	functions,	and	returned	by	functions.
유니언은 =연산자로복사되고함수의인자로전달,리턴받을수있음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 71

Unions
• Only	the	first	member	of	a	union	can	be	given	an	initial	value.
단,유니언의첫번째멤버만초기화될수있음

• How	to	initialize	the	imember	of	u to	0:
u의멤버 i를 0으로초기화하는예

union {
int i;
double d;

} u = {0};

• The	expression	inside	the	braces	must	be	constant.	(The	rules	are	
slightly	different	in	C99.)
중괄호안의표현식은상수여야함 (c99는다른규칙을따름)

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 72

Unions
• Designated	initializers	can	also	be	used	with	unions.
union에서도지정초기화를쓸수있음

• A	designated	initializer	allows	us	to	specify	which	member	of	a	
union	should	be	initialized:어떤멤버를초기화할지지정초기화로정함

union {
int i;
double d;

} u = {.d = 10.0};
• Only	one	member	can	be	initialized,	but	it	doesn’t	have	to	be	the	
first	one.단,여러멤버중하나의값만초기화할수있음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 73

Unions
• Applications	for	unions:유니언의응용처

• Saving	space 공간절약

• Building	mixed	data	structures혼합된자료구조생성

• Viewing	storage	in	different	ways	(discussed	in	Chapter	20)
저장장치를보는또다른시각 (20장에서자세히다룸)

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 74

Using	Unions	to	Save	Space
• Unions	can	be	used	to	save	space	in	structures.
구조체의공간을줄이기위해유니언을사용가능

• Suppose	that	we’re	designing	a	structure	that	will	contain	
information	about	an	item	that’s	sold	through	a	gift	catalog.
예로, 선물카탈로그책자의아이템의정보를저장하는구조체를생각해보자

• Each	item	has	a	stock	number	and	a	price,	as	well	as	other	
information	that	depends	on	the	type	of	the	item:
각아이템은품명,금액,그외관련정보를갖음

Books: Title,	author,	number	of	pages제목,저자,페이지수

Mugs: Design 디자인

Shirts: Design,	colors	available,	sizes	available 디자인,남은색상,남은
치수

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 75

Using	Unions	to	Save	Space
• A	first	attempt	at	designing	the	catalog_item
structure: 첫번째 catalog_item구조체작성시도

struct catalog_item {
int stock_number;
double price;
int item_type;
char title[TITLE_LEN+1];
char author[AUTHOR_LEN+1];
int num_pages;
char design[DESIGN_LEN+1];
int colors;
int sizes;

};

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 76

Using	Unions	to	Save	Space
• The	item_typemember	would	have	one	of	the	values	BOOK,	
MUG,	or	SHIRT.	item_type멤버는 BOOK,	MUG,	SHIRT중하나만값이있음

• The	colors and	sizesmembers	would	store	encoded	
combinations	of	colors	and	sizes.
colors와 sizes멤버는색과크기의값을저장

• This	structure	wastes	space,	since	only	part	of	the	information	in	
the	structure	is	common	to	all	items	in	the	catalog.
이구조체는공간낭비가심함;몇개의정보만모든아이템에공통으로사용됨

• By	putting	a	union	inside	the	catalog_item structure,	we	can	
reduce	the	space	required	by	the	structure.
catalog_item구조체에유니언을씀으로공간을절약할수있음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 77

Using	Unions	to	Save	Space
struct catalog_item {
int stock_number;
double price;
int item_type;
union {
struct {
char title[TITLE_LEN+1];
char author[AUTHOR_LEN+1];
int num_pages;

} book;
struct {
char design[DESIGN_LEN+1];

} mug;
struct {
char design[DESIGN_LEN+1];
int colors;
int sizes;

} shirt;
} item;

};

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 78

Using	Unions	to	Save	Space
• If	c is	a	catalog_item structure	that	represents	a	book,	we	
can	print	the	book’s	title	in	the	following	way:
c가책을나타내는 catalog_item구조체라면다음과같이나타낼수있음

printf("%s", c.item.book.title);

• As	this	example	shows,	accessing	a	union	that’s	nested	inside	a	
structure	can	be	awkward.
구조체에유니언이있고그안에또구조체가있는중첩구조를접근하는것이
이상해보일수있음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 79

Using	Unions	to	Save	Space
• The	catalog_item structure	can	be	used	to	illustrate	an	
interesting	aspect	of	unions.
catalog_item구조체는유니언의재미있는성질을보여줌

• Normally,	it’s	not	a	good	idea	to	store	a	value	into	one	
member	of	a	union	and	then	access	the	data	through	a	
different	member.
일반적으로한유니언의멤버를저장하고다른멤버를통해값을읽어오는
것은현명하지못함

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 80

Using	Unions	to	Save	Space
• However,	there	is	a	special	case:	two	or	more	of	the	
members	of	the	union	are	structures,	and	the	structures	
begin	with	one	or	more	matching	members.
특수한경우제외: 2개이상의멤버가구조체이고각구조체마다동일한
멤버를갖는경우

• If	one	of	the	structures	is	currently	valid,	then	the	matching	
members	in	the	other	structures	will	also	be	valid.
한구조체가유효하면다른구조체도유효함

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 81

Using	Unions	to	Save	Space
• The	union	embedded	in	the	catalog_item structure	
contains	three	structures	as	members.
catalog_item구조체는유니언으로세개의구조체멤버를갖음

• Two	of	these	(mug and	shirt)	begin	with	a	matching	
member	(design). mug와 shirt는동일한멤버(design)를갖고있음

• Now,	suppose	that	we	assign	a	value	to	one	of	the	design
members:	design멤버중하나에값을저장하는예

strcpy(c.item.mug.design, "Cats");

• The	designmember	in	the	other	structure	will	be	defined	
and	have	the	same	value:
다른구조체의 design멤버를접근해도같은값을갖음

printf("%s", c.item.shirt.design);
/* prints "Cats" */

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 82

Using	Unions	to	Build	Mixed	Data	Structures
• Unions	can	be	used	to	create	data	structures	that	contain	a	
mixture	of	data	of	different	types.
유니언은서로다른데이터형으로구성된자료구조를만드는데쓰임

• Suppose	that	we	need	an	array	whose	elements	are	a	mixture	of	
int and	double values.
어떤배열이 int또는 double값을갖는다고해보자

• First,	we	define	a	union	type	whose	members	represent	the	
different	kinds	of	data	to	be	stored	in	the	array:
서로다른형을갖는멤버로구성된유니언형을만들어배열을선언할수있음

typedef union {
int i;
double d;

} Number;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 83

Using	Unions	to	Build	Mixed	Data	Structures
• Next,	we	create	an	array	whose	elements	are	Number values:
유니언형을만든후,그형을이용해배열을선언함

Number number_array[1000];

• A	Number union	can	store	either	an	int value	or	a	double
value.이제 Number	유니언형으로만든배열은 int와 double값을갖을수있음

• This	makes	it	possible	to	store	a	mixture	of	int and	double
values	in	number_array:
number_array배열에정수 /실수값을저장할수있음

number_array[0].i = 5;
number_array[1].d = 8.395;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 84

Adding	a	“Tag	Field”	to	a	Union
• There’s	no	easy	way	to	tell	which	member	of	a	union	was	last	
changed	and	therefore	contains	a	meaningful	value.
유니언의멤버중어떤것이의미있는값을갖고있는지파악하는것이쉽지않음

• Consider	the	problem	of	writing	a	function	that	displays	the	value	
stored	in	a	Number union:	
Number	유니언에저장된값을출력하는함수를작성한다고하자

void print_number(Number n)
{

if (n contains an integer)
printf("%d", n.i);

else
printf("%g", n.d);

}

There’s	no	way	for	print_number to	determine	whether	n
contains	an	integer	or	a	floating-point	number.
print_number는 n이정수인지실수인지판단할수없음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 85

Adding	a	“Tag	Field”	to	a	Union
• In	order	to	keep	track	of	this	information,	we	can	embed	the	
union	within	a	structure	that	has	one	other	member:	a	“tag	field”	
or	“discriminant.”	
구조체내에이정보를파악할수있도록구분자또는태그정보를포함할수있음

• The	purpose	of	a	tag	field	is	to	remind	us	what’s	currently	stored	
in	the	union.
태그필드는유니언에무엇이저장되었는지알려줌

• item_type served	this	purpose	in	the	catalog_item
structure.
catalog_item구조체에서는 item_type이그역할을함

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 86

Adding	a	“Tag	Field”	to	a	Union
• The	Number type	as	a	structure	with	an	embedded	union:
Number	형을구조체로선언하고그안에유니언을포함시킴

#define INT_KIND 0
#define DOUBLE_KIND 1

typedef struct {
int kind; /* tag field */
union {
int i;
double d;

} u;
} Number;

• The	value	of	kind will	be	either	INT_KIND or	
DOUBLE_KIND.
kind의값에 INT_KIND또는 DOUBLE_KIND로표시함

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 87

Adding	a	“Tag	Field”	to	a	Union
• Each	time	we	assign	a	value	to	a	member	of	u,	we’ll	also	change	
kind to	remind	us	which	member	of	u we	modified.
u의멤버에값을할당할때마다 kind의값을갱신해야함

• An	example	that	assigns	a	value	to	the	imember	of	u:
u의멤버로 i의값을바꾸는예

n.kind = INT_KIND;
n.u.i = 82;
n is	assumed	to	be	a	Number variable.
n은 Number	형변수라가정

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 88

Adding	a	“Tag	Field”	to	a	Union
• When	the	number	stored	in	a	Number variable	is	retrieved,	
kind will	tell	us	which	member	of	the	union	was	the	last	to	be	
assigned	a	value.
Number형변수 kind의값으로 어떤유니언값이마지막으로쓰였는지알수있음

• A	function	that	takes	advantage	of	this	capability:
그정보를활용하는함수의예

void print_number(Number n)
{
if (n.kind == INT_KIND)
printf("%d", n.u.i);

else
printf("%g", n.u.d);

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 89

Enumerations

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 90

Enumerations
• In	many	programs,	we’ll	need	variables	that	have	only	a	small	set	
of	meaningful	values.
어떤프로그램들은의미있는값의범위가한정적일수있음

• A	variable	that	stores	the	suit	of	a	playing	card	should	have	only	
four	potential	values:	“clubs,”	“diamonds,”	“hearts,”	and	“spades.”
예:카드게임에서는 “클럽”, “다이어몬드”, ”하트”,그리고 “스페이드”만있음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 91

Enumerations
• A	“suit”	variable	can	be	declared	as	an	integer,	with	a	set	of	codes	
that	represent	the	possible	values	of	the	variable:
“suit”라는변수는정수를저장하고패와수를지정하여구분할수있음

int s; /* s will store a suit */
…
s = 2; /* 2 represents "hearts" */

• Problems	with	this	technique:
이와같은접근방식에문제점

• We	can’t	tell	that	s has	only	four	possible	values.
s의값으로 4개이외의값만있는지확신할수없음

• The	significance	of	2	isn’t	apparent.
2의의미가명시적이지않음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 92

Enumerations
• Using	macros	to	define	a	suit	“type”	and	names	for	the	various	
suits	is	a	step	in	the	right	direction:
매크로정의를통해 “type”과이름을정하는것은괜찮은방법임

#define SUIT int
#define CLUBS 0
#define DIAMONDS 1
#define HEARTS 2
#define SPADES 3

• An	updated	version	of	the	previous	example:앞선예의개선된버전

SUIT s;
…
s = HEARTS;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 93

Enumerations
• Problems	with	this	technique:
이방법의문제점

• There’s	no	indication	to	someone	reading	the	program	that	the	
macros	represent	values	of	the	same	“type.”
매크로의정의가같은 “type”의그룹내의값인지파악하기어려움

• If	the	number	of	possible	values	is	more	than	a	few,	defining	a	
separate	macro	for	each	will	be	tedious.
그룹내에값이한두개가아니라면매크로정의를작성하는것도만만치않음

• The	names	CLUBS,	DIAMONDS,	HEARTS,	and	SPADES will	be	
removed	by	the	preprocessor,	so	they	won’t	be	available	during	
debugging.
전처리과정에서매크로정의는사라지기때문에컴파일이후디버깅과정에서
정보를활용할수없음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 94

Enumerations
• C	provides	a	special	kind	of	type	designed	specifically	for	variables	
that	have	a	small	number	of	possible	values.
값의범위가한정되어있는변수용타입을제공함

• An	enumerated	type is	a	type	whose	values	are	listed	
(“enumerated”)	by	the	programmer.	enumerated	type(열거형)이라
부르고값은프로그래머에의해나열됨

• Each	value	must	have	a	name	(an	enumeration	constant).
각값은이름을갖음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 95

Enumerations
• Although	enumerations	have	little	in	common	with	structures	and	
unions,	they’re	declared	in	a	similar	way:
열거형이유니언과구조체와유사한점은없지만,선언방식은유사함

enum {CLUBS, DIAMONDS, HEARTS, SPADES} s1, s2;

• The	names	of	enumeration	constants	must	be	different	from	
other	identifiers	declared	in	the	enclosing	scope.
열거형에사용된상수의이름은범위내에서유일해야함

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 96

Enumerations
• Enumeration	constants	are	similar	to	constants	created	with	the	
#define directive,	but	they’re	not	equivalent.
#define으로선언된상수와비슷하지만동일하지는않음

• If	an	enumeration	is	declared	inside	a	function,	its	constants	
won’t	be	visible	outside	the	function.
열거형이함수내에서선언되었다면해당함수밖에서보이지않음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 97

Enumeration	Tags	and	Type	Names
• As	with	structures	and	unions,	there	are	two	ways	to	name	an	
enumeration:	by	declaring	a	tag	or	by	using	typedef to	create	a	
genuine	type	name.
구조체와유니언과동일하게태그와 typedef으로새로운형의이름을만들수있음

• Enumeration	tags	resemble	structure	and	union	tags:
열거형태그는유니언과구조체의태그와같은방식으로선언

enum suit {CLUBS, DIAMONDS, HEARTS, SPADES};

• suit variables	would	be	declared	in	the	following	way:
suit열거형변수는다음과같이선언

enum suit s1, s2;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 98

Enumeration	Tags	and	Type	Names
• As	an	alternative,	we	could	use	typedef to	make	Suit a	type	
name:
typedef으로 Suit이라는이름의새로운형을만들수도있음

typedef enum {CLUBS, DIAMONDS, HEARTS, SPADES} Suit;
Suit s1, s2;

• In	C89,	using	typedef to	name	an	enumeration	is	an	excellent	
way	to	create	a	Boolean	type:
c89에서는불리언형을만드는가장좋은방법은 typedef을쓰는것임

typedef enum {FALSE, TRUE} Bool;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 99

Enumerations	as	Integers
• Behind	the	scenes,	C	treats	enumeration	variables	and	constants	
as	integers.	
C에서는열거형변수와상수를정수로판단함

• By	default,	the	compiler	assigns	the	integers	0,	1,	2,	…	to	the	
constants	in	a	particular	enumeration.
열거형에나열된순서에따라 0, 1, 2, …의값을할당받음

• In	the	suit enumeration,	CLUBS,	DIAMONDS,	HEARTS,	and	
SPADES represent	0,	1,	2,	and	3,	respectively.
suit열거형에서는클럽,다이어몬드,하트,스페이드가각각 0, 1, 2, 3의값을갖음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 100

Enumerations	as	Integers
• The	programmer	can	choose	different	values	for	enumeration	
constants:프로그래머는열거되는상수에다른값을지정할수있음

enum suit {CLUBS = 1, DIAMONDS = 2,
HEARTS = 3, SPADES = 4};

• The	values	of	enumeration	constants	may	be	arbitrary	integers,	
listed	in	no	particular	order:상수의값은순서와상관없음

enum dept {RESEARCH = 20,
PRODUCTION = 10, SALES = 25};

• It’s	even	legal	for	two	or	more	enumeration	constants	to	have	the	
same	value.두개의열거값이같은값을가져도됨

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 101

Enumerations	as	Integers
• When	no	value	is	specified	for	an	enumeration	constant,	its	value	
is	one	greater	than	the	value	of	the	previous	constant.
어떤열거값이값을지정받지못했다면,이전상수값보다 1큰값을받음

• The	first	enumeration	constant	has	the	value	0	by	default.
첫번째열거상수값은기본적으로 0을갖음

• Example:
enum EGA_colors {BLACK, LT_GRAY = 7,

DK_GRAY, WHITE = 15};

BLACK has	the	value	0,	LT_GRAY is	7,	DK_GRAY is	8,	and	
WHITE is	15.
BLACK은 0,	LT_GRAY는 7,	DK_GRAY는 8,	WHITE는 15임

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 102

Enumerations	as	Integers
• Enumeration	values	can	be	mixed	with	ordinary	integers:
열거값은다른정수들과혼합되어쓰일수있음

int i;
enum {CLUBS, DIAMONDS, HEARTS, SPADES} s;

i = DIAMONDS; /* i is now 1 */
s = 0; /* s is now 0 (CLUBS) */
s++; /* s is now 1 (DIAMONDS) */
i = s + 2; /* i is now 3 */

• s is	treated	as	a	variable	of	some	integer	type.	
s는정수타입의변수처럼취급됨

• CLUBS,	DIAMONDS,	HEARTS,	and	SPADES are	names	
for	the	integers	0,	1,	2,	and	3.
클럽,다이어몬드,하트,스페이드는 0, 1, 2, 3의값을갖고있음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 103

Enumerations	as	Integers
• Although	it’s	convenient	to	be	able	to	use	an	enumeration	value	
as	an	integer,	it’s	dangerous	to	use	an	integer	as	an	enumeration	
value.
열거형변수가정수형이더라도,정수형변수로취급하여값을저장하면안됨

• For	example,	we	might	accidentally	store	the	number	4—which	
doesn’t	correspond	to	any	suit—into	s.
열거형변수의범위밖의값을저장하게되면무의미한값을저장하게됨

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 104

Using	Enumerations	to	Declare	“Tag	Fields”
• Enumerations	are	perfect	for	determining	which	member	of	a	
union	was	the	last	to	be	assigned	a	value.
열거형변수는유니언중어떤멤버가사용되었는지표시하기좋음

• In	the	Number structure,	we	can	make	the	kindmember	an	
enumeration	instead	of	an	int:
Number구조체에서 kind를열거형변수로선언한예

typedef struct {
enum {INT_KIND, DOUBLE_KIND} kind;
union {
int i;
double d;

} u;
} Number;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 105

Using	Enumerations	to	Declare	“Tag	Fields”
• The	new	structure	is	used	in	exactly	the	same	way	as	the	old	one.
새로운구조체는과거에정의된구조체와동일한기능을함

• Advantages	of	the	new	structure:
새로운구조체의장점

• Does	away	with	the	INT_KIND and	DOUBLE_KINDmacros
매크로정의없이선언됨

• Makes	it	obvious	that	kind has	only	two	possible	values:	
INT_KIND and	DOUBLE_KIND
두 개의 유일한 값의 범위를 갖음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 106

