Structures, Unions,
and Enumerations

adopted from KNK C Programming : A Modern Approach

Structure (+=#|) Variables

* The properties of a structure are different from those of an array.
TN = B E4F CHE

* The elements of a structure (its members) aren’t required to
have the same type.
TN Fdax(BH)= MELGE IS A+ US

 The members of a structure have names; to select a particular

member, we specify its name, not its position.
TZH ol B = 0|F& A1 11, O HHE ALESH|?[o| M O| S5 ArE&e
(|:||_|_ Hi g2 ol A I:I-|2§ gk_g_)

- " 1—

* In some languages, structures are called records, and members

are known as fields.
O A0= =M E 82E, B = EEC D B E

’

Declaring Structure Variables

e A structure is a logical choice for storing a collection of related
data items.
TxEM = AHJU=HOHE FS =A== M
* A declaration of two structure variables that store information
about parts in a warehouse:
g0 /U a5 BEE NEYH7| fIsh & 712 #+ 2K HaeE M HSH= O
struct {
int number;
char name[NAME LEN+1];
int on hand;
} partl, part2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Declaring Structure Variables

* The members of a structure are stored in memory in the order in

which they’re declared.
TN O M= M= = MO 2 0| 220 HiX| = \

Eﬁ) 2000

I'P.t

* Appearance of partl (H=22|0f| =

2001

* Assumptions(Zt8): , number

2002
« partl islocated at address 2000.
A& =24 2000

2003

N\

2004

* Integers occupy four bytes. ; , name

jg_zlx_:: 4|:||'O|E 2029

* NAME LEN has the value 25. NAME_LEN =25 2030

2031

* There are no gaps between the members. { on_hand

2032
BHE ALO|0= S20| Y5

2033

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Declaring Structure Variables

* Abstract representations of a structure:
FMBLE ANl HEH

number I

name
number name on hand

on_ hand

* Member values will go in the boxes later.
2 X 42 0|20 M=

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Declaring Structure Variables

* Each structure represents a new scope.
A= ME2ER HYE A2 US
* Any names declared in that scope won’t conflict with other
names in a program.
TZH Lo M M RiE Ol F = Z= 13 CFE XU M AFE & O| i SS5HA| &3
* In C terminology, each structure has a separate name space for its

members.
2 XN ol B =2 X Ol E57S 43

Copyright © 2008 W. W. Norton & Company. 6
All rights reserved.

Declaring Structure Variables

* For example, the following declarations can appear in the same

program:
Ol & =0 orcfeF €0| &+ H9I TN 7ot T2 20 A M E
|S0| &

number, name 2| O £ X2 SZSSHA| S

struct {
int number;
char name [NAME LEN+1];
int on hand;

} partl, part2;

struct {
char name [NAME LEN+1];
int number;
char sex;

} employeel, employeeZ;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Initializing Structure Variables

e A structure declaration may include an initializer:
TN M A =72 = US

struct {
int number;
char name [NAME LEN+1];
int on hand;
} partl = {528, "Disk drive", 10},
part2 = {914, "Printer cable", 5};

* Appearance of partl after initialization: 7|zt £ 2&

number 528

name | Disk drive

on hand 10

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Initializing Structure Variables

e Structure initializers follow rules similar to those for array
initializers.
T M 27| 2t5h= B E Ol 7|3kt R ASE Al S IHE

e Expressions used in a structure initializer must be constant. (This
restriction is relaxed in C99.)
TN 27|20 ArESH =42 &= OF B (c990f| M= 1A O] 2t2tE)

* An initializer can have fewer members than the structure it’s
initializing.
TEN L A HHECH=E B2 o HHE 7|3t e = A2

* Any “leftover” members are given 0 as their initial value.
7|21 NHelE B =02 = 7|3} &

Designated Initializers (C99)

e C99’s designated initializers can be used with structures.
99 TN Q| M & X|H5H0] K| X7\t 7t5

* The initializer for part1l shown in the previous example:
part12| YA X7|gt= LIS Z S
{528, "Disk drive", 10}

* In a designated initializer, each value would be labeled by

the name of the member that it initializes:
K™ X£7|3t6H= Chadt 40| BB Q| O|E2 X|F610] £7|3t g = JUS

{ .number = 528, .name = "Disk drive", .on hand = 10}

* The combination of the period and the member name is

called a designator.
A'8ste 28 .(H)+ BHO|E 0, .number

10

Designated Initializers (C99)

* Designated initializers are easier to read and check for

correctness.

A =7|=Hs ot s g2 3=

ot
[oF

* Also, values in a designated initializer don’t have to be placed in
the same order that the members are listed in the structure.
A8 =7|2tE StH 2|0 L= M| = MO 2 LI ESHA| REotE =
* The programmer doesn’t have to remember the order in which
the members were originally declared.
TE0eiH= MO =ME V(e ER Bl3
* The order of the members can be changed in the future

without affecting designated initializers.
HH 2| =AM 7F A|ZHO| K| Lt B E 2t X[=7[2k2| &= A= "4 X| R0t &

11

Designated Initializers (C99)

Not all values listed in a designated initializer need be prefixed by
a designator.

A8 27|zte Iff HHO|EZ MOF 3= A2 OtH
Example:
{ .number = 528, "Disk drive", .on hand = 10}

The compiler assumes that "Disk drive" initializes the

member that follows number in the structure.
"disk drive” = number CF20f| L} 2= HIEHO| Zto|2t0 7F S

Any members that the initializer fails to account for are set to

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 12

Operations on Structures

e To access a member within a structure, we write the name of the

structure first, then a period, then the name of the member.
TN e B F H2ot7| /o +=H2 0| &, d, 12|11 HH O|E2 &

* Statements that display the values of part1’s members:
part10|2f= N[HHE 210 2= 2 0
printf ("Part number: $d\n", partl.number);

printf ("Part name: %$s\n", partl.name);
printf ("Quantity on hand: %d\n", partl.on hand);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Operations on Structures

* The members of a structure are lvalues.
TN 2| HH = Ivalued
* They can appear on the left side of an assignment or as the
operand in an increment or decrement expression:
TEM O M= 20| 2EF0 =S+ A0 S UK AL = US
partl.number = 258;
/* changes partl's part number */

partl.on hand++;
/* increments partl's quantity on hand */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Operations on Structures

* The period used to access a structure member is actually a C

operator.

H2 oA L0 =X M E HEed = UAE 2

[jot

* |t takes precedence over nearly all other operators.
H2 o o AU RO U7t =5

 Example:

scanf ("%d", &partl.on hand);

The . operator takes precedence over the & operator, so &

computes the address of partl.on hand.

& AMAIELC MO M +=2|7t =& &partl.on_hand2t1 S} ™ partl.on_hand2|

>~ o
Fag

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 15

Operations on Structures

* The other major structure operation is assighment:
TNl &E 0

part?Z2 = partl;

* The effect of this statement is to copy partl.number into

part?2.number, partl.name into part?.name, and so on.
partl 2|2 B = HHO| 42 part22| 2= HHE S A}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Operations on Structures

e Arrays can’t be copied using the = operator, but an array
embedded within a structure is copied when the enclosing
structure is copied.

H €2 = HARLE AL OFHE

 Some programmers exploit this property by creating “dummy”
structures to enclose arrays that will be copied later:

O === 2N Q| 7| 5= O| 85l Hi € 2| 24k = A0 &85V = &
struct { int al[l0]; } al, a2;
al = a2;

/* legal, since al and a2 are structures */

Operations on Structures

* The = operator can be used only with structures of compatible
types. =ALHAHE 2 2t7hsot 2N O A B = E TS

* Two structures declared at the same time (as partl and part?
were) are compatible. SA|O] MAE AL E2H HE-F0 20ts

e Structures declared using the same “structure tag” or the same
type name are also compatible. Z2 F=H Ef 25 WA MRS B E SotE

Other than assignment, C provides no operations on entire
structures. & 2/0|= 7+ =X MR E CrF = H4AE 8IS

In particular, the == and ! = operators can’t be used with
structures. 0| & 50 ==L} 1= AL A= 5 = Q&

18

Structure Types

e Suppose that a program needs to declare several structure

variables with identical members.
€2 HHE 4= 72K HeE o 2] 7 MOF ot 7HE S| 2 A}

* We need a name that represents a type of structure, not a

particular structure variable.
TZENE 2= MT| 25{M= 0| F0| Eag, 1M H= 0[F0] Ot

* Ways to name a structure: 7+ = 4|0 0|2 £ 0{5}7|
e Declare a “structure tag” & E{2E M
e Use typedef to define a type name typedef@ 2 9| 0| & X7

19

Declaring a Structure Tag

* A structure tag is a name used to identify a particular kind of

structure.
TEN E1E TEHES TRV 9302

* The declaration of a structure tag named part:
part2t= 0|2 L& Ej 12| A

struct part {
int number;
char name[NAME LEN+1];
int on hand;

}

* Note that a semicolon must follow the right brace.

Q2% Bo| HO|Z20| 2US

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

Declaring a Structure Tag

* The part tag can be used to declare variables:
O| K| part EH1E WA HE=SS MU = UAS

struct part partl, part2;
* We can’t drop the word struct:
part partl, part2; /***% WRONG ***/

part isn’t a type name; without the word struct, itis
meaningless.
0F9F struct2h= THO| & QM H QLRI A A; parte 24| 2 8 Ef1 0| &

* Since structure tags aren’t recognized unless preceded by the
word struct, they don’t conflict with other names used in a

program.
struct §I= Ef1 0|52 20| §i&; Z20H WO Ct= AL 0| S =2 &£+ US

a —_ —

Declaring a Structure Tag

* The declaration of a structure tag can be combined with the
declaration of structure variables:
TN Ej AL} 2N HO| 0| 5= &0l &+ U2
struct part {
int number;
char name [NAME LEN+1];
int on hand;
} partl, part2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

22

Declaring a Structure Tag

* All structures declared to have type struct part are

compatible with one another:
struct part2f= Bl 18 4= 2N 2 M= Bz R R 22 It
b

struct part partl = {528, "
struct part part2;

partZ2 = partl;

/* legal; both parts have the same type */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1isk drive", 10};

23

Defining a Structure Type

* As an alternative to declaring a structure tag, we can use

typedef to define a genuine type name.
TEXN EfOE MOASHE T A typedefC 2 MER EFU 2 X HE = US

* A definition of a type named Part: part & 2| H2l

typedef struct {
int number;
char name [NAME LEN+1];
int on hand;
} Part;
* Part can be used in the same way as the built-in types:
CHE 7|2 =0 20| Part HE & = US

Part partl, part2;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

24

Defining a Structure Type

* When it comes time to name a structure, we can usually choose
either to declare a structure tag or to use typedef.
TZH2[O|F& dY M= 71 2M| Ef 1 EE= typedefE & T AU

= =2 1T ADO

 However, declaring a structure tag is mandatory when the

structure is to be used in a linked list (Chapter 17).
Ct AZE2|AE(linked list)E & = & XK Ef 2 E AR 0F &

Copyright © 2008 W. W. Norton & Company. o5
All rights reserved.

Structures as Arguments and Return Values

* Functions may have structures as arguments and return values.

2t 2| gt Q1A R RN AR Vs
e A function with a structure argument: =X £ QUXtZ 2= &t 0f

vold print part (struct part p)
{

printf ("Part number: %$d\n", p.number);

printf ("Part name: $%$s\n", p.name);

printf ("Quantity on hand: %d\n", p.on hand);
}

* Acallof print part: =20

print part (partl);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

Structures as Arguments and Return Values

* A function that returns a part structure:
part TEK|S 2| B3t B4
struct part build part(int number,
const char *name,

int on hand)

struct part p;

p.number = number;
strcpy (p.name, name);
p.on hand = on hand;
return p;

}
* Acallof build part: 2= 0
partl = build part (528, "Disk drive", 10);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

27

Structures as Arguments and Return Values

Passing a structure to a function and returning a structure from a
function both require making a copy of all members in the
structure.

TEMNE g QX2 HE Es e|H ¢z oW XN 2= B SAHE
To avoid this overhead, it’s sometimes advisable to pass a pointer
to a structure or return a pointer to a structure.

SAHH[E = S0[2{H L ZN0f Chet ZRIH & QX = 2|8 22 ALE
Chapter 17 gives examples of functions that have a pointer to a

structure as an argument and/or return a pointer to a structure.
17580 & 07t U=

28

Structures as Arguments and Return Values

 There are other reasons to avoid c%pying structures.
TN SALS T[olOofgt EE CHE O| 77t A&

* For example, the <stdio.h> header defines a type named
FILE, which is typically a structure.
<stdio.h> 8|l HE 0= FILEO| 2= 2N 7 Ho| =

e Each FILE structure stores information about the state of an

open file and therefore must be unigue in a program.
ZFILE M= @02 MY JEfEESE K1 Us; 2= T2 H-NAM
FILES| S 2= 7 ZoH0F

* Every function in <stdio.h> that opens a file returns a

n
pointer to a FILE structure.

<stdio.h> LI Q| et+= S Mt 87| & ot= g+=2 27 FILE 74| 2f
ZOIHE 2|HY

* Every function that performs an operation on an open file
&gg\uires a F'TLE pointer as an argument.

s2 MUS ZXG= dS2 FLES Z2HE ARz &g

29

Structures as Arguments and Return Values

e Within a function, the initializer for a structure variable can be
another structure:

vold f (struct part partl)

{
struct part partZ2 = partl;

J

* The structure being initialized must have automatic storage
duration.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

Compound Literals (C99)

e Chapter 9 introduced the C99 feature known as the compound
literal.
5o EAE S oA HAHE

* A compound literal can be used to create a structure “on the fly,”
without first storing it in a variable.

=g 2AIES 2B SHM AN E US0 US S = U

* The resulting structure can be passed as a parameter, returned by

a function, or assigned to a variable.
O|HH Y= +2M= 07 H,2 AO[AL S0 2|H = W0 D E

ol
INI=

31

Compound Literals (C99)

* A compound literal can be used to create a
structure that will be passed to a function:
print part ((struct part) {528, "Disk drive", 10})

The compound literal is shown in bold.
S ZANHEE MM 0 HEE F2HE S = US; w2 =M

T H =

A compound literal can also be assigned to a variable:
struc t_hpart) {CE>328 "Disk drive", 10};

O
E_I_Nu:l

32

Compound Literals (C99)

A compound literal consists of a type name within

parentheses, followed by a set of values in braces.
S ZANE2 222 RO E 0|EN 522 ROl 4= Ml =2

= R

-3
* When a compound literal represents a structure, the type
name can be a structure tag preceded by the word struct

or a typedef name.
=23t 2XP0| PEM S LIEHHTIH, Ho of
0

e = L -

(e}
Ef 17} QL typedef O| 2 2 HO| &l Z4

Compound Literals (C99)

A compound literal may contain designators, just like a

designated initializer:
25 OXYS X|HAT|SE £ 9|2

— 5 =

print part ((struct part) {.on hand = 10,
.name = "Disk drive'",
.number = 528});

* A compound literal may fail to provide full initialization, in

which case any uninitialized members default to zero.
%'o;l-E'X'-OZIA-|O-|O§O||=|EI|-X7|2|.OI-7:|O X7|3} CtEl HIH = g0 2
% 7|8}

34

Nested Arrays and Structures

e Structures and arrays can be combined without restriction.
TENLHIE2 Aot B U= HEE = U=

AN OO

* Arrays may have structures as their elements, and structures may

contain arrays and structures as members.
HPe RENES QL2 S+ S, TEM E HILT OHLIR REN S Y2
olo

A
T AA O

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 35

Nested Structures

* Nesting one structure inside another is often useful.

of =N E CE #5M 2 EFRE A= A2 7EE

* Suppose that person name is the following structure:

person_nameO|2t= LXK E A H A}
struct person name {
char first [FIRST NAME LEN+1];
char middle 1nitial;
char last [LAST_NAME_LEN-I—l] ;
I

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Nested Structures

* We can use person name as part of a larger structure:
person_name= CIE & 12N ER=Z =+ US
struct student {
struct person name name;
int i1d, age;
char sex;
} studentl, student?2;

* Accessing studentl’s first name, middle initial, or last name

requires two applications of the . operator:
student12| O| & (first, middle, last)E ©2ot7| YA = = AHLKXE FH ALE

strcpy (studentl.name.first, "Fred");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

Nested Structures

* Having name be a structure makes it easier to treat names

as units of data.
name T ZXN[0| 7| Il =0f O| & StLI2| H|O|H EHR| = X 2| 7t5

* A function that displays a name could be passed one

person name argument instead of three arguments:
person_name= QA2 & Wl|= H== 37| 7} OfL|2} StLIH &

display name (studentl.name) ;

* Copying the information from a person name structure to
the name member of a student structure would take one
assignment instead of three: Ij7i|H+2 EALE [z otHO 2
A7t
struct person name new name;

studentl.name = new name;

38

Arrays of Structures

* One of the most common combinations of arrays and structures is
an array whose elements are structures.
HiE 0 2N 2 28te| 7HE 2ot Zet2 Hi B2l @A77 #2242 4%

* This kind of array can serve as a simple database.
Hi 2= OIO|EHH|O| 2K E 2 = U=

O =2 1T A

* An array of part structures capable of storing information about

100 parts:
part 72N S HIEZ M

struct part inventory[100];

Of

A HIEL A7|EE XNEE MEE = US

Vi

.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

Arrays of Structures

. Accessing a part in the array is done by using subscripting:
part Hi € & StLIE H 2ot H HAE AW &

print part (inventoryl[1i]);

* Accessing a member within a part structure requires a

combination of subscripting and member selection:
part XN Q| RO M 2oSt2{ ™ b & ™ALt HH HENS Sljofgt

inventory[1i] .number = 883;

* Accessing a single character in a part name requires
subscripting, followed by selection, followed by

subscripting:
part 0291 ¢ STHE 1€ U= WZ 2. (I8 HX, P20l et 151, Y

40

Initializing an Array of Structures

* Initializing an array of structures is done in much the same way as
initializing a multidimensional array.
TN i EO| =7[2t= CFXLR B E Z=7(21QF FAISH AL 2 Ths

e Each structure has its own brace-enclosed initializer; the array
initializer wraps another set of braces around the structure

initializers.
2 AE2M = SE2 2 FOA 27|3e SES VI SEE A2 AN 7|3t
SEEHIE X7zt SE2 /=AM 4

41

Initializing an Array of Structures

* One reason for initializing an array of structures is that it contains

information that won’t change during program execution.
HIEE 22N E X7|35l= 0| = T2 1M ML= SOH0| s Y ™ E T}
HELX| S HEO0|7| If=

 Example: an array that contains country codes used when making
international telephone calls. 0: Zf Li2t & =X Motz 3=

* The elements of the array will be structures that store the name

of a country along with its code:
HolEl =M B E2 LIt O| Sdt DE B & XMEY

-

struct dialing code {
char *country;
int code;

}

42

Initializing an Array of Structures

const struct dialing code country codes[] =

{{"Argentina", 54}, {"Bangladesh", 8801},
{"Brazil", 55}, {"Burma (Myanmar)", 95},
{"China", 8o}, {"Colombia", 57},
{"Congo, Dem. Rep. of", 243}, {"Egypt", 20},
{"Ethiopia", 251}, {"France", 33},
{"Germany", 49}, {"India", 911,
{"Indonesia", 62}, {"Iran", 981},
{"Italy", 39}, {"Japan", 81},
{"Mexico", 52}, {"Nigeria", 2341},
{"Pakistan", 92}, {"Philippines", 63},
{"Poland", 48}, {"Russia'", 7},
{"South Africa', 27}, {"South Korea", 821,
{"Spain", 34}, {"Sudan", 2491,
{"Thailand", 66}, {"Turkey", 90},
{"Ukraine", 380}, {"United Kingdom", 441,
{"United States", 1}, {"Vietnam", 8411},

* The inner braces around each structure value are optional.
2t 2N Z7|4e SEE = dEIAE Y

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Initializing an Array of Structures

e C99’s designated initializers allow an item to have more than one
designator.
c992| X|Hx7|2t= StLt O| 2| X[HAE A5 = U=
* A declaration of the inventory array that uses a designated
initializer to create a single part:
X 7|22 5tLEe| 2 E Bt inventory BHE 2 M| Q| /2 £ 7|215H= O
struct part inventory[100] =
{[0] .number = 528, [0].on hand = 10,
(0] .name [0] = '"\O'};

The first two items in the initializer use two designators; the last
item uses three.

KGR 2 HAfol| 2N L HMHE 27|t e, =M X785 7| M0 &
TN Helet OHE

44

Program: Maintaining a Parts Database

* The inventory.c program illustrates how nested arrays and

structures are used in practice.
inventory.c TE M2 B G A X2N7I SH=l 22 &2#E 0|2 £¢

-—

* The program tracks parts stored in a warehouse.

Z2IYe Yno| RESS B2

* Information about the parts is stored in an array of structures.
S0l dE= M Hi G0 X E

* Contents of each structure: Zt +& X9 LHE2 CtS1 &S
* Part number
* Name
* Quantity

45

Program: Maintaining a Parts Database

Operations supported by the program:
T2 130 X| ot %

- O 1

* Add a new part number, part name, and initial quantity on
hand ME22 &8 ¥z, 0|, +E F7¢

e Given a part number, print the name of the part and the
current quantity on hand £& H=0|| Cfst O| S0t ER 7+E =4

e Given a part number, change the quantity on hand
2= H2 0 Tl 27 7+ =48

* Print a table showing all information in the database
O|EHHO|AC| RE=HE 58

* Terminate program execution Z 21 =

46

Program: Maintaining a Parts Database

* The codes i (insert), s (search), u (update), p (print), and g
(quit) will be used to represent these operations.
Zt 7|52 1 (), s (M), u (@), p(EE) q(BTR)E =& T

* A session with the program: 23 0

Enter operation code: 1
Enter part number: 528
Enter part name: Disk drive

Enter quantity on hand: 10

Enter operation code: s
Enter part number: 528
Part name: Disk drive
Quantity on hand: 10

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

Program: Maintaining a Parts Database

Enter
Enter

operation code: s
part number: 914

Part not found.

Enter
Enter
Enter
Enter

Enter
Enter
Enter

operation code: 1
part number: 914

part name: Printer cable

quantity on hand: 5

operation code: u
part number: 528

change 1n quantity on hand: -2

Copyright © 2008 W. W. Norton & Company.

All rights reserved.

48

Program: Maintaining a Parts Database

Enter operation code: s
Enter part number: 528
Part name: Disk drive
Quantity on hand: 8

Enter operation code: p

Part Number Part Name Quantity on Hand
528 Disk drive 8
914 Printer cable 5

Enter operation code: g

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Program: Maintaining a Parts Database

* The program will store information about each part in a structure.
4825 8EE 2NN MY

* The structures will be stored in an array named inventory.
inventory2l= 2N HIE 2 &2 F Tt
* Avariable named num parts will keep track of the number of

parts currently stored in the array.
num_parts =71 Hi S 0|| M &=l EF 2| 7+=& £

Copyright © 2008 W. W. Norton & Company. 50
All rights reserved.

Program: Maintaining a Parts Database

* An outline of the program’s main loop: ZZ 19| O Ql £

for (;7;) A

prompt user to enter operation code; //s% IZE

read code; // ZE 97|

switch (code) {
case 'i': performinsert operation; break;// &¢
case 's': perform search operation; break;// “M
case 'u': perform update operation; break;// Al
case 'p': perform print operation; break;// Y
case 'qg': terminate program;// =
default: print error message; // o8 &4

H

51

Program: Maintaining a Parts Database

e Separate functions will perform the insert, search, update,
and print operations.
2 S| ZA M2 g+ 82

* Since the functions will all need access to inventory
and num parts, these variables will be external.
inventory2f num_parts= 2= 20| A 285l 0F & external 2 M &

* The program is split into three files: 3 S22 2 7%t
* inventory.c (the bulk of the program) ZT=2 18| {Ql I E
* readline.h (contains the prototype for the read line

function) read_line® 2| T2 EEIY/AUHO0| AUZ

* readline. c (contains the definition of read line)
read_linel| #3178 2|7} &

52

inventory.c
/* Maintains a parts database (array version) */

#include <stdio.h>
#include "readline.h"

#define NAME LEN 25
#define MAX PARTS 100

struct part {
int number;
char name [NAME LEN+1];
int on hand;

} inventory[MAX PARTS];

int num parts = 0; /* number of parts currently stored */

int find part (int number);
void insert (void) ;
vold search (void);
void update (void) ;
void print (void);

Copyright © 2008 W. W. Norton & Company. 53
All rights reserved.

/**

* main: Prompts the user to enter an operation code, x
x then calls a function to perform the requested x
* action. Repeats until the user enters the *
* command 'g'. Prints an error message 1f the user *
x enters an 1llegal code. x

**/

int main (void)

{

char code;

for (;7) A
printf ("Enter operation code: ");
scanf (" %c", &code);
while (getchar() != '\n'") /* skips to end of line */

14

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

switch (code)

{

case 'i': insert();
break;
case 's': search();
break;
case 'u': update();
break;
case 'p': print();
break;
case 'gq': return 0O;
default: printf("Illegal code\n");

}

printf ("\n") ;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

95

/**

* find part: Looks up a part number in the inventory *
* array. Returns the array index 1f the part *
* number is found; otherwise, returns -1. *

**/

int find part (int number)

{

int 1;
for (1 = 0; 1 < num parts; 1++)
1f (inventory[i] .number == number)

return 1i;
return -1;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

/**

* insert: Prompts the user for information about a new *
* part and then inserts the part into the *
x database. Prints an error message and returns *
* prematurely 1f the part already exists or the *
* database 1s full. *
* *

P A A g b i b b i i i b g g g i i b g i i b A g i i i b g g i i b g g i i i b i i i i d g i i b db g i i i A g g /
vold insert (void)
{
int part number;
i1f (num parts == MAX PARTS) {
printf ("Database is full; can't add more parts.\n");
return;
}
Copyright © 2008 W. W. Norton & Company.

All rights reserved.

S7

printf ("Enter part number: ");

scanf ("sd", &part number);

if (find part (part number) >= 0) {
printf ("Part already exists.\n");

return;
}
inventory[num parts].number = part number;
printf ("Enter part name: ");

read line(inventory[num parts].name, NAME LEN);

printf ("Enter quantity on hand: ");
scanf ("%d", &inventory[num parts].on hand);

num parts++;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

58

/**

*

*

*

*

**/

search: Prompts the user to enter a part number, then
looks up the part in the database. If the part
exists, prints the name and quantity on hand;
1f not, prints an error message.

volid search (void)

{

int 1, number;

printf ("Enter part number: ");
scanf ("sd", &number);
1 = find part (number);
if (1 >= 0)
printf ("Part name: %$s\n", inventory[i].name);

*

*

*

*

printf ("Quantity on hand: %d\n", inventory[i].on hand);

} else
printf ("Part not found.\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

59

/**

* update: Prompts the user to enter a part number. x
x Prints an error message if the part doesn't x
x exist; otherwise, prompts the user to enter x
* change 1n quantity on hand and updates the *
x database. x
R A A b b i b b b I b i b b i b b i b b i b b b b b i b b i i b i b b b b b b b b i b i b b b b b b i b b i b i ¢

/

void update (void)

{

int 1, number, change;

printf ("Enter part number: ");
scanf ("$d", &number);
1 = find part (number);
if (1 >= 0)
printf ("Enter change in quantity on hand: ");

scanf ("sd", &change);

inventory[i].on hand += change;
} else

printf ("Part not found.\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

/**

* print: Prints a listing of all parts in the database, *
x showing the part number, part name, and x
* quantity on hand. Parts are printed 1n the *
* order in which they were entered into the *
x database. x
**/
void print (void)
{
int 1i;
printf ("Part Number Part Name "
"Quantity on Hand\n");
for (1 = 0; 1 < num parts; 1++)
printf ("%$7d $-25s%11d\n", inventory[i] .number,
inventory[i] .name, inventoryl[il].on hand);
}
Copyright © 2008 W. W. Norton & Company. 61

All rights reserved.

Program: Maintaining a Parts Database

’

* The version of read line in Chapter 13 won’t work properly
in the current program. 13% 2| read_line2 H &t &4} otat

e Consider what happens when the user inserts a part:
CreME Y5t 8429 o & 24t

Enter part number: 528
Enter part name: Disk drive

* The user presses the Enter key after entering the part number,
leaving an invisible new-line character that the program must
read.
part numberE 2 H< I} =X} 2|0f =0f ¢tEO|&= SHHE 7|2(YE): QI HT

* When scanf reads the part number, it consumes the 5, 2, and

8, but leaves the new-line character unread.
scanf/| A= [l 5,2, 82 H X[t =ESHHE 7|2 SHX| E=

62

Program: Maintaining a Parts Database

If we try to read the part name using the original read line
function, it will encounter the new-line character immediately

and stop reading. B
HelQ| read_line 2= £ = 0| S Wl SHE 7|25 =AIE 2

CIAIStE =H7t UZ; 2AH L2 OFF A Y=LK RERUKX| B O O] 1A
OF ©

T —

o O

-
-

This problem is common when numerical input is followed by

character input. <X 28 = At Y5t 2 29| Y= A &

One solution is to write a version of read 1line that skips
white-space characters before it begins storing characters. sliZ

HIHH = SlLt= 2XHE A2 = 38 2 X FA|ISHEE read_lines =8

This solves the new-line problem and also allows us to avoid

storing blanks that precede the part name.
EHim 2 0| S| S = M AHSt= 217t U=

63

readline.h

#ifndef READLINE H
#define READLINE H

/**

* read line: Skips leading white-space characters, then

*
* reads the remainder of the input line and *
* stores 1t 1n str. Truncates the line 1f i1ts *
x length exceeds n. Returns the number of x
o characters stored. o
**/
int read line(char str[], int n);
#endif
Copyright © 2008 W. W. Norton & Company.

All rights reserved.

64

#include
#include
#include

int read

{

int ch

while
while
1f (
st
ch =
}
str[i]
return

<ctype.h>
<stdio.h>
"readline

line (char

readline.c

"

str[], 1nt n)

, 1 = 0;

(1sspace(ch = getchar()))
(ch '= '"\n' && ch != EOF) {
1 < n)

r{i++] = ch;

getchar () ;

= '"\0"';

1;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.

65

Unions

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

66

Unions

* A union, like a structure, consists of one or more members,
possibly of different types.
union &N QL ZO0| ME CHE HE 4= otL O| o MHE2 148

* The compiler allocates only enough space for the largest of the

members, which overlay each other within this space.
Ange =/t 2 HHES AV|E 2N SE° SU4E 2o, HEE 1
S{F oo Mgt

e Assigning a new value to one member alters the values of the

other members as well.
ot HHO| MZE2 4t YYSIHLCHE H=9| {4

-

S HFS
= C O

Lo

>
0ot

67

Unions

* An example of a union variable: LA H=a=0] M1 0
union {
int 1;
double d;
bouy
* The declaration of a union closely resembles a structure
declaration: §L| 2 W0 A2 A Q| M1t F AL
struct {
int 1;
double d;
}os;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

68

Unions

* The structure s and the union u differ in just one way.
TN sQF 7L u= kLS| KO TF E XY gt

Structure Union

* The members of s are stored f , \

at different addresses in memory.
Q| M= MELE T2 SU0| HEgE iJ|

e The members of u are stored
at the same address. ‘- \ N 4

— o X = o
uo| WL 22 FAS 2t

—
S

Copyright © 2008 W. W. Norton & Company. 69
All rights reserved.

Unions

 Members of a union are accessed in the same way as members of

a structure:

QUO b B2 wee TAN HHo ¥ S

Mok

u.i = 82;
u.d = 74.8;

* Changing one member of a union alters any value previously
stored in any of the other members.
Lo of HH H,F XEYoHH 1 Mo MEEJE BH Ol 2o &2 =
e Storing a value in u . d causes any value previously stored in

u.1 to be lost.

u.dofl 22 MESHH u.iof| HEE 2 AHE

e Changing u. i corrupts u. d.
wi MESHH udof| &= 22 A

70

Unions

* The properties of unions are almost identical to the properties of
structures.
U dE2 2N 2N URE €3

* We can declare union tags and union types in the same way we
declare structure tags and types.
FLAER AL RLH A ES MOSIH & = U=

* Like structures, unions can be copied using the = operator, passed

to functions, and returned by functions.
FL A2 = FLUXZ SAE[D 2t0| QIAtZ MY, 2[H &5 = U=

Copyright © 2008 W. W. Norton & Company. 71
All rights reserved.

Unions

Only the first member of a union can be given an initial value.
CF Lo A A ”ME P T [9HE = US

How to initialize the 1 member of u to O:
ul| HH iE 02 2 X7|3}38t= 0
union {
int 1;
double d;
bu = {0};

The expression inside the braces must be constant. (The rules are
slightly different in C99.)

S22 o A2 00 & (99 LhHE A& [IHE)

Copyright © 2008 W. W. Norton & Company. 79
All rights reserved.

Unions

* Designated initializers can also be used with unions.
unionIME X|H X732 & £ U2

* A designated initializer allows us to specify which member of a
union should be initialized: 0{ @ HHE =7|3t & X| X|’d 7|22 Hg

union {
int 1;
double d;
b u = {.d = 10.0};

* Only one member can be initialized, but it doesn’t have to be the
first one. ©, {2 M Z StLIQ| 2T R7|5t & 5= JUS

Copyright © 2008 W. W. Norton & Company. 73
All rights reserved.

Unions

* Applications for unions: fL|212] &KX
e Saving space &7t A<t
* Building mixed data structures 2ot =l X\t2 7= Mo

* Viewing storage in different ways (discussed in Chapter 20)
MNEEXE 2= EOHE Al 2080 M XHA[3] EFHF)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

74

Using Unions to Save Space

* Unions can be used to save space in structures.
TN el St= E0|7| o RU A= A& 7t

e Suppose that we’re designing a structure that will contain
information about an item that’s sold through a gift catalog.
Oz, d=7IE21 MXo| 00| o| YE S MEdte M & 45 At

e Each item has a stock number and a price, as well as other
information that depends on the type of the item:

ZOI0|E2 59, 59, 12 d4d SES 1=

Books: Title, author, number of pages M=, XX}, 1| 0| X| &=

Mugs: Design C|X}¢l
Shirts: Design, colors available, sizes available C|X}Ql, 2 My L2
NEs

75

Using Unions to Save Space

* Afirst attempt at designing the catalog item
structure: & HM catalog item 72X 2 A=

struct catalog item ({
int stock number;
double price;
int i1tem type;
char title[TITLE LEN+1];
char author [AUTHOR LEN+1];
int num pages;
char design[DESIGN LEN+1];
int colors;
int sizes;

sy

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

76

Using Unions to Save Space

* The item type member would have one of the values BOOK,
MUG, or SHIRT. item_type':'él = BOOK, MUG, SHIRT & otL}Zt 40| U=

* The colors and sizes members would store encoded
combinations of colors and sizes.
colors®f sizes HH = M} 37[9| 2t M&

* This structure wastes space, since only part of the information in
the structure is common to all items in the catalog.
Ol M= st dH[7F e RN SETE 2= Of0|Hi0f| &2 E ALE &

* By putting a union inside the catalog item structure, we can

reduce the space required by the structure.
catalog_item T XN 0 SL|QIS £o2 Z7HS A £ 912

77

Using Unions to Save Space

struct catalog item {
int stock number;
double price;
int 1tem type;
union {
struct {
char title[TITLE LEN+1];
char author [AUTHOR_LEN+1] ;
int num pages;
} book;
struct {
char design[DESIGN LEN+1];
} mug;
struct {
char design[DESIGN LEN+1];
int colors;
int sizes;
} shirt;
} item;

Y

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

78

Using Unions to Save Space

* If cisacatalog itemstructure that represents a book, we
can print the book’s title in the following way:
¢/ M= LIEfL] = catalog_item T+ Z M2 CHZ 4} 20| LIEHE = /S
printf ("%s", c.item.book.title);

* As this example shows, accessing a union that’s nested inside a

structure can be awkward.
T AN FL| 0| /D 1 Ot0f| EE 22N 7 U= 5H 2 E ™ 2St= A0

O] gofl E2 & U=

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

79

Using Unions to Save Space

* The catalog itemstructure can be used to illustrate an
interesting aspect of unions.
catalog_itemTt 2 A= FL| Q2| MO|IU= dEZ ENHEF

* Normally, it’s not a good idea to store a value into one
member of a union and then access the data through a

different member.
QMo = of FL Ao M E NS CHE HHE E9ll 4f2 HH2=
A2 HSHX| 2t

80

Using Unions to Save Space

* However, there is a special case: two or more of the
members of the union are structures, and the structures

begin with one or more matching members.
S0t 42 M2l 270 o & o M 7t {1 =M O] 1 & L M| O 5 2o

HWHE A= 8<%
* |f one of the structures is currently valid, then the matching

members in the other structures will also be valid.
ot AZN7t FRSIHLIE XN g2

81

Using Unions to Save Space

* The union embedded in the catalog item structure
contains three structures as members.
catalog_itemTtZX|= F LIS 2 M| 7H| 2N BIH E 4=

e Two of these (mug and shirt) begin with a matching
member (design). mug?tshirte & Lot BB (design)E X0 AS

* Now, suppose that we assign a value to one of the design
members: design Bl & SILEO| 4f= X &St 0
strcpy(c.i1tem.mug.design, "Cats");

* The design member in the other structure will be defined

and have the same value:
CHE RN O] design HIHE M2l 42 4= 43S

printf ("%s", c.item.shirt.design);
/* prints "Cats" */

82

Using Unions to Build Mixed Data Structures

Unions can be used to create data structures that contain a
mixture of data of different types.
FHA2 MECE MO HL2 & A2 25 HE=0 £ ¢
Suppose that we need an array whose elements are a mixture of
int and double values.
&8 H E 0| int EE= double ¢f2 &=Lt S E X}
First, we define a union type whose members represent the
different kinds of data to be stored in the array:
MELOE S A HHE FdE LA HS SO HIEE Moid = U3
typedef union {

int 1;

double d;
} Number;

83

Using Unions to Build Mixed Data Structures

* Next, we create an array whose elements are Number values:

QLA HS IE S, 1 HE 0| HHS Mol

Number number array[1000];

e A Number union can store either an int value or a double

value. O|X| Number L @O 2 Ot= HIY 2 int double 2= A2 = US

* This makes it possible to store a mixture of int and double

values in number array:

number_array B E0| H/ Hd 42 N

number array[0].1 = 5;
number arrayl[l].d

|
0]
oy
Ne)
@)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

84

Adding a “Tag Field” to a Union

* There’s no easy way to tell which member of a union was last
changed and therefore contains a meaningful value.
Lol HH S O A0| o|0|RU= ¢te 41 A=K THst= AO| X S
* Consider the problem of writing a function that displays the value
stored in a Number union:
Number 7L 210 M & &l ¢t =8ol= &d+& 21d
n

)

[OF

[CH D A}

vold print number (Number
{
1f (n contains an integer)
printf ("$d", n.i);
else
printf ("$g", n.d);
}

There’s no way for print number to determine whether n

contains an integer or a floating-point number.

. 1I S o
print_number= nO| QI X[& =QIX| LtCteh = Q1=

85

Adding a “Tag Field” to a Union

* In order to keep track of this information, we can embed the
union within a structure that has one other member: a “tag field”
or “discriminant.”

TZM U0 O §EE WAL = UAEF FEA E= A dEE 28 2 5+ U
d

* The purpose of a tag field is to remind us what’s currently stored

in the union.
Ef1 HE= FL Q0 FA0| MYEE[J=X] LHST

* item type served this purpose inthe catalog item

structure.
catalog_item T+ Z=X| 0| M = item_typeO| 1 G2 &t

86

Adding a “Tag Field” to a Union

* The Number type as a structure with an embedded union:

Number &S A XM 2 MOASED 1 OHY| SL| 1S LEhA|Z

#define INT KIND O
#define DOUBLE KIND 1

typedef struct {
int kind; /* tag field */
union {
int 1;
double d;
bouy
} Number;

* The value of kind will be either INT KIND or

DOUBLE KIND.
kind2| 20l INT_KIND E5= DOUBLE_KINDE HA| &

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

87

Adding a “Tag Field” to a Union

e Each time we assign a value to a member of u, we’ll also change

kind to remind us which member of u we modified.
ul| AHOf 2= e MO} kind2| 2fS A48 OF et

* An example that assigns a value to the 1 member of u:
ul| M 2 io| ¢fS HiH= O
n.kind = INT KIND;
n.u.1 = 82;

n is assumed to be a Number variable.
n= Number & Ha=2 71

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

88

Adding a “Tag Field” to a Union

e When the number stored in a Number variable is retrieved,
kind will tell us which member of the union was the last to be

assigned a value.
Number & B kind2| 2422 O F LA 4i0| OfX[H o2 MAE=X| & US

* A function that takes advantage of this capability:

1 82E &8ots &2 0f

vold print number (Number n)

{
1f (n.kind == INT KIND)
printf ("%d", n.u.1);
else

printf ("%g", n.u.d);

Copyright © 2008 W. W. Norton & Company. 89
All rights reserved.

Enumerations

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

90

Enumerations

* In many programs, we’ll need variables that have only a small set

of meaningful values.

Off ZzaW=2 20|= wrel Bel7t eHEX e = /s

* Avariable that stores the suit of a playing card should have only

four potential values: “clubs,” “diamonds,” “hearts,” and “spades.

o: 7tE A g0 M= “E 8", “CtO|0 2 &7, 7ot E”, 2|1 “AH| 0| =72 /S

= -4,

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

”

91

Enumerations

* A “suit” variable can be declared as an integer, with a set of codes
that represent the possible values of the variable:

“suit’2h= Hee B MYSH et =8 X ™S L2 = US
int s; /* s will store a suit */
s = 2; /* 2 represents "hearts" */

* Problems with this technique:
O|et &2 H2 &Alo 2X
* We can’t tell that s has only four possible values.

59| 2422 47f 0|2|2| T YK TAIE 4 S

* The significance of 2 isn’t apparent.
20[2|07} HA[HO[X| 5=

LS O

92

Enumerations

* Using macros to define a suit “type” and names for the various
suits is a step in the right direction:

D132 HO|E Sl “type”d} O| 52 Hol= A2 HE2 2
#define SUIT int
#define CLUBS 0

#define DIAMONDS 1
#define HEARTS 2
#define SPADES 3

* An updated version of the previous example: 2t 4 02| 74M =l HH
SUIT s;

s = HEARTS;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

93

Enumerations

* Problems with this technique:

Ol HES =XME

* There’s no indication to someone reading the program that the
macros represent values of the same “type.”
O3 22| ‘2|7t &2 “type”2| & LHQ| 44 CIX| I}5HY| O 2=

* If the number of possible values is more than a few, defining a
separate macro for each will be tedious.
15 WO 2£0] ot =717t OfL[2tH Oh 22 Ho| & A ddt= A TEHX| s

* The names CLUBS, DIAMONDS, HEARTS, and SPADES will be
removed by the preprocessor, so they won’t be available during

debugging.
X IFFM 02 2 Ho[= Ar2fX[7]| I Z0f| B} O|= T & 1 0f| A

= SF A o
IﬁE 2l-g'c')E_l_CI:I))-I\El

94

Enumerations

* C provides a special kind of type designed specifically for variables
that have a small number of possible values.
o HR7t oHE R0 = W B EfRE NS

* An enumerated type is a type whose values are listed
(“enumerated”) by the programmer. enumerated type(Z 7 &)0| 2t

B2 g2 =22 Mof o) L E

e Each value must have a name (an enumeration constant).

o = O o
L U2 0|5 4=

95

Enumerations

* Although enumerations have little in common with structures and

unions, they’re declared in a similar way:
SA EO| RL A LN QF FAre H2 X EH M A2 AR

d

enum {CLUBS, DIAMONDS, HEARTS, SPADES} sl, s2;

e The names of enumeration constants must be different from

other identifiers declared in the enclosing scope.
A G0 A8 E &2 0| F2 B &l LA 73Ok &

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 96

Enumerations

e Enumeration constants are similar to constants created with the

#define directive, but they’re not equivalent.
#defineQ 2 MO El A9 H| =6} X| 2t S LUK = &2

e |f an enumeration is declared inside a function, its constants

won’t be visible outside the function.
S dO| e LHO| Al M A K| UCHH S = 2= HHOoj| A 20| X| Qb

Copyright © 2008 W. W. Norton & Company. 97
All rights reserved.

Enumeration Tags and Type Names

e As with structures and unions, there are two ways to nhame an
enumeration: by declaring a tag or by using t ypedef to create a

genuine type name.
TZH| 2 7L 20 S Lo Ef 18 typedefL 2 MZ2 H2[0|5 = U= =+ US

* Enumeration tags resemble structure and union tags:
A A Ef D= FUAD RN Q| B O 242 Aoz MO

enum suit {CLUBS, DIAMONDS, HEARTS, SPADES};

e suit variables would be declared in the following way:
suit @4 & B LS 20] M ¢

enum sult sl, s2;

98

Enumeration Tags and Type Names

* As an alternative, we could use typedef to make Suit atype

Name:
typedef2 2 SuitO| 2= O|F MER2 W2 =T U

typedef enum {CLUBS, DIAMONDS, HEARTS, SPADES} Suit;
Suit sl, s2;

* In C89, using t ypedef to name an enumeration is an excellent

way to create a Boolean type:
890 M= EE|U S HEE 71 T2 L2 typedef 2 A= AL

typedef enum {FALSE, TRUE} Bool;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Enumerations as Integers

* Behind the scenes, C treats enumeration variables and constants

as integers.

ColM= EA Y Bt S = THE

[ok

* By default, the compiler assigns the integers 0, 1, 2, ... to the
constants in a particular enumeration.
A0 L= =0 mh2to, 1,2, ..ol dte € &2

* Inthe suit enumeration, CLUBS, DTAMONDS, HEARTS, and
SPADES represent O, 1, 2, and 3, respectively.

suit @71 HOIA & 2, CHO|O| 2 S, 81, AB|0|E7} 2420, 1, 2,39] BS 23

100

Enumerations as Integers

* The programmer can choose different values for enumeration
constants: Z= 1= EAL[= &0 CrE ¢S X8 = U2
enum suit {CLUBS = 1, DIAMONDS = 2,
HEARTS = 3, SPADES = 4};
* The values of enumeration constants may be arbitrary integers,
listed in no particular order: &9| ¢t2 =AQt AU S
enum dept {RESEARCH = 20,
PRODUCTION = 10, SALES = 25};

* |t's even legal for two or more enumeration constants to have the
same value. = 71Q| &AH Z}0| £ 2 US 7N E &

101

Enumerations as Integers

* When no value is specified for an enumeration constant, its value

is one greater than the value of the previous constant.

O @A &X0| 2= XN SA ZUCHE, O|H &=+ AEL1 E U= &S

* The first enumeration constant has the value 0 by default.
HNEW SAH S+ U2 728208 43

* Example:
enum EGA colors {BLACK, LT GRAY = 7,
DK GRAY, WHITE = 15},

BLACK has the value 0, LT GRAY is7, DK GRAY is 8, and

WHITE is 15.
BLACK= 0, LT_GRAYE 7, DK_GRAY= 8, WHITEE= 15¢&

102

Enumerations as Integers

* Enumeration values can be mixed with ordinary integers:

EHUSCHE St =22 E O 22 5 US

int 1;
enum {CLUBS, DIAMONDS, HEARTS, SPADES} s;

i = DIAMONDS; /* 1 is now 1 */
s = 0; /* s is now O (CLUBS) */
S++; /* s is now 1 (DIAMONDS) */
i =s + 2; /* 1 is now 3 */

* s is treated as a variable of some integer type.
st d Erg el HaeXNE FeE

e CLUBS, DIAMONDS, HEARTS, and SPADES are names
for the integers 0, 1, 2, and 3.

=8, HO[0Z2E,otE, A[0|E=0,1,2,32/ Wa #2 U5

103

Enumerations as Integers

* Although it’s convenient to be able to use an enumeration value

as an integer, it’s dangerous to use an integer as an enumeration
value.

EH Y Ha/t S PO|HetE, 8+ Y B2 FF0 s N EotH HE

* For example, we might accidentally store the number 4—which

doesn’t correspond to any suit—into s.
A G H0 Al 82| 4k MYotA & H Fo|0|ot 4fE MESHA &

Copyright © 2008 W. W. Norton & Company. 104
All rights reserved.

Using Enumerations to Declare “Tag Fields’

/

Enumerations are perfect for determining which member of a

union was the last to be assigned a value.
EAH Y Hre FLHY S OH BHILAIEEA =X HAISH| &=

In the Number structure, we can make the kind member an

enumeration instead of an int:
Number - ZX| 0| Al kindE €M1 & HE=E 4210t 0f
typedef struct {
enum {INT_KIND, DOUBLE_KIND} kind;
union
int 1i;
double d;
bouy
} Number;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

105

Using Enumerations to Declare “Tag Fields”

* The new structure is used in exactly the same way as the old one.
MER F2M= 2tAY ol + 2N s et 7ls2 &

* Advantages of the new structure:
MEZ2 FZ2H 2ol ¥

* Does away with the INT KIND and DOUBLE KIND macros
032 82| 810 ¢ &

* Makes it obvious that kind has only two possible values:
INT KIND and DOUBLE KIND

= o gus ol Wels Te

Copyright © 2008 W. W. Norton & Company. 106
All rights reserved.

