Arrays, Functions

adopted from KNK C Programming : A Modern Approach

Arrays

adopted from KNK C Programming : A Modern Approach

Program: Reversing a Series of Numbers

* The reverse. c program prompts the user to enter a series of

numbers, then writes the numbers in reverse order: At X0 A|
== YHYOF B =2 == 5HA}

Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31
In reverse order: 31 50 11 23 94 7 102 49 82 34

* The program stores the numbers in an array as they’re read, then

goes through the array backwards, printing the elements one by
one.

. 0| ZRIUS AS
=

A QA3 2AE RO M S, B Y 50| M2
0fo 2 SHLH FD

reverse.cC

/* Reverses a series of numbers */
#include <stdio.h>
#define N 10

int main (void)

{

int a[N], 1i;

printf ("Enter 3%d numbers: ", N);
for (i = 0; 1 < N; 1i++)
scanf ("sd", &alil);

printf ("In reverse order:");
for (L = N -1, 1 >= 0; 1--)

printf (" %d", alil]):
printf ("\n");

return 0;

Copyright © 2008 W. W. Norton & Company.

All rights reserved.

Program: Checking a Number for Repeated Digits

* The repdigit.c program checks whether any of the digits in a

number appear more than once.
Q1 243k 0] 0..97HX| ©| X} 7} CHA| LIEFLH=X| 8|2

H /o

e After the user enters a number, the program prints either
Repeateddigit or No repeateddigit:

Hr=0| E|H Repeateddigit = OfL|™ No repeateddigit & =5

Enter a number: 28212
Repeated digit

* The number 28212 has a repeated digit (2); a number like 9357
doesn’t.

0| & =0 282120 A= 27 EI &

Program: Checking a Number for Repeated Digits

* The program uses an array of 10 Boolean values to keep track of

which digits appear in 3| number. 0] 0..9 =X}7} LIEILI=X| &
mterst”| f{sl 10At2| i E = At8E = UL

* Initially, every element of the digit seen array is false.
7|0 B o E= 24+ 00| L.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Program: Checking a Number for Repeated Digits

 When given a number n, the program examines n’s digits one at a
time, storing the current digit in a variable named digit.

. % n0fl CHSHO] T2 132 2k X}2| £ AHS FAFSHCE

If digit seen[digit] istrue, then digit appears at least twice in n.
Hi 2 2] 0..90| 00| OrL| ™, | Aot ot O &) ZX|ULY.

If digit seen[digit] isfalse, then digit has not been seen before,
so the program sets digit seen[digit] to true and keeps going.

HY € 2] 0..90] 00| H, SH 'S =<At= O & LIEFE M O] GiLt.

-
AN

repdigit.c

/* Checks numbers for repeated digits

#include <stdbool.h> /* C99 only */
#include <stdio.h>

int main (void)

{

bool digit seen[l1l0] = {false};
int digit;
long nj;

printf ("Enter a number: ");
scanf ("s1d", &n):;
while (n > 0) {
digit = n % 10;
if (digit seen[digit])
break;
digit seen[digit] = true;
n /= 10;
}

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

*/

if (n > 0)

printf ("Repeated digit\n");
else

printf ("No repeated digit\n");

return 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Program: Computing Interest

* The interest.c program prints a table showing the value of

S100 invested at different rates of interest over a period of years.

» 100= 2 Of CH A =2t CHE O|At=0f LSt H|O| == =& THCL.

* The user will enter an interest rate and the number of years the
money will be invested.

» AMEXAbE OfAhE 1t FA 7[ZHE)S RS,

* The table will show the value of the money at one-year
intervals—at that interest rate and the next four higher rates—
assuming that interest is compounded once a year.

. BO|22 119 [H9|2 EX} HIIE HOFL;
. O|XH= 22| 2 At

10

Program: Computing Interest

* Here’s what a session with the program will look like:

Enter 1nterest rate:
Enter number of years:

Years
1

O B W N

0%
106.
112
119.
1206.
133.

00

.36

10
25
82

7%
107.
114
122
131.
140

00

.49
.50

08

.26

0

2

8%
103.
11o6.
125.
136.
146

00
04
977
05

.93

9%
109.
118
129.
141
153.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

00

.81

50

.16

86

10%
110
121
133.
l4o.
161

.00
.00

10
41

.05

11

Program: Computing Interest

 The numbers in the second row depend on the numbers in the first
row, so it makes sense to store the first row in an array.

- FHRIM Lol = MM Ao 0 2| E Ot M2t R H o A1tS
Hi €= MLt

* The values in the array are then used to compute the second row.
- HIZO[4t F BIM) A= A1rE AlLtSt=0| Ar&StLt.

* This process can be repeated for the third and later rows.
« O|2{ot I g2 MR O| 2o HEO| ZurE AlLtSt=0| AHE

* The program uses nested for statements. & forE AtE

* The outer loop counts from 1 to the number of years requested by the user.
« XS forz2 B2 S7t

* The inner loop increments the interest rate from its lowest value to its highest
value. FHM]| for== O|At=2| 7}

12

interest.c

/* Prints a table of compound interest */

#include <stdio.h>

#define NUM RATES ((int) (sizeof (value)
#define INITIAL BALANCE 100.00

int main (void)

{

int 1, low rate, num years, year;
double wvaluel[b];

printf ("Enter interest rate: ");
scanf ("sd", &low rate);
printf ("Enter number of years: ");

scanf ("sd", &num years);

/ sizeof (value[0])))

Copyright © 2008 W. W. Norton & Company.

All rights reserved.

13

printf ("\nYears");

for (1 = 0; 1
printf ("%6d%%

< NUM RATES; 1i++)

on
4

value[1] = INITIAL BALANCE;

}
printf ("\n") ;

1;
d

for (year =
printf ("%
for (1
value

[+
printf

3
0;
]
"7,

i
(

}

low rate + 1);

{

’

year <= num years; year++) {

, year);

i < NUM RATES; 1++) {

(Low rate + 1)
2f", valuel[i]):;

printf ("\n");

}

return 0;

/ 100.0 * valuel1i

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1

14

Program: Dealing a Hand of Cards

* The deal. c program illustrates both two-dimensional arrays
and constant arrays.

C KR A Hj Y S HOlE ZR O

* The program deals a random hand from a standard deck of
playing cards.

« 7= EHOA CHELL

e Each card in a standard deck has a suit (clubs, diamonds, hearts,
or spades) and a rank (two, three, four, five, six, seven, eight,
nine, ten, jack, queen, king, or ace).

. 2t FlEL 23, CHO|OFRE, BHE, AT|O|E &2 TR E|H 22 E YIHX]
12| 3 00| ATR| O MBZ FHFIC

15

Program: Dealing a Hand of Cards

* The user will specify how many cards should be in the hand:

AEX= GOtL B2 7LES 72 X| ST

LS —
Enter number of cards in hand: 5
Your hand: 7c¢ 2Z2s 5d as 2h

* Problems to be solved: 20{0f & ZX
 How do we pick cards randomly from the deck?
- O|EA 7IEE UEHSHA & A7

 How do we avoid picking the same card twice?
- |8 St FIEE 1 E= A2 O/ A2k

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Program: Dealing a Hand of Cards

* To pick cards randomly, we’ll use several C library functions: & &
2t== 2[5l Of2H 2tO| BB 2| ArE

e time (from <time.h>)—returns the current time, encoded
in a single number.

e srand (from <stdlib.h>)—initializes C’'s random number
generator.

 rand (from <stdlib.h>)— produces an apparently random
number each time it’s called.

* By using the % operator, we can scale the return value from rand

so that it falls between 0 and 3 (for suits) or between 0 and 12
(for ranks). €78 717t L }IEF % AL ALE

17

Program: Dealing a Hand of Cards

* The in hand array is used to keep track of which cards
have already been chosen.

» Ol 7IE7 JEHE[RI=X] S Ltefor7| 2o Hi € AtE

* The array has 4 rows and 13 columns; each element
corresponds to one of the 52 cards in the deck.

* All elements of the array will be false to start with.

* Each time we pick a card at random, we’ll check whether the

element of in hand corresponding to that card is true or
false. ME4S U= M O|O] MEHTH FLE OIX| A2

L 1 =2 M=
e Ifit's true, we'll have to pick another card. o|0| MEiZHOH 2 7= T E
* |f it’s false, we’ll store t rue in that element to remind us later that

this card has already been picked. OfL|H MEHSHS 7| 2

18

Program: Dealing a Hand of Cards

 Once we’ve verified that a card is “new,” we’ll need to translate
its numerical rank and suit into characters and then display the

card.
- MELJFIEE MEIHOoH 10| ZZQl =X =3
e To translate the rank and suit to character form, we’ll set up two

arrays of characters—one for the rank and one for the suit—and

then use the numbers to subscript the arrays. O| 2 2|5 A= 2749
HiEO0| 22

* These arrays won’t change during program execution, so they are
declared to be const.

L BROILAE B2 MY SO HOHK| Y. WM A5 2 Mo

19

deal.c

/* Deals a random hand of cards */

#include <stdbool.h> /* C99 only */
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define NUM SUITS 4
#define NUM RANKS 13

int main (void)

{

bool in hand[NUM SUITS] [NUM RANKS] = {false};
int num cards, rank, suit;

const char rank codel[] = {'2','3"','4'",'5",'¢6"',"'7"','8",
o '9']'t']'j'['q'['k'['a'};

const char suilt code[] = {'c','d"','h',"'s'};

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

20

srand ((unsigned) time (NULL)) ;

printf ("Enter number of cards in hand: ");
scanf ("sd", &num cards);

printf ("Your hand:");
while (num cards > 0) {

suit = rand() % NUM SUITS; /* picks a random suit */
rank = rand() % NUM RANKS; /* picks a random rank */
if (!1n hand[suit] [rank]) {

in hand[suit] [rank] = true;

num cards--;

printf (" %c3c", rank codel[rank], suit code[suit]);

}
printf ("\n");

return 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

21

Variable-Length Arrays (C99)

Variable-Length Arrays (C99)

* In C89, the length of an array variable must be specified by a
constant expression.

* In C99, however, it’s sometimes possible to use an expression
that’s not constant.

* The reverse?. c program—a modification of reverse.c—
illustrates this ability.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

23

reverse’Z.c

/* Reverses a series of numbers using a variable-length
array - C99 only */

#include <stdio.h>

int main (void)

{

int 1, n;

printf ("How many numbers do you want to reverse? ");
scanf ("%d", &n);

int a[n]; /* C99 only - length of array depends on n */

printf ("Enter %d numbers: ", n);
for (i = 0; 1 < n; i++)

scanf ("%$d", &ali]l);

printf ("In reverse order:");
for (i =n - 1; i >= 0; i--)
printf (" xd", ali]);

printf ("\n");

return 0;

Copyright © 2008 W. W. Norton & Company. o4
All rights reserved.

Variable-Length Arrays (C99)

* The array a in the reverse?2.c program is an example of a
variable-length array (or VLA).

* The length of a VLA is computed when the program is executed.

* The chief advantage of a VLA is that a program can calculate
exactly how many elements are needed.

* If the programmer makes the choice, it’s likely that the array will

be too long (wasting memory) or too short (causing the program
to fail).

25

Variable-Length Arrays (C99)

* The length of a VLA doesn’t have to be specified by a
single variable. Arbitrary expressions are legal:
int a[3*1+5];
int b[j+k];

* Like other arrays, VLAs can be multidimensional:

int c¢[m] [n];

e Restrictions on VLAS:

e Can’t have static storage duration (discussed in Chapter 18).
e Can’t have an initializer.

26

Functions

adopted from KNK C Programming : A Modern Approach

Defining and Calling Functions

* Before we go over the formal rules for defining a function, let’s

look at three simple programs that define functions.
THAE A S 27| ™of|, O & 2o 2 At

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Program: Computing Averages

* A function named average that computes the average of two
double values: average2t= &= & double EF 22| gfo| W72 T3

double average (double a, double Db)

{
return (a + b) / 2;

J

 The word double at the beginning is the return type of
average. 32| A|& 2|X|2] doubleO|2tE= H2 = Z=2A| 2| & EtY

* The identifiers a and b (the function’s parameters) represent the

numbers that will be supplied when average is called.
a 2t b B o N7 HTZ M average®r 7t SEE [If ML= 4t

29

Program: Computing Averages

* Every function has an executable part, called the body, which is
enclosed in braces. 2 & 0= L{&(body)0| SE= L{Of| EX{

* The body of average consists of a single return statement.
average2| 42 82 2= otLto| 2[HEZTH &

e Executing this statement causes the function to “return” to the
place from which it was called; the value of (a +b) / 2 will be

the value returned by the function.
Ol 2|H 25 HdoIH 2 Zo X0 (a+b)/22| AL ZOE TE

30

Program: Computing Averages

* A function call consists of a function name followed by a list of
arguments. &+ =72 2| 0|24} QX EE 7 E

e average (x, v) isacall of the average function.

average(x, y)2t A ™ qveragete &S 25

* Arguments are used to supply information to a function.
CIxt= g0 EEE TEY M ALEE

- 4

* The call average (x, y) causes the values of x and v to be

copied into the parameters a and b.
average(x, y) & 2 =0}H x2F y2| 40| Oj 71 H == a2t b0l ZfZf S A&

* An argument doesn’t have to be a variable; any expression of a
compatible type will do. =41t =X = QIXIZ 217
e average (5.1, 8.9) and average (x/2, yv/3) are legal.

31

Program: Computing Averages

 We'll put the call of average in the place where we need to use
the return value. 2| Z1t1} 2 25t 2| X[0] averageE 2=t

* A statement that prints the average of x and yv: & 2| H&# 2 7%
printf ("Average: %g\n", average (x, V));

The return value of average isn’t saved; the program prints it
and then discards it. = A4t Z1H= printf20| A 28 = H E

* |If we had needed the return value later in the program, we could
have captured it in a variable: Z1t X{ & A| #H==0f A0tE S

avg = average (x, V)

32

Program: Computing Averages

* The average. c program reads three numbers and uses the

average function to compute their averages, one pair at a time:

M =XE e8E0r &+ 4 Bds 1Y
Enter three numbers: 3.5 9.6 10.2
Average of 3.5 and 9.6: ©.55

Average of 9.6 and 10.2: 9.9
Average of 3.5 and 10.2: 6.85

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

33

average.c

/* Computes pairwise averages of three numbers */

#include <stdio.h>

double average (double a, double Db)

{
return (a + b) / 2;

}

int main (void)
{

double x, vy, z;

printf ("Enter three numbers: ");

scanf ("$1£f$1£%1£", &x, &y, &z);

printf ("Average of %g and %g: %g\n", x, y, average (x,
printf ("Average of %$g and %g: %g\n", vy, z, average (y,
printf ("Average of %g and %g: %g\n", x, z, average (X,

return 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

v)) s
z));
z));

34

Program: Printing a Countdown

* To indicate that a function has no return value, we specify that
its return type is void: &0 2/H 4t0| SIS H™ voidE H7|

volid print count (i1nt n)

{

printf ("T minus %d and counting\n", n);

}

* void is atype with no values. void= %f Sl &t

[ok

* Acallof print count must appear in a statement by itself:

print count (i); SEHQ = =T

* The countdown. c program calls print count 10 times
inside a loop. 102| Et=

Copyright © 2008 W. W. Norton & Company. 35
All rights reserved.

countdown.c

/* Prints a countdown */

#include <stdio.h>

vold print count (int n)

{

printf ("T minus %d and counting\n", n);

int main (void)

{

int 1i;

for (1 = 10; 1 >
print count (1)

return 0;

14

0;

__j_)

Copyright © 2008 W. W. Norton & Company.

All rights reserved.

36

Program: Printing a Pun (Revisited)

 When a function has no parameters, the word void is placed in

parentheses after the function’s name:
D7t =7 o™ ot B 72| 232 2H0f| void2 H#7|

void print pun(void)

{
printf ("To C, or not to C: that is the question.\n");

}

e To call a function with no arguments, we write the function’s

name, followed by parentheses: Oj7fH 4= Q= T+ S EA| S=H 1}
.T'_I-§EI|-
= —

print pun();
The parentheses must be present. 227 &5 ER

* The pun2. c program tests the print pun function.

37

punz.c

/* Prints a bad pun */
#include <stdio.h>

volid print pun(void)

{
printf ("To C, or not to C:

}

int main (void)
{
print pun();
return 0;

that is the question.\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Program: Testing Whether a Number Is Prime

* The prime. c program tests whether a number is prime:
L T2
Enter a number: 34
Not prime

* The program uses a function named is prime that returns
true if its parameter is a prime number and false ifitisn’t.
2t is_prime O 7 H=7F 20| ™ true OfL| ™ falseE 2| H

* is prime divides its parameter n by each of the numbers
between 2 and the square root of n; if the remainder is ever O, n

isn’t prime.
070 M= ns 2 8 nl| Mla AO|2| =2 Li&; LI X[7t 00| H nZ &5

39

prime.c

/* Tests whether a number is prime */

#include <stdbool.h> /* C99 only */
#include <stdio.h>

bool 1s prime (int n)
{

int divisor;

if (n <= 1)
return false;
for (divisor = 2; divisor * divisor <= n;
if (n % divisor == 0)
return false;
return true;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

divisor++)

40

int main (void)

{

int n;

printf ("Enter a number: ");
scanf ("$d", &n);
if (1s prime (n))

printf ("Prime\n") ;
else

printf ("Not prime\n");
return O;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

41

Array Arguments

e A function is allowed to change the elements of an array
parameter, and the change is reflected in the corresponding

argument.

* A function that modifies an array by storing zero into each of its
elements:

vold store zeros(int al[], 1nt n)

i .
int 1;
for (1 = 0; 1 < n; i++)
ali] = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

42

The Quicksort Algorithm

e Recursion is most helpful for sophisticated algorithms that require
a function to call itself two or more times.
A7 2225 F WOy E22{0F ot SET EA2[SF0HA I =220 78

* Recursion often arises as a result of an algorithm design
technique known as divide-and-conquer, in which a large
problem is divided into smaller pieces that are then tackled by the

same algorithm.)
=™ 2 (divide-and-conquer) 7| 20| M X HO| 2 E. 2 =X E &2 TR 2XH =2
|_|-_'|—_O-| %_I 74 _I|-_ ol-jtl

43

The Quicksort Algorithm

* A classic example of divide-and-conquer can be found in the
popular Quicksort algorithm.
=285 7|'Ee| Tl quicksort(EAE FE 7| #)= AT EX}

e Assume that the array to be sorted is indexed from 1 to n.
g2 B2l A A= 10| A n7tX| 2} SEAL

Quicksort algorithm

1.Choose an array element e (the “partitioning element”), then
rearrange the array so that elements 1, ..., i— 1 are less than or
equal to e, element i contains e, and elementsi+ 1, ..., n are
greater than or equal to e.

o = prfe) o =X O o
oo HiEO| A eS B, e B2 M2 U eLEZ 2 2 A= Xl

2.Sort elements 1, ..., i — 1 by using Quicksort recursively.
HESTHEE MM EE

3.Sort elements i + 1, ..., n by using Quicksort recursively.
QEHS MBS MM EE

44

The Quicksort Algorithm

e Step 1 of the Quicksort algorithm is obviously critical.
1A O S8

* There are various methods to partition an array.

LiE|Mots YE2 Chede

 We'll use a technique that’s easy to understand but not
particularly efficient.
O|5{St= e X[2 Ot S &M O0|X| = =2 YRS AHESIY 28

* The algorithm relies on two “markers” named low and high,

which keep track of positions within the array.
5 702l E M (lowt high)S WA HI B2l Zt52 Xag

45

The Quicksort Algorithm

Initially, low points to the first element; high points to the last.
EZ=0f= lowe W &2, highe OrX[2 A5 74|

We copy the first element (the partitioning element) into a
temporary location, leaving a “hole” in the array.

M ALE A X0 HESH Hi 0| +H = Th=

Next, we move high across the array from right to left until it points

to an element that’s smaller than the partitioning element.
Ct=, THE|M €f e 2CF 2 2 gfS THE TH77HX] high f1X[2] 4f& LEZ U A
QIZOZ 0|Z

46

The Quicksort Algorithm

We then copy the element into the hole that low points to, which
creates a new hole (pointed to by high).

A2 s T O S low?F ZHE| 7| B f(X| 2 0| F; ME2F T+ HO[44
We now move low from left to right, looking for an element that’s

larger than the partitioning element. When we find one, we copy it

into the hole that high points to.
IrE| M 52 S 22 I lowE AZHAM LEZ L Z 0|5, high?t BH=
THOZ 0|F

The process repeats until /low and high meet at a hole.
low2} highZ7t M 2 22 THO| A BHY [H7HX] BHE

Finally, we copy the partitioning element into the hole.
OrE[d 4= THHO| = A

47

The Quicksort Algorithm

* Example of partitioning an array: 0f|A|

12 | 3 18 15 | 10
! l f
low high

3 18 15 | 10
f f
low J/ high
10 | 3 18 15
! !
low high

12

10 6 | 18 15
! f
low high
10 6 | 18 15
f f
low high
10 6 15| 18
f f
low high

All rights reserved.

12

12

Copyright © 2008 W. W. Norton & Company.

10 6 7 |15 |18 | 12
l /OTW hij;h

10 6 | 7 15 | 18 | 12
l Iow,Thigh

10 6 | 7 |12 | 15|18 |

48

The Quicksort Algorithm

* By the final figure, all elements to the left of the partitioning

element are less than or equal to 12, and all elements to the right
are greater than or equal to 12.
OEIM g REO AL EZ2 2 EF 25, MEM B 2 U2 25 ER

L— HA—

* Now that the array has been partitioned, we can use Quicksort
recursively to sort the first four elements of the array (10, 3, 6,
and 7) and the last two (15 and 18).

IEIN =, ALES YN OR S510] M a7fo] A4S YD, 159 185
ALrER Y

49

Program: Quicksort

Let’s develop a recursive function named quicksort

that uses the Quicksort algorithm to sort an array of integers.

X & quicksortD WA 2AE MBS Al H X}

The gsort.c program reads 10 numbers into an array, calls
quicksort to sort the array, then prints the

elements in the array:
107028 = A+E HIE O ME Tt Z quicksort& 2 =010 &

SEEENEE

Enter 10 numbers to be sorted: 9 16 47 82 4 60 12 3 25 51
In sorted order: 3 4 9 12 16 25 47 51 66 82

* The code for partitioning the array is in a separate function

named split.
Hi € 2 THE|MSH= A2 splitO|2h= CE S8 &

50

gsort.cC

/* Sorts an array of integers using Quicksort algorithm */
#include <stdio.h>
#define N 10

volid quicksort(int a[], int low, int high);
int split(int a[], int low, int high);

int main (void)

{

int a[N], 1i;

printf ("Enter %$d numbers to be sorted: ", N);
for (i = 0; 1 < N; i++)
scanf ("sd", &ali]):;
quicksort(a, 0, N - 1);
printf ("In sorted order: ");
for (1 = 0; 1 < N; 1i++)
printf("sd ", alil);
printf ("\n") ;

return 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

void quicksort (int all],

{
int middle;

int low, 1nt high)

if (low >= high) return;

middle = split(a, low, high);
quicksort(a, low, middle - 1);
quicksort (a, middle + 1, high);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

int split(int al[], int low, 1int high)
{

int part element = a[low];

for (;7) |
while (low < high && part element <= alhigh])

high--;
if (low >= high) break;
allow++] = alhigh];

while (low < high && a[low] <= part element)

low++;
if (low >= high) break;
alhigh--]1 = af[low];
}
alhigh] = part element;

return high;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

Program: Quicksort

* Ways to improve the program’s performance:

ds Nd g E

* Improve the partitioning algorithm.
OHE|M ¥ 2|5 71

* Use a different method to sort small arrays.

HE2 27|17 A2 ER LELE=S S

* Make Quicksort nonrecursive.
ZAEE HIHECZE Bt

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

54

