
Arrays,	Functions
adopted	from	KNK	C	Programming	:	A	Modern	Approach

Arrays
adopted	from	KNK	C	Programming	:	A	Modern	Approach

Program:	Reversing	a	Series	of	Numbers
• The	reverse.c program	prompts	the	user	to	enter	a	series	of	
numbers,	then	writes	the	numbers	in	reverse	order:	사용자에게
수를입력받아반대로출력하자

Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31
In reverse order: 31 50 11 23 94 7 102 49 82 34

• The	program	stores	the	numbers	in	an	array	as	they’re	read,	then	
goes	through	the	array	backwards,	printing	the	elements	one	by	
one.

• 이프로그램은사용자입력숫자를배열에저장한후,배열뒤에서부터
앞으로하나씩출력한다

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 3

reverse.c
/* Reverses a series of numbers */

#include <stdio.h>

#define N 10

int main(void)
{
int a[N], i;

printf("Enter %d numbers: ", N);
for (i = 0; i < N; i++)
scanf("%d", &a[i]);

printf("In reverse order:");
for (i = N - 1; i >= 0; i--)
printf(" %d", a[i]);

printf("\n");

return 0;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 4

Program:	Checking	a	Number	for	Repeated	Digits

• The	repdigit.c program	checks	whether	any	of	the	digits	in	a	
number	appear	more	than	once.
입력한수에 0..9까지의숫자가다시나타나는지체크

• After	the	user	enters	a	number,	the	program	prints	either	
Repeated digit or	No repeated digit:
반복이되면 Repeated digit를아니면 No repeated digit를출력

Enter a number: 28212
Repeated digit

• The	number	28212	has	a	repeated	digit	(2);	a	number	like	9357	
doesn’t.
예를들어 28212에서는 2가반복

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 5

Program:	Checking	a	Number	for	Repeated	Digits

• The	program	uses	an	array	of	10	Boolean	values	to	keep	track	of	
which	digits	appear	in	a	number. 어떤 0…9숫자가나타나는지를
파악하기위해 10자리배열을사용할수있다.

• Initially,	every	element	of	the	digit_seen array	is	false.
초기에배열의모든요소는 0이다.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 6

Program:	Checking	a	Number	for	Repeated	Digits

• When	given	a	number	n,	the	program	examines	n’s	digits	one	at	a	
time,	storing	the	current	digit	in	a	variable	named	digit.

• 수 n에대하여프로그램은각자리숫자를조사한다.

• If	digit_seen[digit] is	true,	then	digit appears	at	least	twice	in	n.
• 배열의 0..9이 0이아니면,최소한한번이상존재했다.

• If	digit_seen[digit] is	false,	then	digit has	not	been	seen	before,	
so	the	program	sets	digit_seen[digit] to	true and	keeps	going.

• 배열의 0..9이 0이면,해당숫자는아직나타난적이없다.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 7

repdigit.c
/* Checks numbers for repeated digits */

#include <stdbool.h> /* C99 only */
#include <stdio.h>

int main(void)
{

bool digit_seen[10] = {false};
int digit;
long n;

printf("Enter a number: ");
scanf("%ld", &n);
while (n > 0) {

digit = n % 10;
if (digit_seen[digit])

break;
digit_seen[digit] = true;
n /= 10;

}
Copyright	©	2008	W.	W.	Norton	&	Company.

All	rights	reserved. 8

if (n > 0)
printf("Repeated digit\n");

else
printf("No repeated digit\n");

return 0;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 9

Program:	Computing	Interest
• The	interest.c program	prints	a	table	showing	the	value	of	
$100	invested	at	different	rates	of	interest	over	a	period	of	years.

• 100달러에대해서수년간다른이자율에대한테이블을출력한다.

• The	user	will	enter	an	interest	rate	and	the	number	of	years	the	
money	will	be	invested.

• 사용자는이자율과투자할기간(년)을입력한다.

• The	table	will	show	the	value	of	the	money	at	one-year	
intervals—at	that	interest	rate	and	the	next	four	higher	rates—
assuming	that	interest	is	compounded	once	a	year.

• 테이블은 1년단위로투자결과를보여준다.

• 이자는복리로계산한다.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 10

Program:	Computing	Interest
• Here’s	what	a	session	with	the	program	will	look	like:
Enter interest rate: 6
Enter number of years: 5

Years 6% 7% 8% 9% 10%
1 106.00 107.00 108.00 109.00 110.00
2 112.36 114.49 116.64 118.81 121.00
3 119.10 122.50 125.97 129.50 133.10
4 126.25 131.08 136.05 141.16 146.41
5 133.82 140.26 146.93 153.86 161.05

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 11

Program:	Computing	Interest
• The	numbers	in	the	second	row	depend	on	the	numbers	in	the	first	
row,	so	it	makes	sense	to	store	the	first	row	in	an	array.

• 두번째연도의수는첫번째연도의수에의존한다.따라서첫번째연도의결과를
배열로저장한다.

• The	values	in	the	array	are	then	used	to	compute	the	second	row.
• 배열의값은두번째연도의결과를계산하는데사용한다.

• This	process	can	be	repeated	for	the	third	and	later	rows.
• 이러한과정은세번째이후의연도의결과를계산하는데사용

• The	program	uses	nested	for statements.중첩 for문사용

• The	outer	loop	counts	from	1	to	the	number	of	years	requested	by	the	user.
• 처음 for문은연도의증가
• The	inner	loop	increments	the	interest	rate	from	its	lowest	value	to	its	highest	
value.두번째 for문은이자율의증가

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 12

interest.c
/* Prints a table of compound interest */

#include <stdio.h>

#define NUM_RATES ((int) (sizeof(value) / sizeof(value[0])))
#define INITIAL_BALANCE 100.00

int main(void)
{
int i, low_rate, num_years, year;
double value[5];

printf("Enter interest rate: ");
scanf("%d", &low_rate);
printf("Enter number of years: ");
scanf("%d", &num_years);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 13

printf("\nYears");
for (i = 0; i < NUM_RATES; i++) {
printf("%6d%%", low_rate + i);
value[i] = INITIAL_BALANCE;

}
printf("\n");

for (year = 1; year <= num_years; year++) {
printf("%3d ", year);
for (i = 0; i < NUM_RATES; i++) {
value[i] += (low_rate + i) / 100.0 * value[i];
printf("%7.2f", value[i]);

}
printf("\n");

}

return 0;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 14

Program:	Dealing	a	Hand	of	Cards
• The	deal.c program	illustrates	both	two-dimensional	arrays	
and	constant	arrays.

• 2차원상수배열을보이는프로그램

• The	program	deals	a	random	hand	from	a	standard	deck	of	
playing	cards.

• 카드를랜덤하게다룬다.

• Each	card	in	a	standard	deck	has	a	suit (clubs,	diamonds,	hearts,	
or	spades)	and	a	rank (two,	three,	four,	five,	six,	seven,	eight,	
nine,	ten,	jack,	queen,	king,	or	ace).

• 각카드는클럽,다이아몬드,하트,스페이드로구분되며 2부터왕까지
그리고에이스까지의번호를가진다.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 15

Program:	Dealing	a	Hand	of	Cards
• The	user	will	specify	how	many	cards	should	be	in	the	hand:
사용자는얼마나많은카드를가질지입력한다.

Enter number of cards in hand: 5
Your hand: 7c 2s 5d as 2h

• Problems	to	be	solved:풀어야할문제

• How	do	we	pick	cards	randomly	from	the	deck?
• 어떻게카드를랜덤하게고를것인가?

• How	do	we	avoid	picking	the	same	card	twice?
• 어떻게동일한카드를고르는것을피할것인가?

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 16

Program:	Dealing	a	Hand	of	Cards
• To	pick	cards	randomly,	we’ll	use	several	C	library	functions:랜덤
함수를위해아래라이브러리사용

• time (from	<time.h>)	– returns	the	current	time,	encoded	
in	a	single	number.

• srand (from	<stdlib.h>)	– initializes	C’s	random	number	
generator.

• rand (from	<stdlib.h>)	– produces	an	apparently	random	
number	each	time	it’s	called.

• By	using	the	% operator,	we	can	scale	the	return	value	from	rand
so	that	it	falls	between	0	and	3	(for	suits)	or	between	0	and	12	
(for	ranks).일정구간내있도록 %연산사용

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 17

Program:	Dealing	a	Hand	of	Cards
• The	in_hand array	is	used	to	keep	track	of	which	cards	
have	already	been	chosen.

• 어떤카드가선택되었는지를파악하기위해배열사용

• The	array	has	4	rows	and	13	columns;	each	element	
corresponds	to	one	of	the	52	cards	in	the	deck.
• All	elements	of	the	array	will	be	false	to	start	with.
• Each	time	we	pick	a	card	at	random,	we’ll	check	whether	the	
element	of	in_hand corresponding	to	that	card	is	true	or	
false. 선택을했을때이미선택한카드인지체크

• If	it’s	true,	we’ll	have	to	pick	another	card. 이미선택했으면다른카드고름

• If	it’s	false,	we’ll	store	true in	that	element	to	remind	us	later	that	
this	card	has	already	been	picked.아니면선택했음기입

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 18

Program:	Dealing	a	Hand	of	Cards
• Once	we’ve	verified	that	a	card	is	“new,”	we’ll	need	to	translate	
its	numerical	rank	and	suit	into	characters	and	then	display	the	
card.

• 새로운카드를선택했으면,그의종류와숫자출력

• To	translate	the	rank	and	suit	to	character	form,	we’ll	set	up	two	
arrays	of	characters—one	for	the	rank	and	one	for	the	suit—and	
then	use	the	numbers	to	subscript	the	arrays.이를위해서는 2개의
배열이필요

• These	arrays	won’t	change	during	program	execution,	so	they	are	
declared	to	be	const.

• 종류와숫자는프로그램실행동안변하지않음.따라서상수로선언

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 19

deal.c

/* Deals a random hand of cards */

#include <stdbool.h> /* C99 only */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define NUM_SUITS 4
#define NUM_RANKS 13

int main(void)
{
bool in_hand[NUM_SUITS][NUM_RANKS] = {false};
int num_cards, rank, suit;
const char rank_code[] = {'2','3','4','5','6','7','8',

'9','t','j','q','k','a'};
const char suit_code[] = {'c','d','h','s'};

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 20

srand((unsigned) time(NULL));

printf("Enter number of cards in hand: ");
scanf("%d", &num_cards);

printf("Your hand:");
while (num_cards > 0) {
suit = rand() % NUM_SUITS; /* picks a random suit */
rank = rand() % NUM_RANKS; /* picks a random rank */
if (!in_hand[suit][rank]) {
in_hand[suit][rank] = true;
num_cards--;
printf(" %c%c", rank_code[rank], suit_code[suit]);

}
}
printf("\n");

return 0;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 21

Variable-Length	Arrays	(C99)

22

Variable-Length	Arrays	(C99)
• In	C89,	the	length	of	an	array	variable	must	be	specified	by	a	
constant	expression.

• In	C99,	however,	it’s	sometimes	possible	to	use	an	expression	
that’s	not constant.
• The	reverse2.c program—a	modification	of	reverse.c—
illustrates	this	ability.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 23

reverse2.c
/* Reverses a series of numbers using a variable-length

array - C99 only */

#include <stdio.h>

int main(void)
{
int i, n;

printf("How many numbers do you want to reverse? ");
scanf("%d", &n);

int a[n]; /* C99 only - length of array depends on n */

printf("Enter %d numbers: ", n);

for (i = 0; i < n; i++)

scanf("%d", &a[i]);
printf("In reverse order:");
for (i = n - 1; i >= 0; i--)
printf(" %d", a[i]);

printf("\n");

return 0;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 24

Variable-Length	Arrays	(C99)
• The	array	a in	the	reverse2.c program	is	an	example	of	a	
variable-length	array	(or	VLA).

• The	length	of	a	VLA	is	computed	when	the	program	is	executed.

• The	chief	advantage	of	a	VLA	is	that	a	program	can	calculate	
exactly	how	many	elements	are	needed.

• If	the	programmer	makes	the	choice,	it’s	likely	that	the	array	will	
be	too	long	(wasting	memory)	or	too	short	(causing	the	program	
to	fail).

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 25

Variable-Length	Arrays	(C99)
• The	length	of	a	VLA	doesn’t	have	to	be	specified	by	a	
single	variable.	Arbitrary	expressions	are	legal:
int a[3*i+5];
int b[j+k];

• Like	other	arrays,	VLAs	can	be	multidimensional:
int c[m][n];

• Restrictions	on	VLAs:
• Can’t	have	static	storage	duration	(discussed	in	Chapter	18).	
• Can’t	have	an	initializer.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 26

Functions
adopted	from	KNK	C	Programming	:	A	Modern	Approach

Defining	and	Calling	Functions
• Before	we	go	over	the	formal	rules	for	defining	a	function,	let’s	
look	at	three	simple	programs	that	define	functions.
구체적인규칙을보기전에,예를살펴보자

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 28

Program:	Computing	Averages
• A	function	named	average that	computes	the	average	of	two	
double values: average라는함수는두 double	타입의값의평균을구함

double average(double a, double b)
{
return (a + b) / 2;

}

• The	word	double at	the	beginning	is	the	return	type of	
average.	함수의시작위치의 double이라는것은함수종료시리턴타입

• The	identifiers	a and	b (the	function’s	parameters)	represent	the	
numbers	that	will	be	supplied	when	average is	called.	
a	와 b는함수의매개변수로서 average함수가호출될때전달되는값

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 29

Program:	Computing	Averages
• Every	function	has	an	executable	part,	called	the	body, which	is	
enclosed	in	braces.모든함수에는내용(body)이중괄호내에존재함

• The	body	of	average consists	of	a	single	return statement.
average의경우내용으로는하나의리턴문만존재

• Executing	this	statement	causes	the	function	to	“return”	to	the	
place	from	which	it	was	called;	the	value	of	(a + b) / 2 will	be	
the	value	returned	by	the	function.
이리턴문을실행하면호출한곳에 (a+b)/2의계산결과를전달

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 30

Program:	Computing	Averages
• A	function	call	consists	of	a	function	name	followed	by	a	list	of	
arguments.함수호출문은함수의이름과인자들로구성됨

• average(x, y) is	a	call	of	the	average function.
average(x,	y)라고쓰면 average라는함수를호출함

• Arguments	are	used	to	supply	information	to	a	function.
인자는함수에정보를전달할때사용함

• The	call	average(x, y) causes	the	values	of	x and	y to	be	
copied	into	the	parameters	a and	b.
average(x,	y)를호출하면 x와 y의값이매개변수 a와 b에각각복사됨

• An	argument	doesn’t	have	to	be	a	variable;	any	expression	of	a	
compatible	type	will	do.	수식과숫자도인자로인정

• average(5.1, 8.9) and	average(x/2, y/3) are	legal.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 31

Program:	Computing	Averages
• We’ll	put	the	call	of	average in	the	place	where	we	need	to	use	
the	return	value.	평균의결과과필요한위치에 average를호출함

• A	statement	that	prints	the	average	of	x and	y:두수의평균을구함

printf("Average: %g\n", average(x, y));

The	return	value	of	average isn’t	saved;	the	program	prints	it	
and	then	discards	it.평균계산결과는 printf문에서활용후버림

• If	we	had	needed	the	return	value	later	in	the	program,	we	could	
have	captured	it	in	a	variable:결과재활용시변수에결과를할당

avg = average(x, y);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 32

Program:	Computing	Averages
• The	average.c program	reads	three	numbers	and	uses	the	
average function	to	compute	their	averages,	one	pair	at	a	time:
세숫자를입력받아두수씩평균을구함

Enter three numbers: 3.5 9.6 10.2
Average of 3.5 and 9.6: 6.55
Average of 9.6 and 10.2: 9.9
Average of 3.5 and 10.2: 6.85

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 33

average.c
/* Computes pairwise averages of three numbers */

#include <stdio.h>

double average(double a, double b)
{
return (a + b) / 2;

}

int main(void)
{
double x, y, z;

printf("Enter three numbers: ");
scanf("%lf%lf%lf", &x, &y, &z);
printf("Average of %g and %g: %g\n", x, y, average(x, y));
printf("Average of %g and %g: %g\n", y, z, average(y, z));
printf("Average of %g and %g: %g\n", x, z, average(x, z));

return 0;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 34

Program:	Printing	a	Countdown
• To	indicate	that	a	function	has	no	return	value,	we	specify	that	
its	return	type	is	void:	함수에리턴값이없으면 void로표기

void print_count(int n)
{
printf("T minus %d and counting\n", n);

}

• void is	a	type	with	no	values. void는값없음을뜻함

• A	call	of	print_countmust	appear	in	a	statement	by	itself:
print_count(i); 독립적인 문장으로 호출됨

• The	countdown.c program	calls	print_count 10	times	
inside	a	loop.	10회반복

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 35

countdown.c
/* Prints a countdown */

#include <stdio.h>

void print_count(int n)
{
printf("T minus %d and counting\n", n);

}

int main(void)
{
int i;

for (i = 10; i > 0; --i)
print_count(i);

return 0;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 36

Program:	Printing	a	Pun	(Revisited)
• When	a	function	has	no	parameters,	the	word	void is	placed	in	
parentheses	after	the	function’s	name:
매개변수가없으면함수명뒤의괄호안에 void로표기
void print_pun(void)
{
printf("To C, or not to C: that is the question.\n");

}

• To	call	a	function	with	no	arguments,	we	write	the	function’s	
name,	followed	by	parentheses:매개변수없는함수호출시함수명과
괄호만
print_pun();

The	parentheses	must be	present.	괄호가꼭필요

• The	pun2.c program	tests	the	print_pun function.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 37

pun2.c
/* Prints a bad pun */

#include <stdio.h>

void print_pun(void)
{
printf("To C, or not to C: that is the question.\n");

}

int main(void)
{
print_pun();
return 0;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 38

Program:	Testing	Whether	a	Number	Is	Prime
• The	prime.c program	tests	whether	a	number	is	prime:
소수찾는프로그램

Enter a number: 34
Not prime

• The	program	uses	a	function	named	is_prime that	returns	
true if	its	parameter	is	a	prime	number	and	false if	it	isn’t.
함수 is_prime은매개변수가소수이면 true아니면 false를리턴

• is_prime divides	its	parameter	n by	each	of	the	numbers	
between	2	and	the	square	root	of	n;	if	the	remainder	is	ever	0,	n
isn’t	prime.
매개변수 n을 2부터 n의제곱근사이의수로나눔;나머지가 0이면 n은소수

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 39

prime.c
/* Tests whether a number is prime */

#include <stdbool.h> /* C99 only */
#include <stdio.h>

bool is_prime(int n)
{
int divisor;

if (n <= 1)
return false;

for (divisor = 2; divisor * divisor <= n; divisor++)
if (n % divisor == 0)
return false;

return true;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 40

int main(void)
{
int n;

printf("Enter a number: ");
scanf("%d", &n);
if (is_prime(n))
printf("Prime\n");

else
printf("Not prime\n");

return 0;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 41

Array	Arguments
• A	function	is	allowed	to	change	the	elements	of	an	array	
parameter,	and	the	change	is	reflected	in	the	corresponding	
argument.
• A	function	that	modifies	an	array	by	storing	zero	into	each	of	its	
elements:
void store_zeros(int a[], int n)
{
int i;

for (i = 0; i < n; i++)
a[i] = 0;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 42

The	Quicksort	Algorithm
• Recursion	is	most	helpful	for	sophisticated	algorithms	that	require	
a	function	to	call	itself	two	or	more	times.
자기스스로를두번이상불러야하는복잡한알고리즘에서재귀호출이유용함

• Recursion	often	arises	as	a	result	of	an	algorithm	design	
technique	known	as	divide-and-conquer, in	which	a	large	
problem	is	divided	into	smaller	pieces	that	are	then	tackled	by	the	
same	algorithm.
분할정복(divide-and-conquer)기법에서재귀법이활용됨.큰문제를작은단위의문제로
나누어풀고결과를합침

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 43

The	Quicksort	Algorithm
• A	classic	example	of	divide-and-conquer	can	be	found	in	the	
popular	Quicksort algorithm.
분할정복기법의고전인 quicksort(퀵소트정렬기법)을살펴보자

• Assume	that	the	array	to	be	sorted	is	indexed	from	1	to	n.
정렬할배열의인덱스는 1에서 n까지라하자

Quicksort	algorithm
1.Choose	an	array	element	e (the	“partitioning	element”),	then	
rearrange	the	array	so	that	elements	1,	…,	i – 1	are	less	than	or	
equal	to	e,	element	i contains	e,	and	elements	i +	1,	…,	n are	
greater	than	or	equal	to	e.
임의의배열의원소 e를선택, e	왼쪽은작은값, e오른쪽은큰값을배치

2.Sort	elements	1,	…,	i – 1	by	using	Quicksort	recursively.
왼편을재귀법을써서정렬

3.Sort	elements	i +	1,	…,	n by	using	Quicksort	recursively.	
오른편을재귀법을써서정렬

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 44

The	Quicksort	Algorithm
• Step	1	of	the	Quicksort	algorithm	is	obviously	critical.
1단계가매우중요함

• There	are	various	methods	to	partition	an	array.
파티션하는방법은다양함

• We’ll	use	a	technique	that’s	easy	to	understand	but	not	
particularly	efficient.
이해하는쉽지만아주효율적이지는않은방법을사용하여설명

• The	algorithm	relies	on	two	“markers”	named	low and	high,	
which	keep	track	of	positions	within	the	array.
두개의표식(low와 high)을써서배열의값들을처리함

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 45

The	Quicksort	Algorithm
• Initially,	low points	to	the	first	element;	high points	to	the	last.
최초에는 low는첫번째원소, high는마지막원소를가리킴

• We	copy	the	first	element	(the	partitioning	element)	into	a	
temporary	location,	leaving	a	“hole”	in	the	array.
첫원소를임시위치에저장하여배열에구멍을만듬

• Next,	we	move	high across	the	array	from	right	to	left	until	it	points	
to	an	element	that’s	smaller	than	the	partitioning	element.
다음,파티션값 e보다작은값을만날때까지 high위치의값을오른쪽에서
왼쪽으로이동

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 46

The	Quicksort	Algorithm
• We	then	copy	the	element	into	the	hole	that	low points	to,	which	
creates	a	new	hole	(pointed	to	by	high).
작은값을만나면그값을 low가가리키던위치로이동;새로운구멍이생김

• We	now	move	low from	left	to	right,	looking	for	an	element	that’s	
larger	than	the	partitioning	element.	When	we	find	one,	we	copy	it	
into	the	hole	that	high points	to.
파티션값보다큰값을찾을때까지 low를왼쪽에서오른쪽으로이동, high가만든
구멍으로이동

• The	process	repeats	until	low and	high	meet	at	a	hole.
low와 high가서로같은구멍에서만날때까지반복

• Finally,	we	copy	the	partitioning	element	into	the	hole.
파티션값을구멍에복사

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 47

The	Quicksort	Algorithm
• Example	of	partitioning	an	array:예시

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 48

The	Quicksort	Algorithm
• By	the	final	figure,	all	elements	to	the	left	of	the	partitioning	
element	are	less	than	or	equal	to	12,	and	all	elements	to	the	right	
are	greater	than	or	equal	to	12.
파티션값 12보다작거나같은값은모두왼쪽,파티션보다큰값은모두오른쪽

• Now	that	the	array	has	been	partitioned,	we	can	use	Quicksort	
recursively	to	sort	the	first	four	elements	of	the	array	(10,	3,	6,	
and	7)	and	the	last	two	(15	and	18).
파티션후,퀵소트를재귀적으로호출하여첫 4개의원소를정렬하고, 15와 18도
퀵소트로정렬함

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 49

Program:	Quicksort
• Let’s	develop	a	recursive	function	named	quicksort
that	uses	the	Quicksort	algorithm	to	sort	an	array	of	integers.
재귀함수 quicksort를써서퀵소트정렬을구현해보자

• The	qsort.c program	reads	10	numbers	into	an	array,	calls	
quicksort to	sort	the	array,	then	prints	the	
elements	in	the	array:
10개의숫자를배열에저장한후 quicksort를호출하여정렬
정렬후결과출력

Enter 10 numbers to be sorted: 9 16 47 82 4 66 12 3 25 51
In sorted order: 3 4 9 12 16 25 47 51 66 82

• The	code	for	partitioning	the	array	is	in	a	separate	function	
named	split.	
배열을파티션하는것은 split이라는다른함수를씀

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 50

qsort.c
/* Sorts an array of integers using Quicksort algorithm */

#include <stdio.h>

#define N 10

void quicksort(int a[], int low, int high);
int split(int a[], int low, int high);

int main(void)
{
int a[N], i;

printf("Enter %d numbers to be sorted: ", N);
for (i = 0; i < N; i++)
scanf("%d", &a[i]);

quicksort(a, 0, N - 1);

printf("In sorted order: ");
for (i = 0; i < N; i++)
printf("%d ", a[i]);

printf("\n");

return 0;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 51

void quicksort(int a[], int low, int high)
{
int middle;

if (low >= high) return;
middle = split(a, low, high);
quicksort(a, low, middle - 1);
quicksort(a, middle + 1, high);

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 52

int split(int a[], int low, int high)
{
int part_element = a[low];

for (;;) {
while (low < high && part_element <= a[high])
high--;

if (low >= high) break;
a[low++] = a[high];

while (low < high && a[low] <= part_element)
low++;

if (low >= high) break;
a[high--] = a[low];

}

a[high] = part_element;
return high;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 53

Program:	Quicksort
• Ways	to	improve	the	program’s	performance:
성능개선방법

• Improve	the	partitioning	algorithm.
파티션알고리즘개선

• Use	a	different	method	to	sort	small	arrays.
배열의크기가작은경우다른방법을씀

• Make	Quicksort	nonrecursive.
퀵소트를비재귀적으로만듬

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 54

