
Arrays,	Functions
adopted	from	KNK	C	Programming	:	A	Modern	Approach

요약

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 2

Array,	배열
• 하나이상의값을하나의변수에저장하는데이터타입
• 선언
• 값초기화와할당 (다양한방법이있음,자료참고)

• 인덱스
• 활용
• 배열의차원(dimension)

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 3

Array,	배열:선언
• 구성요소:
• 타입: int,	float,	char,	double,	long,	등
• 변수명:변수이름짖는제약조건을따름
• 배열크기:	임의의양수,저장하고자하는값의개수만큼

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 4

int scores[100];타입 변수명 배열크기

Array,	배열:초기화와할당 (상세내용은자료참고)

• 하나의값할당(변수선언후가능)

• 일부초기화(c99)

• 모든값초기화

• 배열크기미지정초기화

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 5

int scores[5];
int scores[5];
scores[2] = 80;

int a[5] = {99, 80, 70, 92, 100};

int a[5] = {[1] = 29, [3] = 7};

int a[] = {99, 80, 70, 92, 100};

5개의값을저장할수있는
scores라는이름의정수형배열

Array,	배열:	인덱스
• 배열의물리적표현

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 6

10개의값을저장할수있는
a라는이름의배열

중요:0에서인덱스시작

int a[10];
배열의물리적표현

값이저장된위치의주소

Array,	배열:활용
• 바코드계산프로그램

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 7

int i1, i2, i3, i4, i5;
scanf("%1d%1d%1d%1d%1d", &i1, &i2, &i3, &i4, &i5);
first_sum = d + i2 + i4 + j1 + j3 + j5;

int i[5];
scanf("%1d%1d%1d%1d%1d", &i[0], &i[1], &i[2], &i[3], &i[4]);
first_sum = d + i[1] +i[2];

int i[5];
for(cnt = 0; cnt < 5; cnt++)

scanf(“%1d”, &i[cnt]);
first_sum = d + i[1] +i[2];

Array,	배열:차원
• 1차원

• 2차원

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 8

int a[10];

int a[5][9];
3차원이상도표현가능
단,시각화는못함

Function,함수
• 수행하고자하는일련의동작들에붙여진이름

• 프로그램을이해하고수정하는데도움이됨
• Definition,	정의
• Calling,	호출
• Arguments,	인자
• return,	리턴
• recursion,	재귀

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 9

Function,함수: Definition,	정의
• 호출하려는함수보다먼저함수의정의가작성되야함
• 함수선언:
• 함수의내용은없이앞으로사용할함수의이름과
인자값을프로그램에등록함.
• 작성스타일에따라항상필요하진않음.

• 함수정의:
• 함수의실제내용이기록됨

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 10

Function,함수: Declaration,	선언

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 11

#include <stdio.h>

int sum(int a, int b);
int main(){

…
}
int sum(int a, int b)

{
함수 내용

}

함수선언

함수정의

Function,함수: Definition,	정의

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 12

return-type function-name (parameters)
{

declarations
statements

}
int sum(int a, int b)
{

int result=0;
for(; a <= b; a++)

sum += a;
return result;

}

리턴데이터타입 함수이름 함수 내에서사용될인자들

함수내에서사용될변수선언

함수내에서실행할문장들

타입일치

Function,함수: Calling,	호출
• 코드내에함수이름을작성하여호출

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 13

int main(){
…
answer = sum(val1, val2);
…

}

int sum(int a, int b)
{

…
return result;

}

기존코드의흐름은위에서아래로실행

함수호출시함수정의위치로실행의흐름이이동함

Function,함수: Arguments,	인자
• 함수밖에서정의된값으로함수내에서활용할변수이름

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 14

int main(){
…
answer = sum(val1, val2);
…

}

int sum(int a, int b)
{

…
return a + b;

}

메인코드에서선언된 val1과 val2를
sum이라는함수에활용할수있도록인자로넣었음

함수에서활용할변수이름은메인코드의변수이름과달라도됨

Function,함수:종합예제

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 15

#include <stdio.h>
int sum(int a, int b);
int main()
{

int val1, val2, answer;
printf(“Input two numbers in increasing order: “);
scanf(“%d %d”, &val1, &val2);
answer = sum(val1, val2);
printf(“The sum is %d\n”, answer);

}

int sum(int a, int b)
{

int result=0;
for(; a <= b; a++)

sum += a;
return result;

}

호출

결과값반환

Function,함수: Recursion,	재귀
• 함수가호출되면해당코드를실행하고결과를리턴함

• 함수가자기스스로를다시호출하는것이가능함
• 팩토리얼을기억해보기바람

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 16

int fact(int n)
{

if (n <= 1)
return 1;

else

return n * fact(n - 1);
}

다시호출

Workshop
Use	the	worksheet

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 17

Arrays
adopted	from	KNK	C	Programming	:	A	Modern	Approach

Scalar	Variables	versus	Aggregate	Variables
• So	far,	the	only	variables	we’ve	seen	are	scalar: capable	of	
holding	a	single	data	item.	스칼라만다룸,한번에한값만저장가능

• C	also	supports	aggregate variables,	which	can	store	collections	
of	values.집합변수지원,하나이상의다른값저장가능

• There	are	two	kinds	of	aggregates	in	C:	arrays	and	structures.
두종류가있음,배열(array),구조체(structure)

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 19

One-Dimensional	Arrays
• An	array is	a	data	structure	containing	a	number	of	data	
values,	all	of	which	have	the	same	type.
같은타입의값이하나의배열에저장

• These	values,	known	as	elements, can	be	individually	
selected	by	their	position	within	the	array. 각값을요소라부름

• The	simplest	kind	of	array	has	just	one	dimension.
1차원배열이가장간단함

• The	elements	of	a	one-dimensional	array	a are	conceptually	
arranged	one	after	another	in	a	single	row	(or	column):
개념적으로 1줄짜리바둑판으로표현됨

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 20

One-Dimensional	Arrays
• To	declare	an	array,	we	must	specify	the	type of	the	array’s	
elements	and	the	number of	elements:배열선언시배열크기명시

int a[10];

• The	elements	may	be	of	any	type;	the	length	of	the	array	can	be	
any	(integer)	constant	expression.
어떤타입도사용가능,고정된크기를갖음

• Using	a	macro	to	define	the	length	of	an	array	is	an	excellent	
practice:배열의크기는매크로로정의하는것이바람직함

#define N 10
…
int a[N];

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 21

Array	Subscripting
• To	access	an	array	element,	write	the	array	name	followed	by	an	
integer	value	in	square	brackets.	참조법:변수이름과대괄호에수를넣음

• This	is	referred	to	as	subscripting or	indexing the	array.
참조할배열의위치를인덱스라고부름

• The	elements	of	an	array	of	length	n are	indexed	from	0	to	n – 1.
배열의크기가 n일때인덱스시작과끝값은 0과 n-1임

• If	a is	an	array	of	length	10,	its	elements	are	designated	by	a[0],	
a[1],	…,	a[9]:
크기 10일때시작은 0끝은 9

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 22

Array	Subscripting
• Expressions	of	the	form	a[i] are	lvalues,	so	they	can	be	used	in	
the	same	way	as	ordinary	variables:
a[i]은 lvalue이기때문에값을할당받을수있음

a[0] = 1;
printf("%d\n", a[5]);
++a[i];

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 23

인덱스가실제저장된값이아님!!

Array	Subscripting
• Many	programs	contain	for loops	whose	job	is	to	perform	some	
operation	on	every	element	in	an	array.	for 루프의사용예

• Examples	of	typical	operations	on	an	array	a of	length	N:
for (i = 0; i < N; i++)

a[i] = 0; /* clears a */

for (i = 0; i < N; i++)
scanf("%d", &a[i]); /* reads data into a */

for (i = 0; i < N; i++)
sum += a[i]; /* sums the elements of a */

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 24

Array	Subscripting
• C	doesn’t	require	that	subscript	bounds	be	checked;	if	a	subscript	
goes	out	of	range,	the	program’s	behavior	is	undefined.
인덱스경계를검사하지않음;범위를넘으면오동작을함

• A	common	mistake:	forgetting	that	an	array	with	n elements	is	
indexed	from	0	to	n – 1,	not	1	to	n:흔한실수:인덱스를 1부터시작

int a[10], i;

for (i = 1; i <= 10; i++)
a[i] = 0;

With	some	compilers,	this	innocent-looking	for statement	
causes	an	infinite	loop.어떤컴파일러의경우무한루프에빠지게됨.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 25

Array	Subscripting
• An	array	subscript	may	be	any	integer	expression:
인덱스는정수표현식으로사용가능

a[i+j*10] = 0;

• The	expression	can	even	have	side	effects:
수식에사이드이펙트가있어도됨

i = 0;
while (i < N)
a[i++] = 0;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 26

Array	Subscripting
• Be	careful	when	an	array	subscript	has	a	side	effect:
인덱스값에사이드이펙트가있는경우주의해야함

i = 0;
while (i < N)
a[i] = b[i++];

• The	expression	a[i] = b[i++] accesses	the	value	of	i and	
also	modifies	i,	causing	undefined	behavior.
정의되지않은동작

• The	problem	can	be	avoided	by	removing	the	increment	
from	the	subscript:인덱스에서증가값을분리해서문제해결가능

for (i = 0; i < N; i++)
a[i] = b[i];

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 27

Array	Initialization
• An	array,	like	any	other	variable,	can	be	given	an	initial	value	at	
the	time	it’s	declared.변수선언시값을할당하여초기화할수있음

• The	most	common	form	of	array	initializer	is	a	list	of	constant	
expressions	enclosed	in	braces	and	separated	by	commas:
흔한초기화방법:중괄호와값그리고쉼표로구분

int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 28

Array	Initialization
• If	the	initializer	is	shorter	than	the	array,	the	remaining	elements	
of	the	array	are	given	the	value	0:
int a[10] = {1, 2, 3, 4, 5, 6};
/* initial value of a is {1, 2, 3, 4, 5, 6, 0, 0, 0, 0} */

• Using	this	feature,	we	can	easily	initialize	an	array	to	all	zeros:
int a[10] = {0};
/* initial value of a is {0, 0, 0, 0, 0, 0, 0, 0, 0, 0} */

There’s	a	single	0	inside	the	braces	because	it’s	illegal	for	an	
initializer	to	be	completely	empty.

• It’s	also	illegal	for	an	initializer	to	be	longer	than	the	array	it	
initializes.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 29

Array	Initialization
• If	an	initializer	is	present,	the	length	of	the	array	may	be	omitted:
int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

• The	compiler	uses	the	length	of	the	initializer	to	determine	how	
long	the	array	is.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 30

Designated	Initializers	(C99)
• It’s	often	the	case	that	relatively	few	elements	of	an	array	need	to	
be	initialized	explicitly;	the	other	elements	can	be	given	default	
values.
• An	example:
int a[15] =
{0, 0, 29, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 48};

• For	a	large	array,	writing	an	initializer	in	this	fashion	is	tedious	and	
error-prone.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 31

Designated	Initializers	(C99)
• C99’s	designated	initializers	can	be	used	to	solve	this	problem.

• Here’s	how	we	could	redo	the	previous	example	using	a	
designated	initializer:
int a[15] = {[2] = 29, [9] = 7, [14] = 48};

• Each	number	in	brackets	is	said	to	be	a	designator.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 32

Designated	Initializers	(C99)
• Designated	initializers	are	shorter	and	easier	to	read	(at	least	for	
some	arrays).

• Also,	the	order	in	which	the	elements	are	listed	no	longer	
matters.

• Another	way	to	write	the	previous	example:
int a[15] = {[14] = 48, [9] = 7, [2] = 29};

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 33

Designated	Initializers	(C99)
• Designators	must	be	integer	constant	expressions.

• If	the	array	being	initialized	has	length	n,	each	designator	must	be	
between	0	and	n – 1.

• If	the	length	of	the	array	is	omitted,	a	designator	can	be	any	
nonnegative	integer.
• The	compiler	will	deduce	the	length	of	the	array	from	the	
largest	designator.

• The	following	array	will	have	24	elements:
int b[] = {[5] = 10, [23] = 13, [11] = 36, [15] = 29};

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 34

Designated	Initializers	(C99)
• An	initializer	may	use	both	the	older	(element-by-element)	
technique	and	the	newer	(designated)	technique:
int c[10] = {5, 1, 9, [4] = 3, 7, 2, [8] = 6};

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 35

Using	the	sizeof Operator	with	Arrays
• The	sizeof operator	can	determine	the	size	of	an	array	(in	
bytes).
• If	a is	an	array	of	10	integers,	then	sizeof(a) is	typically	40	
(assuming	that	each	integer	requires	four	bytes).
• We	can	also	use	sizeof to	measure	the	size	of	an	array	
element,	such	as	a[0].

• Dividing	the	array	size	by	the	element	size	gives	the	length	of	the	
array:
sizeof(a) / sizeof(a[0])

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 36

Using	the	sizeof Operator	with	Arrays
• Some	programmers	use	this	expression	when	the	length	of	the	
array	is	needed.
• A	loop	that	clears	the	array	a:
for (i = 0; i < sizeof(a) / sizeof(a[0]); i++)
a[i] = 0;

Note	that	the	loop	doesn’t	have	to	be	modified	if	the	array	length	
should	change	at	a	later	date.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 37

Using	the	sizeof Operator	with	Arrays
• Some	compilers	produce	a	warning	message	for	the	expression	i
< sizeof(a) / sizeof(a[0]).

• The	variable	i probably	has	type	int (a	signed	type),	whereas	
sizeof produces	a	value	of	type	size_t (an	unsigned	type).

• Comparing	a	signed	integer	with	an	unsigned	integer	can	be	
dangerous,	but	in	this	case	it’s	safe.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 38

Using	the	sizeof Operator	with	Arrays
• To	avoid	a	warning,	we	can	add	a	cast	that	converts	sizeof(a)
/ sizeof(a[0]) to	a	signed	integer:
for (i = 0; i < (int) (sizeof(a) / sizeof(a[0])); i++)

a[i] = 0;

• Defining	a	macro	for	the	size	calculation	is	often	helpful:
#define SIZE ((int) (sizeof(a) / sizeof(a[0])))

for (i = 0; i < SIZE; i++)
a[i] = 0;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 39

Multidimensional	Arrays
• An	array	may	have	any	number	of	dimensions.

• The	following	declaration	creates	a	two-dimensional	array	(a	
matrix, in	mathematical	terminology):
int m[5][9];

• m has	5	rows	and	9	columns.	Both	rows	and	columns	are	indexed	
from	0:

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 40

Multidimensional	Arrays
• To	access	the	element	of	m in	row	i,	column	j,	we	must	write	
m[i][j].

• The	expression	m[i] designates	row	i of	m,	and	m[i][j] then	
selects	element	j in	this	row.

• Resist	the	temptation	to	write	m[i,j] instead	of	m[i][j].

• C	treats	the	comma	as	an	operator	in	this	context,	so	m[i,j] is	
the	same	as	m[j].

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 41

Multidimensional	Arrays
• Although	we	visualize	two-dimensional	arrays	as	tables,	that’s	not	
the	way	they’re	actually	stored	in	computer	memory.

• C	stores	arrays	in	row-major	order, with	row	0	first,	then	row	1,	
and	so	forth.
• How	the	m array	is	stored:

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 42

Multidimensional	Arrays
• Nested	for loops	are	ideal	for	processing	multidimensional	
arrays.

• Consider	the	problem	of	initializing	an	array	for	use	as	an	identity	
matrix.	A	pair	of	nested	for loops	is	perfect:
#define N 10

double ident[N][N];
int row, col;

for (row = 0; row < N; row++)
for (col = 0; col < N; col++)

if (row == col)
ident[row][col] = 1.0;

else
ident[row][col] = 0.0;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 43

Initializing	a	Multidimensional	Array
• We	can	create	an	initializer	for	a	two-dimensional	array	by	nesting	
one-dimensional	initializers:
int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},

{0, 1, 0, 1, 0, 1, 0, 1, 0},
{0, 1, 0, 1, 1, 0, 0, 1, 0},
{1, 1, 0, 1, 0, 0, 0, 1, 0},
{1, 1, 0, 1, 0, 0, 1, 1, 1}};

• Initializers	for	higher-dimensional	arrays	are	constructed	in	a	
similar	fashion.
• C	provides	a	variety	of	ways	to	abbreviate	initializers	for	
multidimensional	arrays

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 44

Initializing	a	Multidimensional	Array
• If	an	initializer	isn’t	large	enough	to	fill	a	multidimensional	array,	
the	remaining	elements	are	given	the	value	0.
• The	following	initializer	fills	only	the	first	three	rows	of	m;	the	last	
two	rows	will	contain	zeros:
int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},

{0, 1, 0, 1, 0, 1, 0, 1, 0},
{0, 1, 0, 1, 1, 0, 0, 1, 0}};

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 45

Initializing	a	Multidimensional	Array
• If	an	inner	list	isn’t	long	enough	to	fill	a	row,	the	remaining	
elements	in	the	row	are	initialized	to	0:
int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},

{0, 1, 0, 1, 0, 1, 0, 1},
{0, 1, 0, 1, 1, 0, 0, 1},
{1, 1, 0, 1, 0, 0, 0, 1},
{1, 1, 0, 1, 0, 0, 1, 1, 1}};

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 46

Initializing	a	Multidimensional	Array
• We	can	even	omit	the	inner	braces:
int m[5][9] = {1, 1, 1, 1, 1, 0, 1, 1, 1,

0, 1, 0, 1, 0, 1, 0, 1, 0,
0, 1, 0, 1, 1, 0, 0, 1, 0,
1, 1, 0, 1, 0, 0, 0, 1, 0,
1, 1, 0, 1, 0, 0, 1, 1, 1};

Once	the	compiler	has	seen	enough	values	to	fill	one	row,	it	
begins	filling	the	next.

• Omitting	the	inner	braces	can	be	risky,	since	an	extra	element	(or	
even	worse,	a	missing	element)	will	affect	the	rest	of	the	
initializer.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 47

Initializing	a	Multidimensional	Array
• C99’s	designated	initializers	work	with	multidimensional	arrays.

• How	to	create	2	× 2	identity	matrix:
double ident[2][2] = {[0][0] = 1.0, [1][1] = 1.0};

As	usual,	all	elements	for	which	no	value	is	specified	will	default	
to	zero.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 48

Constant	Arrays
• An	array	can	be	made	“constant”	by	starting	its	declaration	with	
the	word	const:
const char hex_chars[] =
{'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F'};

• An	array	that’s	been	declared	const should	not	be	modified	by	
the	program.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 49

Constant	Arrays
• Advantages	of	declaring	an	array	to	be	const:
• Documents	that	the	program	won’t	change	the	array.
• Helps	the	compiler	catch	errors.

• const isn’t	limited	to	arrays,	but	it’s	particularly	useful	in	array	
declarations.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 50

Variable-Length	Arrays	(C99)
• In	C89,	the	length	of	an	array	variable	must	be	specified	by	a	
constant	expression.

• In	C99,	however,	it’s	sometimes	possible	to	use	an	expression	
that’s	not constant.
• The	reverse2.c program—a	modification	of	reverse.c—
illustrates	this	ability.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 51

Variable-Length	Arrays	(C99)
• The	array	a in	the	reverse2.c program	is	an	example	of	a	
variable-length	array	(or	VLA).

• The	length	of	a	VLA	is	computed	when	the	program	is	executed.

• The	chief	advantage	of	a	VLA	is	that	a	program	can	calculate	
exactly	how	many	elements	are	needed.

• If	the	programmer	makes	the	choice,	it’s	likely	that	the	array	will	
be	too	long	(wasting	memory)	or	too	short	(causing	the	program	
to	fail).

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 52

Variable-Length	Arrays	(C99)
• The	length	of	a	VLA	doesn’t	have	to	be	specified	by	a	
single	variable.	Arbitrary	expressions	are	legal:
int a[3*i+5];
int b[j+k];

• Like	other	arrays,	VLAs	can	be	multidimensional:
int c[m][n];

• Restrictions	on	VLAs:
• Can’t	have	static	storage	duration	(discussed	in	Chapter	18).	
• Can’t	have	an	initializer.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 53

Functions
adopted	from	KNK	C	Programming	:	A	Modern	Approach

Introduction
• A	function	is	a	series	of	statements	that	have	been	grouped	
together	and	given	a	name.

• Each	function	is	essentially	a	small	program,	with	its	own	
declarations	and	statements.

• Advantages	of	functions:
• A	program	can	be	divided	into	small	pieces	that	are	easier	to	
understand	and	modify.

• We	can	avoid	duplicating	code	that’s	used	more	than	once.
• A	function	that	was	originally	part	of	one	program	can	be	
reused	in	other	programs.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 55

Defining	and	Calling	Functions
• Before	we	go	over	the	formal	rules	for	defining	a	function,	let’s	
look	at	three	simple	programs	that	define	functions.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 56

Program:	Computing	Averages
• A	function	named	average that	computes	the	average	of	two	
double values:
double average(double a, double b)
{
return (a + b) / 2;

}

• The	word	double at	the	beginning	is	the	return	type of	
average.

• The	identifiers	a and	b (the	function’s	parameters)	represent	the	
numbers	that	will	be	supplied	when	average is	called.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 57

Program:	Computing	Averages
• Every	function	has	an	executable	part,	called	the	body, which	is	
enclosed	in	braces.
• The	body	of	average consists	of	a	single	return statement.

• Executing	this	statement	causes	the	function	to	“return”	to	the	
place	from	which	it	was	called;	the	value	of	(a + b) / 2 will	be	
the	value	returned	by	the	function.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 58

Program:	Computing	Averages
• A	function	call	consists	of	a	function	name	followed	by	a	list	of	
arguments.
• average(x, y) is	a	call	of	the	average function.

• Arguments	are	used	to	supply	information	to	a	function.
• The	call	average(x, y) causes	the	values	of	x and	y to	be	
copied	into	the	parameters	a and	b.

• An	argument	doesn’t	have	to	be	a	variable;	any	expression	of	a	
compatible	type	will	do.
• average(5.1, 8.9) and	average(x/2, y/3) are	legal.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 59

Program:	Computing	Averages
• We’ll	put	the	call	of	average in	the	place	where	we	need	to	use	
the	return	value.
• A	statement	that	prints	the	average	of	x and	y:
printf("Average: %g\n", average(x, y));

The	return	value	of	average isn’t	saved;	the	program	prints	it	
and	then	discards	it.

• If	we	had	needed	the	return	value	later	in	the	program,	we	could	
have	captured	it	in	a	variable:
avg = average(x, y);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 60

Program:	Computing	Averages
• The	average.c program	reads	three	numbers	and	uses	the	
average function	to	compute	their	averages,	one	pair	at	a	time:
Enter three numbers: 3.5 9.6 10.2
Average of 3.5 and 9.6: 6.55
Average of 9.6 and 10.2: 9.9
Average of 3.5 and 10.2: 6.85

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 61

average.c
/* Computes pairwise averages of three numbers */

#include <stdio.h>

double average(double a, double b)
{
return (a + b) / 2;

}

int main(void)
{
double x, y, z;

printf("Enter three numbers: ");
scanf("%lf%lf%lf", &x, &y, &z);
printf("Average of %g and %g: %g\n", x, y, average(x, y));
printf("Average of %g and %g: %g\n", y, z, average(y, z));
printf("Average of %g and %g: %g\n", x, z, average(x, z));

return 0;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 62

Program:	Printing	a	Countdown
• To	indicate	that	a	function	has	no	return	value,	we	specify	that	
its	return	type	is	void:
void print_count(int n)
{
printf("T minus %d and counting\n", n);

}

• void is	a	type	with	no	values.
• A	call	of	print_countmust	appear	in	a	statement	by	itself:
print_count(i);

• The	countdown.c program	calls	print_count 10	times	
inside	a	loop.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 63

countdown.c

/* Prints a countdown */

#include <stdio.h>

void print_count(int n)
{
printf("T minus %d and counting\n", n);

}

int main(void)
{
int i;

for (i = 10; i > 0; --i)
print_count(i);

return 0;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 64

Program:	Printing	a	Pun	(Revisited)
• When	a	function	has	no	parameters,	the	word	void is	placed	in	
parentheses	after	the	function’s	name:
void print_pun(void)
{
printf("To C, or not to C: that is the question.\n");

}

• To	call	a	function	with	no	arguments,	we	write	the	function’s	
name,	followed	by	parentheses:
print_pun();

The	parentheses	must be	present.
• The	pun2.c program	tests	the	print_pun function.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 65

pun2.c

/* Prints a bad pun */

#include <stdio.h>

void print_pun(void)
{
printf("To C, or not to C: that is the question.\n");

}

int main(void)
{
print_pun();
return 0;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 66

Function	Definitions
• General	form	of	a	function	definition:
return-type function-name (parameters)
{

declarations
statements

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 67

Function	Definitions
• The	return	type	of	a	function	is	the	type	of	value	that	the	function	
returns.

• Rules	governing	the	return	type:
• Functions	may	not	return	arrays.
• Specifying	that	the	return	type	is	void indicates	that	the	
function	doesn’t	return	a	value.

• If	the	return	type	is	omitted	in	C89,	the	function	is	presumed	to	
return	a	value	of	type	int.

• In	C99,	omitting	the	return	type	is	illegal.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 68

Function	Definitions
• As	a	matter	of	style,	some	programmers	put	the	return	type	
above the	function	name:
double
average(double a, double b)
{
return (a + b) / 2;

}

• Putting	the	return	type	on	a	separate	line	is	especially	useful	if	
the	return	type	is	lengthy,	like	unsigned long int.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 69

Function	Definitions
• After	the	function	name	comes	a	list	of	parameters.

• Each	parameter	is	preceded	by	a	specification	of	its	type;	
parameters	are	separated	by	commas.
• If	the	function	has	no	parameters,	the	word	void should	appear	
between	the	parentheses.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 70

Function	Definitions
• The	body	of	a	function	may	include	both	declarations	and	
statements.
• An	alternative	version	of	the	average function:
double average(double a, double b)
{
double sum; /* declaration */

sum = a + b; /* statement */
return sum / 2; /* statement */

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 71

Function	Definitions
• Variables	declared	in	the	body	of	a	function	can’t	be	examined	or	
modified	by	other	functions.

• In	C89,	variable	declarations	must	come	first,	before	all	
statements	in	the	body	of	a	function.

• In	C99,	variable	declarations	and	statements	can	be	mixed,	as	
long	as	each	variable	is	declared	prior	to	the	first	statement	that	
uses	the	variable.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 72

Function	Definitions
• The	body	of	a	function	whose	return	type	is	void (a	“void
function”)	can	be	empty:
void print_pun(void)
{
}

• Leaving	the	body	empty	may	make	sense	as	a	temporary	step	
during	program	development.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 73

Function	Calls
• A	function	call	consists	of	a	function	name	followed	by	a	list	of	
arguments,	enclosed	in	parentheses:
average(x, y)
print_count(i)
print_pun()

• If	the	parentheses	are	missing,	the	function	won’t	be	called:
print_pun; /*** WRONG ***/

This	statement	is	legal	but	has	no	effect.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 74

Function	Calls
• A	call	of	a	void function	is	always	followed	by	a	semicolon	to	
turn	it	into	a	statement:
print_count(i);
print_pun();

• A	call	of	a	non-void function	produces	a	value	that	can	be	stored	
in	a	variable,	tested,	printed,	or	used	in	some	other	way:
avg = average(x, y);
if (average(x, y) > 0)
printf("Average is positive\n");

printf("The average is %g\n", average(x, y));

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 75

Function	Calls
• The	value	returned	by	a	non-void function	can	always	be	
discarded	if	it’s	not	needed:
average(x, y); /* discards return value */

This	call	is	an	example	of	an	expression	statement:	a	statement	
that	evaluates	an	expression	but	then	discards	the	result.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 76

Function	Calls
• Ignoring	the	return	value	of	average is	an	odd	thing	to	do,	but	
for	some	functions	it	makes	sense.
• printf returns	the	number	of	characters	that	it	prints.

• After	the	following	call,	num_chars will	have	the	value	9:
num_chars = printf("Hi, Mom!\n");

• We’ll	normally	discard	printf’s	return	value:
printf("Hi, Mom!\n");
/* discards return value */

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 77

Function	Calls
• To	make	it	clear	that	we’re	deliberately	discarding	the	return	
value	of	a	function,	C	allows	us	to	put	(void) before	the	call:
(void) printf("Hi, Mom!\n");

• Using	(void)makes	it	clear	to	others	that	you	deliberately	
discarded	the	return	value,	not	just	forgot	that	there	was	one.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 78

Program:	Testing	Whether	a	Number	Is	Prime
• The	prime.c program	tests	whether	a	number	is	prime:
Enter a number: 34
Not prime

• The	program	uses	a	function	named	is_prime that	returns	
true if	its	parameter	is	a	prime	number	and	false if	it	isn’t.

• is_prime divides	its	parameter	n by	each	of	the	numbers	
between	2	and	the	square	root	of	n;	if	the	remainder	is	ever	0,	n
isn’t	prime.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 79

prime.c

/* Tests whether a number is prime */

#include <stdbool.h> /* C99 only */
#include <stdio.h>

bool is_prime(int n)
{
int divisor;

if (n <= 1)
return false;

for (divisor = 2; divisor * divisor <= n; divisor++)
if (n % divisor == 0)
return false;

return true;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 80

int main(void)
{
int n;

printf("Enter a number: ");
scanf("%d", &n);
if (is_prime(n))
printf("Prime\n");

else
printf("Not prime\n");

return 0;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 81

Function	Declarations
• C	doesn’t	require	that	the	definition	of	a	function	precede	its	
calls.
• Suppose	that	we	rearrange	the	average.c program	by	putting	
the	definition	of	average after the	definition	of	main.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 82

Function	Declarations
#include <stdio.h>

int main(void)
{
double x, y, z;

printf("Enter three numbers: ");
scanf("%lf%lf%lf", &x, &y, &z);
printf("Average of %g and %g: %g\n", x, y, average(x, y));
printf("Average of %g and %g: %g\n", y, z, average(y, z));
printf("Average of %g and %g: %g\n", x, z, average(x, z));

return 0;
}

double average(double a, double b)
{
return (a + b) / 2;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 83

Function	Declarations
• When	the	compiler	encounters	the	first	call	of	average in	
main,	it	has	no	information	about	the	function.

• Instead	of	producing	an	error	message,	the	compiler	assumes	
that	average returns	an	int value.

• We	say	that	the	compiler	has	created	an	implicit	declaration of	
the	function.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 84

Function	Declarations
• The	compiler	is	unable	to	check	that	we’re	passing	average the	
right	number	of	arguments	and	that	the	arguments	have	the	
proper	type.
• Instead,	it	performs	the	default	argument	promotions	and	hopes	
for	the	best.
• When	it	encounters	the	definition	of	average later	in	the	
program,	the	compiler	notices	that	the	function’s	return	type	is	
actually	double,	not	int,	and	so	we	get	an	error	message.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 85

Function	Declarations
• One	way	to	avoid	the	problem	of	call-before-definition	is	to	
arrange	the	program	so	that	the	definition	of	each	function	
precedes	all	its	calls.
• Unfortunately,	such	an	arrangement	doesn’t	always	exist.

• Even	when	it	does,	it	may	make	the	program	harder	to	
understand	by	putting	its	function	definitions	in	an	unnatural	
order.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 86

Function	Declarations
• Fortunately,	C	offers	a	better	solution:	declare	each	function	
before	calling	it.
• A	function	declaration provides	the	compiler	with	a	brief	
glimpse	at	a	function	whose	full	definition	will	appear	later.
• General	form	of	a	function	declaration:
return-type function-name (parameters) ;

• The	declaration	of	a	function	must	be	consistent	with	the	
function’s	definition.
• Here’s	the	average.c program	with	a	declaration	of	
average added.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 87

Function	Declarations
#include <stdio.h>

double average(double a, double b); /* DECLARATION */

int main(void)
{
double x, y, z;

printf("Enter three numbers: ");
scanf("%lf%lf%lf", &x, &y, &z);
printf("Average of %g and %g: %g\n", x, y, average(x, y));
printf("Average of %g and %g: %g\n", y, z, average(y, z));
printf("Average of %g and %g: %g\n", x, z, average(x, z));

return 0;
}

double average(double a, double b) /* DEFINITION */
{
return (a + b) / 2;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 88

Function	Declarations
• Function	declarations	of	the	kind	we’re	discussing	are	known	as	
function	prototypes.

• C	also	has	an	older	style	of	function	declaration	in	which	the	
parentheses	are	left	empty.

• A	function	prototype	doesn’t	have	to	specify	the	names	of	the	
function’s	parameters,	as	long	as	their	types	are	present:
double average(double, double);

• It’s	usually	best	not	to	omit	parameter	names.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 89

Function	Declarations
• C99	has	adopted	the	rule	that	either	a	declaration	or	a	definition	
of	a	function	must	be	present	prior	to	any	call	of	the	function.

• Calling	a	function	for	which	the	compiler	has	not	yet	seen	a	
declaration	or	definition	is	an	error.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 90

Arguments
• In	C,	arguments	are	passed	by	value: when	a	function	is	called,	
each	argument	is	evaluated	and	its	value	assigned	to	the	
corresponding	parameter.
• Since	the	parameter	contains	a	copy	of	the	argument’s	value,	any	
changes	made	to	the	parameter	during	the	execution	of	the	
function	don’t	affect	the	argument.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 91

Arguments
• The	fact	that	arguments	are	passed	by	value	has	both	advantages	
and	disadvantages.

• Since	a	parameter	can	be	modified	without	affecting	the	
corresponding	argument,	we	can	use	parameters	as	variables	
within	the	function,	reducing	the	number	of	genuine	variables	
needed.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 92

Arguments
• Consider	the	following	function,	which	raises	a	number	x to	a	
power	n:
int power(int x, int n)
{
int i, result = 1;

for (i = 1; i <= n; i++)
result = result * x;

return result;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 93

Arguments
• Since	n is	a	copy of	the	original	exponent,	the	function	can	safely	
modify	it,	removing	the	need	for	i:
int power(int x, int n)
{
int result = 1;

while (n-- > 0)
result = result * x;

return result;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 94

Arguments
• C’s	requirement	that	arguments	be	passed	by	value	makes	it	
difficult	to	write	certain	kinds	of	functions.
• Suppose	that	we	need	a	function	that	will	decompose	a	
double value	into	an	integer	part	and	a	fractional	part.

• Since	a	function	can’t	return two	numbers,	we	might	try	
passing	a	pair	of	variables	to	the	function	and	having	it	modify	
them:
void decompose(double x, long int_part,

double frac_part)
{

int_part = (long) x;
frac_part = x - int_part;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 95

Arguments
• A	call	of	the	function:
decompose(3.14159, i, d);

• Unfortunately,	i and	d won’t	be	affected	by	the	assignments	to	
int_part and	frac_part.

• Chapter	11	shows	how	to	make	decompose work	correctly.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 96

Argument	Conversions
• C	allows	function	calls	in	which	the	types	of	the	arguments	don’t	
match	the	types	of	the	parameters.

• The	rules	governing	how	the	arguments	are	converted	depend	on	
whether	or	not	the	compiler	has	seen	a	prototype	for	the	
function	(or	the	function’s	full	definition)	prior	to	the	call.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 97

Argument	Conversions
• The	compiler	has	encountered	a	prototype	prior	to	the	call.

• The	value	of	each	argument	is	implicitly	converted	to	the	type	of	
the	corresponding	parameter	as	if	by	assignment.
• Example:	If	an	int argument	is	passed	to	a	function	that	was	
expecting	a	double,	the	argument	is	converted	to	double
automatically.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 98

Argument	Conversions
• The	compiler	has	not	encountered	a	prototype	prior	to	the	call.

• The	compiler	performs	the	default	argument	promotions:
• float arguments	are	converted	to	double.
• The	integral	promotions	are	performed,	causing	char and	
short arguments	to	be	converted	to	int.	(In	C99,	the	integer	
promotions	are	performed.)

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 99

Argument	Conversions
• Relying	on	the	default	argument	promotions	is	dangerous.

• Example:
#include <stdio.h>

int main(void)
{

double x = 3.0;
printf("Square: %d\n", square(x));

return 0;
}

int square(int n)
{

return n * n;
}

• At	the	time	square is	called,	the	compiler	doesn’t	know	that	it	
expects	an	argument	of	type	int.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 100

Argument	Conversions
• Instead,	the	compiler	performs	the	default	argument	promotions	on	
x,	with	no	effect.

• Since	it’s	expecting	an	argument	of	type	int but	has	been	given	a	
double value	instead,	the	effect	of	calling	square is	undefined.

• The	problem	can	be	fixed	by	casting	square’s	argument	to	the	
proper	type:
printf("Square: %d\n", square((int) x));

• A	much	better	solution	is	to	provide	a	prototype	for	square before	
calling	it.

• In	C99,	calling	square without	first	providing	a	declaration	or	
definition	of	the	function	is	an	error.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 101

Array	Arguments
• When	a	function	parameter	is	a	one-dimensional	array,	
the	length	of	the	array	can	be	left	unspecified:
int f(int a[]) /* no length specified */
{
…

}

• C	doesn’t	provide	any	easy	way	for	a	function	to	
determine	the	length	of	an	array	passed	to	it.
• Instead,	we’ll	have	to	supply	the	length—if	the	function	
needs	it—as	an	additional	argument.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 102

Array	Arguments
• Example:
int sum_array(int a[], int n)
{
int i, sum = 0;

for (i = 0; i < n; i++)
sum += a[i];

return sum;
}

• Since	sum_array needs	to	know	the	length	of	a,	we	must	
supply	it	as	a	second	argument.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 103

Array	Arguments
• The	prototype	for	sum_array has	the	following	appearance:
int sum_array(int a[], int n);

• As	usual,	we	can	omit	the	parameter	names	if	we	wish:
int sum_array(int [], int);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 104

Array	Arguments
• When	sum_array is	called,	the	first	argument	will	be	the	name	
of	an	array,	and	the	second	will	be	its	length:
#define LEN 100

int main(void)
{

int b[LEN], total;
…
total = sum_array(b, LEN);
…

}

• Notice	that	we	don’t	put	brackets	after	an	array	name	when	
passing	it	to	a	function:
total = sum_array(b[], LEN); /*** WRONG ***/

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 105

Array	Arguments
• A	function	has	no	way	to	check	that	we’ve	passed	it	the	correct	
array	length.

• We	can	exploit	this	fact	by	telling	the	function	that	the	array	is	
smaller	than	it	really	is.
• Suppose	that	we’ve	only	stored	50	numbers	in	the	b array,	even	
though	it	can	hold	100.

• We	can	sum	just	the	first	50	elements	by	writing
total = sum_array(b, 50);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 106

Array	Arguments
• Be	careful	not	to	tell	a	function	that	an	array	argument	is	larger
than	it	really	is:
total = sum_array(b, 150); /*** WRONG ***/

sum_array will	go	past	the	end	of	the	array,	causing	undefined	
behavior.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 107

Array	Arguments
• A	function	is	allowed	to	change	the	elements	of	an	array	
parameter,	and	the	change	is	reflected	in	the	corresponding	
argument.
• A	function	that	modifies	an	array	by	storing	zero	into	each	of	its	
elements:
void store_zeros(int a[], int n)
{
int i;

for (i = 0; i < n; i++)
a[i] = 0;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 108

Array	Arguments
• A	call	of	store_zeros:
store_zeros(b, 100);

• The	ability	to	modify	the	elements	of	an	array	argument	may	
seem	to	contradict	the	fact	that	C	passes	arguments	by	value.

• Chapter	12	explains	why	there’s	actually	no	contradiction.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 109

Array	Arguments
• If	a	parameter	is	a	multidimensional	array,	only	the	length
of	the	first	dimension	may	be	omitted.
• If	we	revise	sum_array so	that	a is	a	two-dimensional	array,	we	
must	specify	the	number	of	columns	in	a:
#define LEN 10

int sum_two_dimensional_array(int a[][LEN], int n)
{

int i, j, sum = 0;

for (i = 0; i < n; i++)
for (j = 0; j < LEN; j++)

sum += a[i][j];

return sum;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 110

Array	Arguments
• Not	being	able	to	pass	multidimensional	arrays	with	an	arbitrary	
number	of	columns	can	be	a	nuisance.

• We	can	often	work	around	this	difficulty	by	using	arrays	of	
pointers.

• C99’s	variable-length	array	parameters	provide	an	even	better	
solution.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 111

Variable-Length	Array	Parameters	(C99)
• C99	allows	the	use	of	variable-length	arrays	as	parameters.
• Consider	the	sum_array function:
int sum_array(int a[], int n)
{
…

}

As	it	stands	now,	there’s	no	direct	link	between	n and	the	
length	of	the	array	a.
• Although	the	function	body	treats	n as	a’s	length,	the	actual	
length	of	the	array	could	be	larger	or	smaller	than	n.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 112

Variable-Length	Array	Parameters	(C99)
• Using	a	variable-length	array	parameter,	we	can	explicitly	
state	that	a’s	length	is	n:
int sum_array(int n, int a[n])
{
…

}

• The	value	of	the	first	parameter	(n)	specifies	the	length	of	
the	second	parameter	(a).
• Note	that	the	order	of	the	parameters	has	been	switched;	
order	is	important	when	variable-length	array	parameters	
are	used.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 113

Variable-Length	Array	Parameters	(C99)
• There	are	several	ways	to	write	the	prototype	for	the	new	version	
of	sum_array.

• One	possibility	is	to	make	it	look	exactly	like	the	function	
definition:
int sum_array(int n, int a[n]); /* Version 1 */

• Another	possibility	is	to	replace	the	array	length	by	an	asterisk	
(*):
int sum_array(int n, int a[*]); /* Version 2a */

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 114

Variable-Length	Array	Parameters	(C99)
• The	reason	for	using	the	* notation	is	that	parameter	names	are	
optional	in	function	declarations.

• If	the	name	of	the	first	parameter	is	omitted,	it	wouldn’t	be	
possible	to	specify	that	the	length	of	the	array	is	n,	but	the	*
provides	a	clue	that	the	length	of	the	array	is	related	to	
parameters	that	come	earlier	in	the	list:
int sum_array(int, int [*]); /* Version 2b */

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 115

Variable-Length	Array	Parameters	(C99)
• It’s	also	legal	to	leave	the	brackets	empty,	as	we	normally	do	
when	declaring	an	array	parameter:
int sum_array(int n, int a[]); /* Version 3a */
int sum_array(int, int []); /* Version 3b */

• Leaving	the	brackets	empty	isn’t	a	good	choice,	because	it	doesn’t	
expose	the	relationship	between	n and	a.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 116

Variable-Length	Array	Parameters	(C99)
• In	general,	the	length	of	a	variable-length	array	parameter	can	be	
any	expression.
• A	function	that	concatenates	two	arrays	a and	b,	storing	the	
result	into	a	third	array	named	c:
int concatenate(int m, int n, int a[m], int b[n],

int c[m+n])
{

…
}

• The	expression	used	to	specify	the	length	of	c involves	two	other	
parameters,	but	in	general	it	could	refer	to	variables	outside	the	
function	or	even	call	other	functions.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 117

Variable-Length	Array	Parameters	(C99)
• Variable-length	array	parameters	with	a	single	dimension	have	
limited	usefulness.

• They	make	a	function	declaration	or	definition	more	descriptive	
by	stating	the	desired	length	of	an	array	argument.

• However,	no	additional	error-checking	is	performed;	it’s	still	
possible	for	an	array	argument	to	be	too	long	or	too	short.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 118

Variable-Length	Array	Parameters	(C99)
• Variable-length	array	parameters	are	most	useful	for	
multidimensional	arrays.

• By	using	a	variable-length	array	parameter,	we	can	generalize	the	
sum_two_dimensional_array function	to	any	number	of	
columns:
int sum_two_dimensional_array(int n, int m, int a[n][m])
{
int i, j, sum = 0;

for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
sum += a[i][j];

return sum;
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 119

Variable-Length	Array	Parameters	(C99)
• Prototypes	for	this	function	include:
int sum_two_dimensional_array(int n, int m, int a[n][m]);
int sum_two_dimensional_array(int n, int m, int a[*][*]);
int sum_two_dimensional_array(int n, int m, int a[][m]);
int sum_two_dimensional_array(int n, int m, int a[][*]);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 120

Using	static in	Array	Parameter
Declarations	(C99)
• C99	allows	the	use	of	the	keyword	static in	the	declaration	of	
array	parameters.
• The	following	example	uses	static to	indicate	that	the	length	
of	a is	guaranteed	to	be	at	least	3:
int sum_array(int a[static 3], int n)
{
…

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 121

Using	static in	Array	Parameter	Declarations	(C99)

• Using	static has	no	effect	on	program	behavior.

• The	presence	of	static is	merely	a	“hint”	that	may	allow	a	C	
compiler	to	generate	faster	instructions	for	accessing	the	array.
• If	an	array	parameter	has	more	than	one	dimension,	static can	
be	used	only	in	the	first	dimension.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 122

Compound	Literals	(C99)
• Let’s	return	to	the	original	sum_array function.
• When	sum_array is	called,	the	first	argument	is	usually	
the	name	of	an	array.
• Example:
int b[] = {3, 0, 3, 4, 1};
total = sum_array(b, 5);

• bmust	be	declared	as	a	variable	and	then	initialized	prior	to	
the	call.
• If	b isn’t	needed	for	any	other	purpose,	it	can	be	annoying	to	
create	it	solely	for	the	purpose	of	calling	sum_array.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 123

Compound	Literals	(C99)
• In	C99,	we	can	avoid	this	annoyance	by	using	a	compound	literal:
an	unnamed	array	that’s	created	“on	the	fly”	by	simply	specifying	
which	elements	it	contains.
• A	call	of	sum_array with	a	compound	literal	(shown	in	bold)	as	
its	first	argument:
total = sum_array((int []){3, 0, 3, 4, 1}, 5);

• We	didn’t	specify	the	length	of	the	array,	so	it’s	determined	by	
the	number	of	elements	in	the	literal.

• We	also	have	the	option	of	specifying	a	length	explicitly:	
(int [4]){1, 9, 2, 1}

is	equivalent	to
(int []){1, 9, 2, 1}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 124

Compound	Literals	(C99)
• A	compound	literal	resembles	a	cast	applied	to	an	initializer.
• In	fact,	compound	literals	and	initializers	obey	the	same	
rules.
• A	compound	literal	may	contain	designators,	just	like	a	
designated	initializer,	and	it	may	fail	to	provide	full	
initialization	(in	which	case	any	uninitialized	elements	
default	to	zero).
• For	example,	the	literal	(int [10]){8, 6} has	10	
elements;	the	first	two	have	the	values	8	and	6,	and	the	
remaining	elements	have	the	value	0.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 125

Compound	Literals	(C99)
• Compound	literals	created	inside	a	function	may	contain	arbitrary	
expressions,	not	just	constants:
total = sum_array((int []){2 * i, i + j, j * k}, 3);

• A	compound	literal	is	an	lvalue,	so	the	values	of	its	elements	can	
be	changed.

• If	desired,	a	compound	literal	can	be	made	“read-only”	by	adding	
the	word	const to	its	type:
(const int []){5, 4}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 126

The	return Statement
• A	non-void function	must	use	the	return statement	to	specify	
what	value	it	will	return.
• The	return statement	has	the	form
return expression ;

• The	expression	is	often	just	a	constant	or	variable:
return 0;
return status;

• More	complex	expressions	are	possible:
return n >= 0 ? n : 0;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 127

The	return Statement
• If	the	type	of	the	expression	in	a	return statement	doesn’t	
match	the	function’s	return	type,	the	expression	will	be	implicitly	
converted	to	the	return	type.
• If	a	function	returns	an	int,	but	the	return statement	
contains	a	double expression,	the	value	of	the	expression	is	
converted	to	int.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 128

The	return Statement
• return statements	may	appear	in	functions	whose	return	type	
is	void,	provided	that	no	expression	is	given:
return; /* return in a void function */

• Example:
void print_int(int i)
{
if (i < 0)
return;

printf("%d", i);
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 129

The	return Statement
• A	return statement	may	appear	at	the	end	of	a	void function:
void print_pun(void)
{
printf("To C, or not to C: that is the question.\n");
return; /* OK, but not needed */

}

Using	return here	is	unnecessary.

• If	a	non-void function	fails	to	execute	a	return statement,	the	
behavior	of	the	program	is	undefined	if	it	attempts	to	use	the	
function’s	return	value.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 130

Program	Termination
• Normally,	the	return	type	of	main is	int:
int main(void)
{
…

}

• Older	C	programs	often	omit	main’s	return	type,	taking	
advantage	of	the	fact	that	it	traditionally	defaults	to	int:
main()
{
…

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 131

Program	Termination
• Omitting	the	return	type	of	a	function	isn’t	legal	in	C99,	so	it’s	
best	to	avoid	this	practice.
• Omitting	the	word	void in	main’s	parameter	list	remains	legal,	
but—as	a	matter	of	style—it’s	best	to	include	it.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 132

Program	Termination
• The	value	returned	by	main is	a	status	code	that	can	be	tested	
when	the	program	terminates.
• main should	return	0	if	the	program	terminates	normally.

• To	indicate	abnormal	termination,	main should	return	a	value	
other	than	0.

• It’s	good	practice	to	make	sure	that	every	C	program	returns	a	
status	code.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 133

The	exit Function
• Executing	a	return statement	in	main is	one	way	to	terminate	
a	program.
• Another	is	calling	the	exit function,	which	belongs	to	
<stdlib.h>.

• The	argument	passed	to	exit has	the	same	meaning	as	main’s	
return	value:	both	indicate	the	program’s	status	at	termination.

• To	indicate	normal	termination,	we’d	pass	0:
exit(0); /* normal termination */

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 134

The	exit Function
• Since	0	is	a	bit	cryptic,	C	allows	us	to	pass	EXIT_SUCCESS
instead	(the	effect	is	the	same):
exit(EXIT_SUCCESS);

• Passing	EXIT_FAILURE indicates	abnormal	termination:
exit(EXIT_FAILURE);

• EXIT_SUCCESS and	EXIT_FAILURE are	macros	defined	
in	<stdlib.h>.
• The	values	of	EXIT_SUCCESS and	EXIT_FAILURE are	
implementation-defined;	typical	values	are	0	and	1,	
respectively.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 135

The	exit Function
• The	statement
return expression;
in	main is	equivalent	to
exit(expression);
• The	difference	between	return and	exit is	that	exit causes	
program	termination	regardless	of	which	function	calls	it.
• The	return statement	causes	program	termination	only	when	it	
appears	in	the	main function.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 136

Recursion
• A	function	is	recursive if	it	calls	itself.
• The	following	function	computes	n!	recursively,	using	the	formula	
n!	=	n × (n – 1)!:
int fact(int n)
{
if (n <= 1)
return 1;

else
return n * fact(n - 1);

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 137

Recursion
• To	see	how	recursion	works,	let’s	trace	the	execution	of	the	
statement
i = fact(3);

fact(3) finds	that	3	is	not	less	than	or	equal	to	1,	so	it	calls

fact(2),	which	finds	that	2	is	not	less	than	or	equal	to	1,	so
it	calls

fact(1),	which	finds	that	1	is	less	than	or	equal	to	1,	so	it
returns	1,	causing

fact(2) to	return	2	× 1	=	2,	causing

fact(3) to	return	3	× 2	=	6.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 138

Recursion
• The	following	recursive	function	computes	xn,	using	the	formula	
xn =	x × xn–1.
int power(int x, int n)
{
if (n == 0)
return 1;

else
return x * power(x, n - 1);

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 139

Recursion
• We	can	condense	the	power function	by	putting	a	conditional	
expression	in	the	return statement:
int power(int x, int n)
{
return n == 0 ? 1 : x * power(x, n - 1);

}

• Both	fact and	power are	careful	to	test	a	“termination	
condition”	as	soon	as	they’re	called.

• All	recursive	functions	need	some	kind	of	termination	condition	in	
order	to	prevent	infinite	recursion.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 140

The	Quicksort	Algorithm
• Recursion	is	most	helpful	for	sophisticated	algorithms	that	require	
a	function	to	call	itself	two	or	more	times.

• Recursion	often	arises	as	a	result	of	an	algorithm	design	
technique	known	as	divide-and-conquer, in	which	a	large	
problem	is	divided	into	smaller	pieces	that	are	then	tackled	by	the	
same	algorithm.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 141

The	Quicksort	Algorithm
• A	classic	example	of	divide-and-conquer	can	be	found	in	the	
popular	Quicksort algorithm.

• Assume	that	the	array	to	be	sorted	is	indexed	from	1	to	n.
Quicksort	algorithm

1.Choose	an	array	element	e (the	“partitioning	element”),	then	
rearrange	the	array	so	that	elements	1,	…,	i – 1	are	less	than	or	
equal	to	e,	element	i contains	e,	and	elements	i +	1,	…,	n are	
greater	than	or	equal	to	e.

2.Sort	elements	1,	…,	i – 1	by	using	Quicksort	recursively.
3.Sort	elements	i +	1,	…,	n by	using	Quicksort	recursively.	

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 142

The	Quicksort	Algorithm
• Step	1	of	the	Quicksort	algorithm	is	obviously	critical.

• There	are	various	methods	to	partition	an	array.

• We’ll	use	a	technique	that’s	easy	to	understand	but	not	
particularly	efficient.

• The	algorithm	relies	on	two	“markers”	named	low and	high,	
which	keep	track	of	positions	within	the	array.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 143

The	Quicksort	Algorithm
• Initially,	low points	to	the	first	element;	high points	to	the	last.

• We	copy	the	first	element	(the	partitioning	element)	into	a	
temporary	location,	leaving	a	“hole”	in	the	array.

• Next,	we	move	high across	the	array	from	right	to	left	until	it	points	
to	an	element	that’s	smaller	than	the	partitioning	element.

• We	then	copy	the	element	into	the	hole	that	low points	to,	which	
creates	a	new	hole	(pointed	to	by	high).

• We	now	move	low from	left	to	right,	looking	for	an	element	that’s	
larger	than	the	partitioning	element.	When	we	find	one,	we	copy	it	
into	the	hole	that	high points	to.

• The	process	repeats	until	low and	high	meet	at	a	hole.

• Finally,	we	copy	the	partitioning	element	into	the	hole.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 144

The	Quicksort	Algorithm
• Example	of	partitioning	an	array:

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 145

The	Quicksort	Algorithm
• By	the	final	figure,	all	elements	to	the	left	of	the	partitioning	
element	are	less	than	or	equal	to	12,	and	all	elements	to	the	right	
are	greater	than	or	equal	to	12.
• Now	that	the	array	has	been	partitioned,	we	can	use	Quicksort	
recursively	to	sort	the	first	four	elements	of	the	array	(10,	3,	6,	
and	7)	and	the	last	two	(15	and	18).

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 146

Program:	Quicksort
• Let’s	develop	a	recursive	function	named	quicksort
that	uses	the	Quicksort	algorithm	to	sort	an	array	of	integers.
• The	qsort.c program	reads	10	numbers	into	an	array,	calls	
quicksort to	sort	the	array,	then	prints	the	
elements	in	the	array:
Enter 10 numbers to be sorted: 9 16 47 82 4 66 12 3 25 51
In sorted order: 3 4 9 12 16 25 47 51 66 82

• The	code	for	partitioning	the	array	is	in	a	separate	function	
named	split.	

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 147

qsort.c
/* Sorts an array of integers using Quicksort algorithm */

#include <stdio.h>

#define N 10

void quicksort(int a[], int low, int high);
int split(int a[], int low, int high);

int main(void)
{
int a[N], i;

printf("Enter %d numbers to be sorted: ", N);
for (i = 0; i < N; i++)
scanf("%d", &a[i]);

quicksort(a, 0, N - 1);

printf("In sorted order: ");
for (i = 0; i < N; i++)
printf("%d ", a[i]);

printf("\n");
return 0;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 148

void quicksort(int a[], int low, int high)
{
int middle;

if (low >= high) return;
middle = split(a, low, high);
quicksort(a, low, middle - 1);
quicksort(a, middle + 1, high);

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 149

int split(int a[], int low, int high)
{
int part_element = a[low];

for (;;) {
while (low < high && part_element <= a[high])
high--;

if (low >= high) break;
a[low++] = a[high];

while (low < high && a[low] <= part_element)
low++;

if (low >= high) break;
a[high--] = a[low];

}

a[high] = part_element;
return high;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 150

Program:	Quicksort
• Ways	to	improve	the	program’s	performance:
• Improve	the	partitioning	algorithm.
• Use	a	different	method	to	sort	small	arrays.
• Make	Quicksort nonrecursive.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 151

