Control Flow

adopted from KNK C Programming : A Modern Approach

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

for loop

. 2MeA

. 7|3t FHS B I F2 AFS E|X|Th

- Mol 72 g7} Brof Lot 28 &
« =J}7H
o HA

for (int cnt = 0, n = 5; cnt < n; ++cnt)
odd += cnt;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

while

2N ea

« X7
. H O

ZF
HA

72
—

. =7

int cnt = 0,
(cnt < n) {
odd +=

while

| 7}
HA

cnt++;

ol o

n

cnt

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

do.. while

2N ea

« X7
. H O

ZF
HA

72
—

L7}

. =7

do {

} while

HA

w NP
0%t P
oY iy
oY 229

oot ©

printf (“hello\n”) ;

(1)

1:

jéu", 0:

A

=20+

N
N

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

oo

.

48431
HAIS
= Xt
@ B

1 ot

break; continue

* break; e continue;
. RI B0 0|5 . 2I OIX|2t O 2 0|
SHREITSIOR0H0|S .« SYBH F IO A] CRA| A|E
do { do {
printf (Y“hello\n”); printf (“hello\n”);
break; continue;
printf (“world\n”) ; printf (“world”) ;
} while (1); } while (1);
A1} A1}
hello hello
hello
.. (FetEt=)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

goto

RS SR (U= iy

do {
printf (“hello\n”) ;
goto Jumptohere;
printf (“world\n”) ;
} while (1);

jumptohere: «
printf (Yaha!”);

A 1t
hello
aha!

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Workshop: for, while, do while conversion

- 3 80| gt BO| | ZX| =S off 22t
- Lt €2 A7 A0

for (cnt =0, 1 =1, 73 =2; cnt < n; ++cnt, 1 += 2,] += 2)
odd += 1, even += 7J;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

HA

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

A HI-ZHE

#include <stdio.h>‘ ‘

do {

int main() {

‘ ‘odd4c:jq even += j

int cnt, 1, 3J;

1= 2,] += 2;

return 0O;

int odd, even; ‘ ++cnt for (
int n = 5; ‘ while (,
1=1, 3 =2; ‘ cnt < n :

Workshop: break and goto

- 100 HO| dMO| B = ot= ZEE2 10 L HO|LC}
for (cnt = 0; cnt < n; ++cnt) {
scanf ("%d", &i);

] t= 17
}
}
A2 RE 8ot 212 QE0IH O F +THE9 HA 2
TS0 MCH Ol 30, 50, 70, -1 ISIA| 3Ol WS LSHCt

» goto £ 0| 7|52 LTSIA|L
e continue £ 0| 7| 50| 4+ 7t52HA| =0IA| 2.

Copyright © 2008 W. W. Norton & Company.
. 11
All rights reserved.

Al-_g_ol- |:” O|9|-I:, A 0= 740| 27t 5l 7

#include <stdio. h>‘ ‘ fo

— | . -
S | s [
‘intcnt, i, J; “)

“sd”, ‘ ++cnt ‘ ‘ for (
= [
o |

out :

goto out;

} else {

break;

Copyright © 2008 W. W. Norton & Company.

All rights reserved. =

Workshop: null statement

- L5 8= 8 285 AM80t0] FZHILVE GlE= TS

= 0; m > 0; nt++)

for (n
m /= 2;

. CHS B0 A R E B 7|

if (n $ 2 == 0);
printf (“n is even\n”);

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 13

HAE S MF 23

All rights reserved.

'teration Statements (Bt &%)

e C’s iteration statements are used to set up loops.

 Aloop (=) is a statement whose job is to repeatedly execute
some other statement (the loop body £X= HfC/ojf ¥t 5 2 & ZHY)

* In C, every loop has a controlling expression. Z=0|= {71 & ZQ

Each time the loop body is executed (an iteration of the loop), the
controlling expression is evaluated. o &# Bt= gt M{OCH K| O L2 X & 7+

* If the expression is true (has a value that’s not zero) the loop
continues to execute. & ¢ 2t Ht=

15

lteration Statements

* C provides three iteration statements:

e The Wh 1 1 & statement is used for loops whose controlling
expression is tested before the loop body is executed.
Mo+t B7t = ©O|H FZHIC| A

e The A O statement is used if the expression is tested after the

loop body is executed.
FIHIC] 12] &A= MOt B2t &O|H ChA| &

ot

. The £ O T statement is convenient for loops that increment

or decrement a counting variable.

40 S20| 4 R

16

The while Statement

 Using a while statement is the easiest way to set up a loop.

te A Bs e e BtEE

=)

Mo

* The while statement has the form (

while (expression) statement

e expression (4], HIC] 42012 ZF) is the controlling expression;
statement is the loop body.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

17

The while Statement

* Example of a while statement:

while (i < n) /* controlling expression */
i=1 * 2; /* loop body */

* When a while statement is executed, the controlling expression
is evaluated first. M2 HA X 2= E7t

* If its value is nonzero (true), the loop body is executed and the
expression is tested again. &=/&0|H F=HC| Al CHA| K| 0|2 B 7t

* The process continues until the controlling expression eventually
has the value zero. @ == AH%0|H E=

18

The while Statement

* Awhile statement that computes the smallest power of 2

that is greater than or equal to a number n:
ndt AL 2 =3 71 &2 29| His

1= 1;
while (1 < n)
1 =1 * 2;

* A trace of the loop when n has the value 10:
i=1; 1isnow 1.
Isi<n? Yes; continue.

i =1 * 2; 1isnow 2.
Isi<n? Yes; continue.

i =1 * 2; 1is now 4.
Isi<n? Yes; continue.

i =1 * 2; 1is now 8.
Isi<n? Yes; continue.

i =1 * 2; 1is now 16.
Isi<n? No; exit from loop.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

The while Statement

* |f multiple statements are needed, use braces to create a

single compound statement:

FIZHICO A 285 22U TEZE AE

while (1 > 0) {
printf ("T minus %d and counting\n", 1i);
i--;

}
 Some programmers always use braces, even when they’re
not strictly necessary: ot 2Tt MOEtE S22 AME 7S

while (i < n) {
i=1i* 2;

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 20

The while Statement

* The following statements display a series of “countdown”
messages:
i = 10; //i7F0 O|5HY Mt i>00] AHZ
while (i > 0) { // 00|StO|H S ZHiC| 7 Al OFE
printf ("T minus %d and counting\n", 1i);
1-—;
} /) CHENE 8 Z2 B 7ts

// printf ("T minus %d and counting\n", i--);

* The final message printed is T minus 1 and counting.

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 21

Infinite Loops

* Awhile statement won’t terminate if the controlling
expression always has a nonzero value.
B7t 2017170 00| 2| o] 2f0|H = el

* C programmers sometimes deliberately create an infinite
loop by using a nonzero constant as the controlling
expression: FotFZ 5 EF 3 =7 &
while (1)

* Awhile statement of this form will execute forever unless
its body contains a statement that transfers control out of
the loop (break, goto, return) or calls a function

that causes the program to terminate. £etFZ0|M= B
SE/E7| 250/ EeY

22

The do Statement

e General form of the do statement: &

do statement while (expression) ;

* When a do statement is executed, the loop body is executed first,
then the controlling expression is evaluated.
SIS HA A% S RO L2 B}

* If the value of the expression is nonzero, the loop body is

executed again and then the expression is evaluated once more.
“MO{+=0] 00| OfL| ™ F=HIC| X Mot CHA| HO|t=5 B71 2| Ht=

23

The do Statement

* The countdown example rewritten as a do statement:

1 = 10;
do { // do, whileO| A= &4 T2 AR
printf ("T minus %d and counting\n", --1i);

} while (i > 0);

* The do statement is often indistinguishable from the
while statement. do2} while2 A}O|7} QI

* The only difference is that the body of a do statement is

always executed at least once.
7ot X0| = |~ 1t FZHIC] AHECH= A

T = =

24

The for Statement

* The for statement is ideal for loops that have a “counting”
variable, but it’s versatile enough to be used for other kinds of
loops as well. CrAdot A0 = FTEE Aoigd = S

* General form of the for statement:

U FE o+t &5 ST TS
for (exprl ; expr?2 ; expr3) statement
exprl, expr2, and expr3 are expressions.

* Example:
for (1 = 10; i > 0; i--)
printf ("T minus %d and counting\n", 1i);

25

The for Statement

* Exceptin a few rare cases, a for loop can always be

replaced by an equivalent while loop:
Ho| BE= BF fore= while2 22 HE 7t

expri;

while (expr2) {
statement
expr3;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

26

The for Statement

* exprl is an initialization step that’s performed only once,
before the loop begins to execute. 7|20t BtEF o 2 H

» expr2 controls loop termination (the loop continues

executing as long as the value of expr2 is nonzero).
expr2/t S2E M O{e, 00| OfL| B A& 2, &I X|0 BlIO| = A

* expr3 is an operation to be performed at the end of each
loop iteration. FZHIC|E 2 ATt = expr3 =&

27

Conversion

1 = 10;

while (i >_0) {
printf ("T\minus %d and counting\n",

¥

for (i = 10; 1 > 0; i--)

printf ("T minus %d and counting\n",

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

1) ;

1);

28

The for Statement

e Studying the equivalent while statement can help clarify the
fine points of a for statement.

* For example, what if 1 —-is replaced by —-i7?

for (1 = 10, 1 > 0; --1)
printf ("T minus %d and counting\n", 1i);

* The equivalent while loop shows that the change has no effect
on the behavior of the loop:
1 = 10;
while (1 > 0) {
printf ("T minus %d and counting\n", 1i);
i

}

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 29

for-to-while.c

/* case 1 */
for (int 1 = 10; 1 > 0; --1)
printf ("T minus %d and counting\n",

/* case 2 */
printf ("\n\ncase 2\n");
for (int 1 = 10, 1 > 0; 1--)
printf ("T minus %d and counting\n",

/* case 3 */
printf ("\n\ncase 3\n");
int 1 = 10;
while (1 > 0) {
printf ("T minus %d and counting\n",
// printf ("T minus %d and counting\n",

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

30

The for Statement

 Since the first and third expressions in a for statement are
executed as statements, their values are irrelevant—they’re
useful only for their side effects.
M A OpR[S =40 gf2 S ROSHA| 1 A EH 22 ot F

o — — L

09l

2ol =

e Consequently, these two expressions are usually assignments or

increment/decrement expressions.

ADHOR, H +AD 0K 2 242 BEO|L 52 BE

= T AlO

2 F
0 — — T 71 L—

®)
(|

ks

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

31

for Statement Idioms

 The for statement is usually the best choice for loops that

“count up” (increment a variable) or “count down” (decrement a
variable). H=0| 2t S BIEX O E LSt ALt L= = FIOM R 8

* A for statement that counts up or down a total of n times will
usually have one of the following forms: B0| &8 &|= I &

Counting up from 0 to n-1: for (i

0; 1 < n; 1i++4)
Counting up from 1 to n: for (i1 = 1; 1 <= n; i++)
Counting down fromn-1to0: for (i =n - 1; i >= 0; i--) ..

Counting down from n to 1: for (i = n; 1 > 0; i--)

32

for Statement Idioms

* Common for statement errors:

* Using < instead of > (or vice versa) in the controlling
expression. “Counting up” loops should use the < or <=
operator. “Counting down” loops should use > or >=.

* Using == in the controlling expression instead of <, <=, >, or
>=,

. "Off-by-one" errors such as writing the controlling
expressionas 1 <= n instead of 1 < n.

33

Omitting Expressions in a for Statement

e Callows any or all of the expressions that control a for
statement to be omitted. =4/ & L& E ¢t E

* |f the first expression is omitted, no initialization is
performed before the loop is executed:
N4]0| I ™ 27|23} OtE; forg MO 272t e EHR US
1 = 10;
for (; i > 0, --1i)

printf ("T minus %d and counting\n", 1i);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

34

Omitting Expressions in a for Statement

* |f the third expression is omitted, the loop body is
responsible for ensuring that the value of the second

expression eventually becomes false:
MET =40] Bl ZTEUS US X AlZ =US. FEHCM X

for (i = 10, i > 0,)

printf ("T minus %d and counting\n", 1 —7);

Copyright © 2008 W. W. Norton & Company. 35
All rights reserved.

Omitting Expressions in a for Statement

* When the first and third expressions are both omitted, the

resulting loop is nothing more than a while statement in disguise:

KA DM A 40| QICHR while 21} 28

for (; 1 > 0;)
printf ("T minus %d and counting\n", i--);
is the same as

while (1 > 0)
printf ("T minus %d and counting\n", i--);

e Thewhile version is clearer and therefore preferable.
whileg 2= A0| E 817 £5;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

Omitting Expressions in a for Statement

* If the second expression is missing, it defaults to a true value, so
the for statement doesn’t terminate (unless stopped in some

other fashion)
CHR| A0 QoM SHA AtOo 2

— L- O 0 —

F

[

Tk

—

[jot
OpA

, SEOH| E5

* For example, some programmers use the following for

statement to establish an infinite loop:
Sl 2mo| g3 5 = SfL}

for (;;)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

for Statements in C99

* In C99, the first expression in a for statement can be replaced by
a declaration. c990| A= A HFF MOISIHM X£7(|2t & = U=

* This feature allows the programmer to declare a variable for use
by the loop:

for (1Nt 1 = 0; i < n; i++)

* The variable 1 need not have been declared prior to this
statement. #H%=i= O|TO| M= & QU=

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

for Statements in C99

* Avariable declared by a for statement can’t be accessed outside
the body of the Ioop (we say that it’s not visible outside the loop):
ch form SOl M= B 7 2O|X[7| =20 & = Sl=

for (int 1 = 0; 1 < n; i++) {

printf ("sd", 1i);
/* legal; 1 is visible inside loop */

}
printf("%d", l), /*** WRONG ***/

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

39

for Statements in C99

 Having a for statement declare its own control variable is usually
a good idea: it’s convenient and it can make programs easier to
understand. forg & YA 7R E HEE MRASt= A2 REY

* However, if the program needs to access the variable after loop
termination, it’s necessary to use the older form of the for
statement. &, MQict HEE form SER 0= &SI M form SO0 A 442

A for statement may declare more than one variable, provided
that all variables have the same type: 02 H-E oHHO| MR 7ts

for (int 1 =0, § = 0; 1 < n; 1++)

40

The Comma Operator

* On occasion, a for statement may need to have two (or more)
initialization expressions or one that increments several variables

each time through the loop.
420 mef StLto| Of¢bo| HaeF 7|0t S Ha 7t U

* This effect can be accomplished by using a comma expression as

the first or third expression in the for statement.
M A0 O[S A2 B2 CE HesSE F7H7sE

* A comma expression has the form
exprl , expr2

where exprl and expr2 are any two expressions.

41

The Comma Operator

* Evaluating exprl should always have a side effect; if it

doesn’t then exprl serves no purpose.
B E A4 5= M S K +=A0| side effect(0: i=0)7 §I 2™ o|0| QIS

* When the comma expression ++1i, i + j is evaluated, i is

first incremented, then i + 7 is evaluated.
++HE TN AL i+ A LA SItHIE EE

* If 1 and j have the values 1 and 5, respectively, the value of the
expression will be 7, and i will be incremented to 2.

42

The Comma Operator

 The comma operator is left associative, so the compiler interprets
i=1, 3 =2, k=1 + 7

as

((r = 1), (3 =2

AZON 2EZOZ Al0| 2

— =

A
|
-
|

(-

1L
I

=

-

Copyright © 2008 W. W. Norton & Company. 43
All rights reserved.

The Comma Operator

* The comma operator makes it possible to “glue” two
expressions together to form a single expression.

A S £ O|X|BH BLte| 402 & 4 IS

* Example:

for (sum = 0, 1 = 1; i <= N; i++)
sum += 1i;

 With additional commas, the for statement could initialize
more than two variables. &l E 2 &}L} O|AlQ| B4 MOl I}

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 44

Exiting from a Loop

* The normal exit point for a loop is at the beginning (as in a

while or for statement) or at the end (the do statement).
dtdo = OO ZE = MO FZ 0| A EHEHE

* Using the break statement, it’s possible to write a loop with an

exit point in the middle or a loop with more than one exit point.
breakE AFE5t0] FLHIC| 7t E= Y2l XM T2 = A2

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

45

The break Statement

* The break statement can transfer control out of a switch
statement, but it can also be used to jump out of a while, do, or
for loop. switch&=2|0f| while, do, for &0 A = break AHE 7t5

* Aloop that checks whether a number n is prime can use a break
statement to terminate the loop as soon as a divisor is found:
nO| Az=QIX| TEtSH= T EOA| RO M preakZE FA| TEAIZ = JUS
for (d = 2; d < n; d++)
1f (n d == 0)
break;

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 46

The break Statement

* After the loop has terminated, an i f statement can be use to
determine whether termination was premature (hence n isn’t

prime) or normal (n is prime):
breakE T2 2= if 222 HASS|0f &

1f (d < n)

printf ("$d is divisible by %d\n", n, d);
else

printf ("%d is prime\n", n);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

47

The break Statement

* The break statement is particularly useful for writing loops in

which the exit point is in the middle of the body rather than at
the beginning or end. breake FZ = S0 ST I 7

* Loops that read user input, terminating when a particular value

is entered, often fall into this category:
Off Al *rﬂxri—'?'—lﬂ AtE gE e s

= -Hd- ==

for (;7;) A

printf ("Enter a number (enter 0 to stop): ");
scanft ("sd", &n);
if (n == 0)

break;

printf ("$d cubed is %d\n", n, n * n * n);

48

The break Statement

A break statement transfers control out of the innermost
enclosing while, do, for,or switch. 2= FSSILI S 2 0| &

* When these statements are nested, the break statement can
escape only one level of nesting. & A| StLIo| F30t S = &

* Example:

while (..) {
switch (..) |

break;

-
}

 break transfers control out of the switch statement, but not
out of the while loop. switch®| M2t S 251D while22 A% =3

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 49

The continue Statement

* The continue statementis similarto break: 3= FA
* break transfers control just past the end of a loop.

FEZRCZE0|E
 continue transfers control to a point just before the end of
the loop body. FIHIC| LYo A OFX|T 2 2 O|F

* With break, control leaves the loop; with continue, control
remains inside the loop.
break= FZ 0| & 0| H O #H =25, continues FE7} A0 & 7 X

* There’s another difference between break and continue:
break can be used in switch statements and loops (while,

do, and for), whereas continue is limited to loops.
break= C2 &, continue= S0 T A Ql

50

The continue Statement

* Aloop that uses the continue statement:

n = 0;
sum = 0;
while (n < 10) {
scanf ("sd", &i);
if (1 == 0)
continue;
sum += 1;
n++;
/* continue jumps to here */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

51

The continue Statement

* The same loop written without using continue:
n = 0;
sum = 0;
while (n < 10) {
scanf ("sd", &1i);

if (2 !'= 0) |
sum += 1;
n++;

J

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

52

The goto Statement

* The goto statement is capable of jumping to any statement in a
function, provided that the statement has a label.
label/2F2 0| = X2 0| =
* Alabelis just an identifier placed at the beginning of a statement:
ot H2dE =Y

identifier : statement

* The goto statement itself has the form
CHE
goto identifier ;
* Executing the statement goto L; transfers control to the

statement that follows the label L, which must be in the same
function as the goto statement itself.

53

The goto Statement

* If Cdidn’t have a break statement, a goto statement could be
used to exit from a loop:

gotoS 2 % QICHH break® 2T YO 2 LiZH 4+ US

for (d = 2; d < n; d++)
1f (n 3 d == 0)
goto done;

done:
1f (d < n)

printf ("%d is divisible by %d\n", n, d);
else

printf ("%d is prime\n", n);

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

The goto Statement

goto break, continue, return, exita 2= CHE = CHA = = A 7[0f]| H2| erAA
Consider the problem of exiting a loop from within a switch
statement. &t SH S0 A HEHLZ T 2E &

The break statement doesn’t have the desired effect: it exits from

the switch, but not from the loop.
break 2= switch?f while S5 12 = oF HO|| LI X| X &

A goto statement solves the problem:

while (..) {
switch (..) {
goto loop done; /* break won't work here */
}
}
loop done: .. goto RS ZH 2T HIOZ L}QL [L8

The goto statement is also useful for exiting from nested loops.

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 95

The Null Statement

* A statement can be null—devoid of symbols except for the
semicolon at the end. FHIC| 2] A E EX0] nullY 5= A=, null2 H|Of

ULt= =
* The following line contains three statements:
1=0; ;3 =1;

MolZ2E2 == E8 £50] 37

$0
rir
P
[0
o
-
30
0jo
pi
N
L
rlo
<
3
no
H1
o
ook

* The null statement is primarily good for one thing: writing loops
whose bodies are empty.

null2d S 2= 0|7 FZ LA g 20| Gls IS 70| fI&

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

56

The Null Statement

* Consider the following prime-finding loop:
for (d = 2; d < n; d++)
if (n 5 d == 0) QoM E 25 5= 20| if O $4(n%d==0)2
break;
* If the n $ d == 0 condition is moved into the loop’s controlling
expression, the body of the loop becomes empty:

for (d = 2; d<n && n % d !'= 0; d++)

\©

/* empty loop body */ ;

* To avoid confusion, C programmers customarily put the null

statement on a line by itself. 522 52 2822 £ I =232 F0|7|

ol 2 == 20 =EH2Z 7|EE.

Copyright © 2008 W. W. Norton & Company. 57
All rights reserved.

The Null Statement

Accidentally putting a semicolon after the parentheses in an i £,

while, or for statement creates a null statement.

= Al 7 = . .c 3 C L 3 o ols
9|, 2l HE while, for, if =& F/O| AH @ = &f et A

* Example 1:

if (d == 0); J/*** WRONG **x*x/

printf ("Error: Division by zero\n"); //if% &80 =&

The call of print fisn’tinside the if statement, so it’s performed
regardless of whether d is equal to 0.

* Example 2:
i = 10;
while (i > 0);

/*** WRONG ***/
{

printf ("T minus %d and counting\n", 1i); //whilel} 22IR0| =

O L_HA |%_I
——1i;: //whilel} Ar#Qio] ==

}

The extra semicolon creates an infinite loop. 0| 8% £t =7t &

Copyright © 2008 W. W. Norton & Company. 58
All rights reserved.

The Null Statement
ZHo| AlSH =l

* Example 3: while= FZHIC| §10] 12| A5t printf= & 0| 2 E,
=0 2710 ’—.*EE =

-

1= 11;

while (--i > 0); /*** WRONG ***/
printf ("T minus %d and counting\n", 1i);

The loop body is executed only once; the message printed is:

T minus 0 and counting

Example 4: for =L 2 21 El A 2|0 = 22| 0| A 2f = &

for (1 = 10; i > 0; i--); /*** WRONG ***/

printf ("T minus %d and counting\n", 1i);

Again, the loop body is executed only once, and the same
message is printed as in Example 3.

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 59

