
Control	Flow
adopted	from	KNK	C	Programming	:	A	Modern	Approach

요약

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 2

for	loop
• 구성요소
• 초기값
• 제어구문
• 증가값

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 3

for (int cnt = 0, n = 5; cnt < n; ++cnt)
odd += cnt;

카운팅할때주로사용되지만
용도가많아다양하게활용됨

while
• 구성요소
• 초기값
• 제어구문
• 증가값

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 4

int cnt = 0, n = 5;
while (cnt < n){

odd += cnt
cnt++;

}

1. 조건이참인지검사하고
2. 참인경우에만동작

do..	while	
• 구성요소
• 초기값
• 제어구문
• 증가값

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 5

do{
printf(“hello\n”);

} while (1); // 1: 참, 0: 거짓

1. 조건없이 1회수행한후
2. 조건이참인지검사하고
3. 참인경우에만동작

결과:
hello
hello
… (무한반복)

break;	continue
• break;
• 루프밖으로이동
• 한루프밖으로만이동

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 6

do{
printf(“hello\n”);
break;
printf(“world\n”);

} while (1);

• continue;
• 루프마지막으로이동
• 동일한루프에서다시시작

do{
printf(“hello\n”);
continue;
printf(“world”);

} while (1);

결과:
hello

결과:
hello
hello
… (무한반복)

goto
• 지정된레이블로점프

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 7

do{
printf(“hello\n”);
goto jumptohere;
printf(“world\n”);

} while (1);

jumptohere:
printf(“aha!”);

결과:
hello
aha!

Workshop:	for,	while,	do	while	conversion
• 3명이한팀이되어문제를해결한다.

• 다음과같은코드가있다

• 코드를이해하고
1. 쉼표를사용하지않는 for	문으로변경
2. while문으로변경
3. do	while	문으로변경

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 8

for (cnt = 0, i = 1, j =2; cnt < n; ++cnt, i += 2, j += 2)
odd += i, even += j;

워크샵

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 9

사용할네임카드

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 10

#include <stdio.h>

int main() {

int cnt, i, j;

int odd, even;

int n = 5;

i = 1, j = 2;

cnt = 0;

do {

odd += i,even += j

i += 2, j += 2;

++cnt

while(

cnt < n

return 0;

}

)

{

for (

,

;

;

;

x	2

Workshop:	break	and	goto
• 100명의성적의평균을구하는프로그램의일부이다

• 성적을모두입력한후 -1을입력하면그명수만큼의평균을
구하고싶다.예: 30, 50, 70, -1입력시 3명의평균을구한다.
• break		로이기능을구현하시오
• goto 로이기능을구현하시오
• continue로이기능이구현가능한지논하시오.

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 11

for (cnt = 0; cnt < n; ++cnt) {
scanf("%d", &i);
if (i >= 0){

j += i;
}

}

사용할네임카드,	색있는것이추가된것

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 12

#include <stdio.h>

int main() {

int cnt, i, j;

“%d”,

i >= 0

&

cnt = 0;

for (

scanf(

i

++cnt

if (

cnt < n;

return j/cnt;

}

) {

)

for (

j += i;

;

x3

x2

i < 0 break;

} else {

goto out;

out :

Workshop:	null	statement	
• 다음문장을널문장을사용하여루프바디가없도록만들기

• 다음문장에서잘못된부분찾기

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 13

for (n = 0; m > 0; n++)
m /= 2;

if (n % 2 == 0);
printf(“n is even\n”);

워크샵용세부설명

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 14

Iteration	Statements	(반복문장)
• C’s	iteration	statements	are	used	to	set	up	loops.

• A	loop (루프) is	a	statement	whose	job	is	to	repeatedly	execute	
some	other	statement	(the	loop	body루프바디에반복할문장작성)	

• In	C,	every	loop	has	a	controlling	expression.	루프에는제어구문필요

• Each	time	the	loop	body	is	executed	(an	iteration of	the	loop),	the	
controlling	expression	is	evaluated.한번반복할때마다제어구문재평가

• If	the	expression	is	true	(has	a	value	that’s	not	zero)	the	loop	
continues	to	execute.참일때만반복

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 15

Iteration	Statements
• C	provides	three	iteration	statements:

• The	while statement	is	used	for	loops	whose	controlling	
expression	is	tested	before the	loop	body	is	executed.	
제어구문평가후참이면루프바디실행

• The	do statement	is	used	if	the	expression	is	tested	after the	
loop	body	is	executed.	
루프바디 1회실행후제어구문평가,참이면다시실행

• The	for statement	is	convenient	for	loops	that	increment	
or	decrement	a	counting	variable.	
변수의증감이쉬운반복문

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 16

The	while Statement
• Using	a	while statement	is	the	easiest	way	to	set	up	a	loop.
가장쉽게만들수있는반복문

• The	while statement	has	the	form (문법)

while (expression) statement

• expression (수식,바디실행여부결정) is	the	controlling	expression;	
statement is	the	loop	body.	

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 17

The	while Statement
• Example	of	a	while statement:
while (i < n) /* controlling expression */
i = i * 2; /* loop body */

• When	a	while statement	is	executed,	the	controlling	expression	
is	evaluated	first.	제일먼저제어구문을평가

• If	its	value	is	nonzero	(true),	the	loop	body	is	executed	and	the	
expression	is	tested	again.	양수/참이면루프바디실행,다시제어구문평가

• The	process	continues	until	the	controlling	expression	eventually	
has	the	value	zero. 영또는거짓이면종료

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 18

The	while Statement
• A	while statement	that	computes	the	smallest	power	of	2	
that	is	greater	than	or	equal	to	a	number	n:
n과같거나큰수중가장작은 2의배수
i = 1;
while (i < n)
i = i * 2;

• A	trace	of	the	loop	when	n has	the	value	10:
i = 1; i is	now	1.
Is	i < n? Yes;	continue.
i = i * 2; i is	now	2.
Is	i < n? Yes;	continue.
i = i * 2; i is	now	4.
Is	i < n? Yes;	continue.
i = i * 2; i is	now	8.
Is	i < n? Yes;	continue.
i = i * 2; i is	now	16.
Is	i < n? No;	exit	from	loop.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 19

The	while Statement
• If	multiple	statements	are	needed,	use	braces	to	create	a	
single	compound	statement:
루프바디에여러문장을넣으려면중괄호를사용
while (i > 0) {
printf("T minus %d and counting\n", i);
i--;

}

• Some	programmers	always	use	braces,	even	when	they’re	
not	strictly	necessary:한문장만쓰더라도중괄호사용가능

while (i < n) {
i = i * 2;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 20

The	while Statement
• The	following	statements	display	a	series	of	“countdown”	
messages:
i = 10;
while (i > 0) {
printf("T minus %d and counting\n", i);
i--;

}

• The	final	message	printed	is	T minus 1 and counting.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 21

// i가 0이하일때만 i>0이거짓
// 0이하이면루프바디가실행안됨

// 다음처럼 한 줄로 표현 가능
// printf("T minus %d and counting\n", i--);

Infinite	Loops
• A	while statement	won’t	terminate	if	the	controlling	
expression	always	has	a	nonzero	value.
평가결과가가 0이외의값이면종료안함

• C	programmers	sometimes	deliberately	create	an	infinite	
loop	by	using	a	nonzero	constant	as	the	controlling	
expression:무한루프를일부러만들기도함

while (1) …

• A	while statement	of	this	form	will	execute	forever	unless	
its	body	contains	a	statement	that	transfers	control	out	of	
the	loop	(break,	goto,	return)	or	calls	a	function	
that	causes	the	program	to	terminate. 무한루프에서는별도
종료/분기호출이필요함

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 22

The	do Statement
• General	form	of	the	do statement:문법

do statement while (expression) ;

• When	a	do statement	is	executed,	the	loop	body	is	executed	first,	
then	the	controlling	expression	is	evaluated.	
루프바디를먼저실행후제어구문평가

• If	the	value	of	the	expression	is	nonzero,	the	loop	body	is	
executed	again	and	then	the	expression	is	evaluated	once	more.
“제어구문이 0이아니면루프바디재실행하고다시제어구문을평가”의반복

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 23

The	do Statement
• The	countdown	example	rewritten	as	a	do statement:
i = 10;
do {
printf("T minus %d and counting\n", --i);

} while (i > 0);

• The	do statement	is	often	indistinguishable	from	the	
while statement. do와 while은 차이가 없음

• The	only	difference	is	that	the	body	of	a	do statement	is	
always	executed	at	least	once.
유일한차이는최소 1번루프바디실행된다는것

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 24

// do,	while에서는항상중괄호사용

The	for Statement
• The	for statement	is	ideal	for	loops	that	have	a	“counting”	
variable,	but	it’s	versatile	enough	to	be	used	for	other	kinds	of	
loops	as	well.다양한방식으로루프를구현할수있음

• General	form	of	the	for statement:

for (expr1 ; expr2 ; expr3) statement	
expr1,	expr2,	and	expr3 are	expressions.
• Example:
for (i = 10; i > 0; i--)
printf("T minus %d and counting\n", i);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 25

초기값묶음 제어구문묶음 증가구문묶음

The	for Statement
• Except	in	a	few	rare	cases,	a	for loop	can	always	be	
replaced	by	an	equivalent	while loop:
거의모든경우 for는 while문으로변경가능

expr1;
while (expr2) {

statement
expr3;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 26

The	for Statement
• expr1 is	an	initialization	step	that’s	performed	only	once,	
before	the	loop	begins	to	execute.초기화만반복문밖으로보냄

• expr2 controls	loop	termination	(the	loop	continues	
executing	as	long	as	the	value	of	expr2 is	nonzero).	
expr2가종료를제어함, 0이아니면계속실행,심지어없어도실행

• expr3 is	an	operation	to	be	performed	at	the	end	of	each	
loop	iteration. 루프바디를실행한후 expr3수행

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 27

Conversion

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 28

i = 10;
while (i > 0) {
printf("T minus %d and counting\n", i);
i--;

}

for (i = 10; i > 0; i--)
printf("T minus %d and counting\n", i);

The	for Statement
• Studying	the	equivalent	while statement	can	help	clarify	the	
fine	points	of	a	for statement.

• For	example,	what	if	i-- is	replaced	by	--i?
for (i = 10; i > 0; --i)
printf("T minus %d and counting\n", i);

• The	equivalent	while loop	shows	that	the	change	has	no	effect	
on	the	behavior	of	the	loop:
i = 10;
while (i > 0) {
printf("T minus %d and counting\n", i);
--i;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 29

for-to-while.c
/* case 1 */

for (int i = 10; i > 0; --i)
printf("T minus %d and counting\n", i);

/* case 2 */
printf("\n\ncase 2\n");
for (int i = 10; i > 0; i--)

printf("T minus %d and counting\n", i);

/* case 3 */
printf("\n\ncase 3\n");
int i = 10;
while (i > 0) {

printf("T minus %d and counting\n", --i);
// printf("T minus %d and counting\n", i--);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 30

The	for Statement
• Since	the	first	and	third	expressions	in	a	for statement	are	
executed	as	statements,	their	values	are	irrelevant—they’re	
useful	only	for	their	side	effects.	
첫수식과마지막수식의값은중요하지않고그문장으로인한영향만의미있음

• Consequently,	these	two	expressions	are	usually	assignments	or	
increment/decrement	expressions.
결과적으로,첫수식과마지막수식은할당이나증감관련수식만쓰임

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 31

for Statement	Idioms
• The	for statement	is	usually	the	best	choice	for	loops	that	
“count	up”	(increment	a	variable)	or	“count	down”	(decrement	a	
variable).변수의값을반복적으로더하거나또는빼는루프에서유용

• A	for statement	that	counts	up	or	down	a	total	of	n times	will	
usually	have	one	of	the	following	forms:많이활용되는패턴

Counting	up	from	0 to	n–1: for (i = 0; i < n; i++) …

Counting	up	from	1 to	n: for (i = 1; i <= n; i++) …

Counting	down	from	n–1 to	0: for (i = n - 1; i >= 0; i--) …

Counting	down	from	n to	1: for (i = n; i > 0; i--) …

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 32

for Statement	Idioms
• Common	for statement	errors:
• Using	< instead	of	> (or	vice	versa)	in	the	controlling	
expression.	“Counting	up”	loops	should	use	the	< or	<=
operator.	“Counting	down”	loops	should	use	> or	>=.	

• Using	== in	the	controlling	expression	instead	of	<,	<=,	>,	or	
>=.

• “Off-by-one”	errors	such	as	writing	the	controlling	
expression	as	i <= n instead	of	i < n.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 33

Omitting	Expressions	in	a	for Statement
• C	allows	any	or	all	of	the	expressions	that	control	a	for
statement	to	be	omitted.	수식중일부를안써도됨

• If	the	first expression	is	omitted,	no	initialization	is	
performed	before	the	loop	is	executed:
첫수식이없으면초기화안됨; for문전에초기화할필요있음

i = 10;
for (; i > 0; --i)
printf("T minus %d and counting\n", i);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 34

Omitting	Expressions	in	a	for Statement
• If	the	third expression	is	omitted,	the	loop	body	is	
responsible	for	ensuring	that	the	value	of	the	second	
expression	eventually	becomes	false:
세번째수식이없으면종료값을만족못시킬수있음.루프바디에서처리

for (i = 10; i > 0;)

printf("T minus %d and counting\n", i--);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 35

Omitting	Expressions	in	a	for Statement
• When	the	first and	third expressions	are	both	omitted,	the	
resulting	loop	is	nothing	more	than	a	while	statement	in	disguise:
첫수식과세번째수식이없다면 while문과같음

for (; i > 0;)
printf("T minus %d and counting\n", i--);

is	the	same	as
while (i > 0)
printf("T minus %d and counting\n", i--);

• The	while version	is	clearer	and	therefore	preferable.
while을쓰는것이더읽기좋음;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 36

Omitting	Expressions	in	a	for Statement
• If	the	second expression	is	missing,	it	defaults	to	a	true	value,	so	
the	for statement	doesn’t	terminate	(unless	stopped	in	some	
other	fashion).	
두번째수식이없으면항상참으로판단함,종료하지않음

• For	example,	some	programmers	use	the	following	for
statement	to	establish	an	infinite	loop:
무한루프의표현방법중하나

for (;;) …

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 37

for Statements	in	C99
• In	C99,	the	first	expression	in	a	for statement	can	be	replaced	by	
a	declaration.	c99에서는새변수를선언하면서초기화할수있음

• This	feature	allows	the	programmer	to	declare	a	variable	for	use	
by	the	loop:

for (int i = 0; i < n; i++)
…

• The	variable	i need	not	have	been	declared	prior	to	this	
statement.	변수 i는이전에선언된적없음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 38

for Statements	in	C99
• A	variable	declared	by	a	for statement	can’t	be	accessed	outside	
the	body	of	the	loop	(we	say	that	it’s	not	visible outside	the	loop):
단, for문밖에서는변수 i가보이지않기때문에쓸수없음

for (int i = 0; i < n; i++) {
…
printf("%d", i);
/* legal; i is visible inside loop */
…

}
printf("%d", i); /*** WRONG ***/

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 39

for Statements	in	C99
• Having	a	for statement	declare	its	own	control	variable	is	usually	
a	good	idea:	it’s	convenient	and	it	can	make	programs	easier	to	
understand.	for문전용임시카운트변수를선언하는것은유용함

• However,	if	the	program	needs	to	access	the	variable	after	loop	
termination,	it’s	necessary	to	use	the	older	form	of	the	for
statement.단,선언한변수를 for문종료후에는활용하려면 for문밖에서선언

• A	for statement	may	declare	more	than	one	variable,	provided	
that	all	variables	have	the	same	type:여러변수를한번에선언가능

for (int i = 0, j = 0; i < n; i++)
…

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 40

The	Comma	Operator
• On	occasion,	a	for statement	may	need	to	have	two	(or	more)	
initialization	expressions	or	one	that	increments	several	variables	
each	time	through	the	loop.
경우에따라하나의이상의변수를초기화할필요가있음

• This	effect	can	be	accomplished	by	using	a	comma	expression	as	
the	first	or	third	expression	in	the	for statement.
첫수식과마지막수식은쉼표로다른변수들을추가가능함

• A	comma	expression	has	the	form

expr1 , expr2
where	expr1 and	expr2 are	any	two	expressions.	

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 41

The	Comma	Operator
• Evaluating	expr1 should	always	have	a	side	effect;	if	it	
doesn’t,	then	expr1 serves	no	purpose.
쉼표로연결된두식중첫수식이 side	effect(예: i =	0)가없으면의미없음

• When	the	comma	expression	++i, i + j is	evaluated,	i is	
first	incremented,	then	i + j is	evaluated.
++i를먼저계산, i+j계산시증가한 i를활용

• If	i and	j have	the	values	1	and	5,	respectively,	the	value	of	the	
expression	will	be	7,	and	i will	be	incremented	to	2.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 42

The	Comma	Operator
• The	comma	operator	is	left	associative,	so	the	compiler	interprets
i = 1, j = 2, k = i + j

as
((i = 1), (j = 2)), (k = (i + j))

왼쪽에서 오른쪽으로 식이 결합됨

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 43

The	Comma	Operator
• The	comma	operator	makes	it	possible	to	“glue”	two	
expressions	together	to	form	a	single	expression.
식은두개이지만,하나의수식으로볼수있음

• Example:
for (sum = 0, i = 1; i <= N; i++)
sum += i;

• With	additional	commas,	the	for statement	could	initialize	
more	than	two	variables.쉼표로하나이상의변수선언가능

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 44

Exiting	from	a	Loop
• The	normal	exit	point	for	a	loop	is	at	the	beginning	(as	in	a	
while or	for statement)	or	at	the	end	(the	do statement).
일반적으로루프의종료는제어구문에서판단됨

• Using	the	break statement,	it’s	possible	to	write	a	loop	with	an	
exit	point	in	the	middle	or	a	loop	with	more	than	one	exit	point.
break를사용하여루프바디중간또는임의의지점에서종료할수있음

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 45

The	break Statement
• The	break statement	can	transfer	control	out	of	a	switch	
statement,	but	it	can	also	be	used	to	jump	out	of	a	while,	do,	or	
for loop. switch문외에 while,	do,	for문에서도 break	사용가능

• A	loop	that	checks	whether	a	number	n is	prime	can	use	a	break
statement	to	terminate	the	loop	as	soon	as	a	divisor	is	found:
n이소수인지판단하는루프에서찾으면 break로즉시종료시킬수있음

for (d = 2; d < n; d++)
if (n % d == 0)
break;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 46

The	break Statement
• After	the	loop	has	terminated,	an	if statement	can	be	use	to	
determine	whether	termination	was	premature	(hence	n isn’t	
prime)	or	normal	(n is	prime):
break로종료후에는 if	문으로검증해야함

if (d < n)
printf("%d is divisible by %d\n", n, d);

else
printf("%d is prime\n", n);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 47

The	break Statement
• The	break statement	is	particularly	useful	for	writing	loops	in	
which	the	exit	point	is	in	the	middle	of	the	body	rather	than	at	
the	beginning	or	end.	break는루프수행중에종료할때유용

• Loops	that	read	user	input,	terminating	when	a	particular	value	
is	entered,	often	fall	into	this	category:
예시:사용자로부터숫자를입력받는구문

for (;;) {
printf("Enter a number (enter 0 to stop): ");
scanf("%d", &n);
if (n == 0)

break;
printf("%d cubed is %d\n", n, n * n * n);

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 48

The	break Statement
• A	break statement	transfers	control	out	of	the	innermost	
enclosing	while,	do,	for,	or	switch.	중괄호묶음하나밖으로이동

• When	these	statements	are	nested,	the	break statement	can	
escape	only	one	level	of	nesting.	중첩시하나의묶음만종료됨

• Example:
while (…) {

switch (…) {
…
break;
…

}
}

• break transfers	control	out	of	the	switch statement,	but	not	
out	of	the	while loop. switch에서만종료하고 while문은계속수행

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 49

The	continue Statement
• The	continue statement	is	similar	to	break:종료는유사

• break transfers	control	just	past	the	end	of	a	loop.
루프밖으로이동

• continue transfers	control	to	a	point	just	before	the	end	of	
the	loop	body.	루프바디내에서마지막으로이동

• With	break,	control	leaves	the	loop;	with	continue,	control	
remains	inside	the	loop.	
break는루프밖의문장이제어권획득, continue는루프가제어권유지

• There’s	another	difference	between	break and	continue:	
break can	be	used	in	switch statements	and	loops	(while,	
do,	and	for),	whereas	continue is	limited	to	loops.
break는다용도, continue는루프에만쓰임

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 50

The	continue Statement
• A	loop	that	uses	the	continue statement:
n = 0;
sum = 0;
while (n < 10) {
scanf("%d", &i);
if (i == 0)
continue;

sum += i;
n++;
/* continue jumps to here */

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 51

The	continue Statement
• The	same	loop	written	without	using	continue:
n = 0;
sum = 0;
while (n < 10) {
scanf("%d", &i);
if (i != 0) {
sum += i;
n++;

}
}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 52

The	goto Statement
• The	goto statement	is	capable	of	jumping	to	any	statement	in	a	
function,	provided	that	the	statement	has	a	label.
label/라벨이있는위치로이동

• A	label	is	just	an	identifier	placed	at	the	beginning	of	a	statement:

identifier : statement

• The	goto statement	itself	has	the	form

goto identifier ;
• Executing	the	statement	goto L; transfers	control	to	the	
statement	that	follows	the	label	L,	which	must	be	in	the	same	
function	as	the	goto statement	itself.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 53

라벨 실행될문장

라벨

The	goto Statement
• If	C	didn’t	have	a	break statement,	a	goto statement	could	be	
used	to	exit	from	a	loop:
goto를쓸수없다면 break로루프밖으로나갈수있음

for (d = 2; d < n; d++)
if (n % d == 0)
goto done;

done:
if (d < n)
printf("%d is divisible by %d\n", n, d);

else
printf("%d is prime\n", n);

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 54

The	goto Statement
• goto는 break,	continue,	return, exit등으로대부분대체될수있기에거의안쓰임

• Consider	the	problem	of	exiting	a	loop	from	within	a	switch
statement.	단중첩블럭에서빠져나올땐활용됨

• The	break statement	doesn’t	have	the	desired	effect:	it	exits	from	
the	switch,	but	not	from	the	loop.	
break로는 switch와 while블럭밖으로한번에나오지못함

• A	goto statement	solves	the	problem:
while (…) {

switch (…) {
…
goto loop_done; /* break won't work here */
…

}
}
loop_done: …

• The	goto statement	is	also	useful	for	exiting	from	nested	loops.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 55

goto문장은중첩루프밖으로나오는데유용함

The	Null	Statement
• A	statement	can	be	null—devoid	of	symbols	except	for	the	
semicolon	at	the	end.루프바디의실행될문장이 null일수있음, null은비어
있다는뜻

• The	following	line	contains	three	statements:
i = 0; ; j = 1;

세미콜론의수를보면문장이 3개있는것을알수있음.단, 2번은어떤일도안함

• The	null	statement	is	primarily	good	for	one	thing:	writing	loops	
whose	bodies	are	empty.	
null문장을쓰는이유는루프내에서할일이없을때를표현하기위함

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 56

The	Null	Statement
• Consider	the	following	prime-finding	loop:
for (d = 2; d < n; d++)
if (n % d == 0)
break;

• If	the	n % d == 0 condition	is	moved	into	the	loop’s	controlling	
expression,	the	body	of	the	loop	becomes	empty:
for (d = 2; d < n && n % d != 0; d++)

/* empty loop body */ ;
• To	avoid	confusion,	C	programmers	customarily	put	the	null	
statement	on	a	line	by	itself.반복문을독립문장으로쓸때혼란을줄이기
위해널문장을한줄에독립적으로기록함.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 57

앞에서본소수를찾는문장에 if	절의수식(n%d ==	0)을
for	의종료조건에넣으면루프내에서할일이없음

The	Null	Statement
• Accidentally	putting	a	semicolon	after	the	parentheses	in	an	if,	
while,	or	for statement	creates	a	null	statement.
주의,쉼표를 while,	for,	if문장뒤에쓰면널문장을삽입한것

• Example	1:
if (d == 0); /*** WRONG ***/
printf("Error: Division by zero\n"); //if와 상관없이 출력

The	call	of	printf isn’t	inside	the	if statement,	so	it’s	performed	
regardless	of	whether	d is	equal	to	0.

• Example	2:
i = 10;
while (i > 0); /*** WRONG ***/
{
printf("T minus %d and counting\n", i); //while과상관없이출력
--i; //while과 상관없이 출력

}

The	extra	semicolon	creates	an	infinite	loop.이경우무한루프가됨

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 58

The	Null	Statement
• Example	3:
i = 11;
while (--i > 0); /*** WRONG ***/

printf("T minus %d and counting\n", i);

The	loop	body	is	executed	only	once;	the	message	printed	is:
T minus 0 and counting

• Example	4:
for (i = 10; i > 0; i--); /*** WRONG ***/

printf("T minus %d and counting\n", i);

Again,	the	loop	body	is	executed	only	once,	and	the	same	
message	is	printed	as	in	Example	3.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 59

while은루프바디없이 1회실행하고 printf문장이실행됨,
들여쓰기에속으면안됨

for	문으로작성된것외에는위의예제와동일

