
Expressions	&
Selection	Statment

adopted	from	KNK	C	Programming	:	A	Modern	Approach

Expressions

2

Operators
• C	emphasizes	expressions	rather	than	statements.

• Expressions	are	built	from	variables,	constants,	and	operators.

• C	has	a	rich	collection	of	operators,	including
1. arithmetic	operators	(수식연산자)

2. relational	operators (관계연산자)

3. logical	operators (논리연산자)

4. assignment	operators (할당연산자)

5. increment	and	decrement	operators (증감연산자)

and	many	others

3Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Arithmetic	Operators
• C	provides	five	binary	arithmetic	operators:
+ addition
- subtraction
* multiplication
/ division
% remainder

• There	are	also	two	unary arithmetic	operators:
+ unary	plus
- unary	minus

4

An	operator	is	binary
if	it	has	two	operands.

Ex:	A*B,	A+B

i = +1;
j = -i; 음수양수구분용

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Binary	Arithmetic	Operators
• The	value	of	i % j is	the	remainder	when	i is	divided	by	j.

10 % 3 has	the	value	1,	and	12 % 4 has	the	value	0.

• Binary	arithmetic	operators—with	the	exception	of	%—allow	
either	integer	or	floating-point	operands,	with	mixing	allowed.
• When	int and	float operands	are	mixed,	the	result	has	type	
float.
9 +	2.5f has	the	value	11.5,	and	6.7f / 2 has	the	value	3.35.

5Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

The	/ and	% Operators
• The	/ and	% operators	require	special	care:
• When	both	operands	are	integers,	/ “truncates”	the	result.	The	
value	of	1 / 2 is	0,	not	0.5. (두수가정수이면소수점은버림)

• The	% operator	requires	integer	operands;	if	either	operand	is	
not	an	integer,	the	program	won’t	compile.	(정수만가능)

• Using	zero	as	the	right	operand	of	either	/ or	% causes	
undefined	behavior. (0으로나눌수없음)

vThe	behavior	when	/ and	% are	used	with	negative	operands	is	
implementation-defined(구현에따라다름) in	C89.

vIn	C99,	the	result	of	a	division	is	always	truncated	toward	zero	and	the	value	
of	i % j has	the	same	sign	as	i. (결과는항상내림, i의부호를따름

6Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Operator	Precedence (연산자우선순위)

• Does	i + j * kmean	“add	i and	j,	then	multiply	the	result	by	k”	
or	“multiply	j and	k,	then	add	i”?

• One	solution	to	this	problem	is	to	add	parentheses,	writing	either	
(i + j) * k or	i + (j * k).

• If	the	parentheses	are	omitted,	C	uses	operator	precedence rules	
to	determine	the	meaning	of	the	expression.

• 우선순위를모를때는괄호를써서먼저계산한것을표시!

7Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Operator	Precedence
• The	arithmetic	operators	have	the	following	relative	precedence:
Highest: + - (unary)

* / %
Lowest: + - (binary)	

• Examples:
i + j * k is	equivalent	to			i + (j * k)

-i * -j is	equivalent	to			(-i) * (-j)

+i + j / k is	equivalent	to			(+i) + (j / k)

8Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Operator	Associativity	(연산자결합)

• Associativity comes	into	play	when	an	expression	contains	two	or	
more	operators	with	equal	precedence.

• An	operator	is	said	to	be	left	associative	if	it	groups	from	left	to	
right.
• The	binary	arithmetic	operators	(*,	/,	%,	+,	and	-)	are	all	left	
associative,	so
i - j – k is	equivalent	to	(i - j) - k
i * j / k is	equivalent	to	(i * j) / k

• An	operator	is	right	associative	if	it	groups	from	right	to	left.
• The	unary	arithmetic	operators	(+ and	-)	are	both	right	
associative,	so
- + i is	equivalent	to		-(+i)

9Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Assignment	Operators
1. Simple	assignment:	used	for	storing	a	value	into	a	variable

2. Compound	assignment:	used	for	updating	a	value	already	
stored	in	a	variable

10Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Simple	Assignment
• The	effect	of	the	assignment	v = e is	to	evaluate	the	expression	e
and	copy	its	value	into	v.

• e can	be	a	constant,	a	variable,	or	a	more	complicated	expression:
i = 5; /* i is now 5 */
j = i; /* j is now 5 */
k = 10 * i + j; /* k is now 55 */

• If	v and	e don’t	have	the	same	type,	then	the	value	of	e is	
converted	to	the	type	of	v
int i;
float f;

i = 72.99f; /* i is now 72 */
f = 136; /* f is now 136.0 */

11Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Side	Effects
• An	operators	that	modifies	one	of	its	operands	is	said	to	have	a	
side	effect.

• The	simple	assignment	operator	has	a	side	effect:	it	modifies	its	
left	operand.
• Evaluating	the	expression	i = 0 produces	the	result	0	and—as	a	
side	effect—assigns	0	to	i.

• Since	assignment	is	an	operator,	several	assignments	can	be	
chained	together:
i = j = k = 0;

• The	= operator	is	right	associative,	so	this	assignment	is	
equivalent	to
i = (j = (k = 0));

12Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Side	Effects
• Watch	out	for	unexpected	results	in	chained	assignments	as	a	
result	of	type	conversion:
int i;
float f;

f = i = 33.3f;

13Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

i is	assigned	the	value	33,	
then	f is	assigned	33.0	(not	33.3).

Side	Effects
• An	assignment	of	the	form	v = e is	allowed	wherever	a	value	of	
type	v would	be	permitted:
i = 1;
k = 1 + (j = i); // Embedded assignments

// source of bugs
// hard to read

printf("%d %d %d\n", i, j, k);
/* prints "1 1 2" */

14Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Lvalues
• The	assignment	operator	requires	an	lvalue as	its	left	operand.

• An	lvalue represents	an	object	stored	in	computer	memory,	not	
a	constant	or	the	result	of	a	computation.
• Variables	are	lvalues;	expressions	such	as	10 or	2 * i are	not.
12 = i; /*** WRONG ***/
i + j = 0; /*** WRONG ***/
-i = j; /*** WRONG ***/

• The	compiler	will	produce	an	error	message	such	as	“invalid	
lvalue in	assignment.”

15Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Compound	Assignment
• Assignments	that	use	the	old	value	of	a	variable	to	compute	its	
new	value	are	common.

• Example:
i = i + 2;

• Using	the	+= compound	assignment	operator,	we	simply	write:
i += 2; /* same as i = i + 2; */

16Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Compound	Assignment
• There	are	nine	other	compound	assignment	operators,	including	
the	following:
All	of	them	work	in	much	the	same	way:
v += e adds	v to	e,	storing	the	result	in	v
v -= e subtracts	e from	v,	storing	the	result	in	v
v *= emultiplies	v by	e,	storing	the	result	in	v
v /= e divides	v by	e,	storing	the	result	in	v
v %= e computes	the	remainder	when	v is	divided	by	e,	storing	
the	result	in	v

• v += e isn’t	“equivalent”	to	v = v + e.
• One	problem	is	operator	precedence:	i *= j + k isn’t	the	same	
as	i = i * j + k.

17Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

-= *= /= %=

Increment	and	Decrement	Operators
• Two	of	the	most	common	operations	on	a	variable	are	
“incrementing”	(adding	1)	and	“decrementing”	(subtracting	1):
• C	provides	special	++ (increment)	and	-- (decrement)	operators.

• The	++ operator	adds	1	to	its	operand.	The	-- operator	subtracts	
1.
• They	can	be	used	as	prefix operators	(++i and	–-i)	or	postfix
operators	(i++ and	i--).

18Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

i += 1;
j -= 1;

i = i + 1;
j = j - 1;

compound	assignment
operator

i++; ++i;
j--; --i;

increment	&	decrement
operator

Increment	and	Decrement	Operators
• Evaluating	the	expression	++i (a	“pre-increment”)	yields	i + 1
and—as	a	side	effect—increments	i:
i = 1;
printf("i is %d\n", ++i); /* prints "i is 2" */
printf("i is %d\n", i); /* prints "i is 2" */

• Evaluating	the	expression	i++ (a	“post-increment”)	produces	the	
result	i,	but	causes	i to	be	incremented	afterwards:
i = 1;
printf("i is %d\n", i++); /* prints "i is 1" */
printf("i is %d\n", i); /* prints "i is 2" */

ü++imeans	“increment	i immediately”
üi++means	“use	the	old	value	of	i for	now,	but	increment	i
later.”

19Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Increment	and	Decrement	Operators
• The	-- operator	has	similar	properties:
i = 1;
printf("i is %d\n", --i); /* prints "i is 0" */
printf("i is %d\n", i); /* prints "i is 0" */
i = 1;
printf("i is %d\n", i--); /* prints "i is 1" */
printf("i is %d\n", i); /* prints "i is 0" */

20Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Increment	and	Decrement	Operators
• When	++ or	-- is	used	more	than	once	in	the	same	expression,	
the	result	can	often	be	hard	to	understand.

• Example:
i = 1;
j = 2;
k = ++i + j++;

The	last	statement	is	equivalent	to
i = i + 1;
k = i + j;
j = j + 1;

The	final	values	of	i,	j,	and	k are	2,	3,	and	4,	respectively.

21Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Increment	and	Decrement	Operators
• In	contrast,	executing	the	statements
i = 1;
j = 2;
k = i++ + j++;

will	give	i,	j,	and	k the	values	2,	3,	and	3,	respectively.

22Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Expression	Evaluation
• Table	of	operators	discussed	so	far:
Precedence Name Symbol(s) Associativity

1 increment	(postfix) ++ left

decrement	(postfix) --

2 increment	(prefix)	 ++ right

decrement	(prefix) --

unary	plus +

unary	minus -

3 multiplicative * / % left

4 additive + - left

5 assignment = *= /= %= += -= right

23Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Expression	Evaluation
• The	table	can	be	used	to	add	parentheses	to	an	expression	that	
lacks	them.

• Starting	with	the	operator	with	highest	precedence,	put	
parentheses	around	the	operator	and	its	operands.

• Example:
a = b += c++ - d + --e / -f Precedence

level
a = b += (c++) - d + --e / -f 1
a = b += (c++) - d + (--e) / (-f) 2
a = b += (c++) - d + ((--e) / (-f)) 3
a = b += (((c++) - d) + ((--e) / (-f))) 4
(a = (b += (((c++) - d) + ((--e) / (-f))))) 5	

24Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Order	of	Subexpression	Evaluation
• Example:
i = 2;
j = i * i++;

• It’s	natural	to	assume	that	j is	assigned	4.	However,	j could	just	
as	well	be	assigned	6	instead:
1.The	second	operand	(the	original	value	of	i)	is	fetched,	then	i
is	incremented.

2.The	first	operand	(the	new	value	of	i)	is	fetched.
3.The	new	and	old	values	of	i are	multiplied,	yielding	6.

25Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

Expression	Statements
• C	has	the	unusual	rule	that	any	expression	can	be	used	as	a	
statement.

• Example:
++i;

• Since	its	value	is	discarded,	there’s	little	point	in	using	an	
expression	as	a	statement	unless	the	expression	has	a	side	effect:
i = 1; /* useful */
i--; /* useful */
i * j - 1; /* not useful */

26Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.

i is	first	incremented,	then	the	new	value	of	i is	
fetched	but	then	discarded.

HW:	짧지만복잡한표현만들기

• 실습반수업전까지계산가능한복잡한수식 5개만들어오기
• 단,작성한본인이정답을구하고,검토해서와야함

• 양식에맞게출력해오기

• Follow	up	activity in	the	Lab	time.
• 가장복잡한수식작성자로선정된사람에게초코바 1개
• 해당수식을가장짧은시간내에정답을찾는사람에게
초코바 1개

• 단,제출자제외

27

Selection	Statements

Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved. 28

Statements
• So	far,	we’ve	used	return statements	and	expression	
statements.
• Most	of	C’s	remaining	statements	fall	into	three	categories:
• Selection	statements: if and	switch
• Iteration	statements:	while,	do,	and	for
• Jump	statements:	break,	continue,	and	goto.	(return
also	belongs	in	this	category.)

• Other	C	statements:
• Compound	statement
• Null	statement

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 29

Logical	Expressions
• Several	of	C’s	statements	must	test	the	value	of	an	expression	to	
see	if	it	is	“true”	or	“false.”
• For	example,	an	if statement	might	need	to	test	the	expression	
i < j;	a	true	value	would	indicate	that	i is	less	than	j.

• A	comparison	such	as	i < j yields	an	integer:	either	0	(false)	or	1	
(true).

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 30

Relational	Operators
• C’s	relational	operators:
< less	than
> greater	than
<= less	than	or	equal	to
>= greater	than	or	equal	to

• The	precedence	of	the	relational	operators	is	lower	than	that	of	
the	arithmetic	operators.
• For	example,	i +	j < k - 1means	(i + j) < (k - 1).

• The	relational	operators	are	left	associative.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 31

produce	0	(false)	or	1	(true)	
when	used	in	expressions.

i < j < k (i < j) < k

The	1	or	0	produced	by	i < j is	
then	compared	to	k

Equality	Operators
• C	provides	two	equality	operators:
== equal	to
!= not	equal	to

• The	equality	operators	have	lower	precedence	than	the	
relational	operators

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 32

left	associative
0	(false)	or	1	(true)	as	result

i < j == j < k (i < j) == (j < k)

Logical	Operators
• More	complicated	logical	expressions	can	be	built	from	simpler	
ones	by	using	the	logical	operators:
! logical	negation		(unary)
&& logical	and											(binary)
|| logical	or														(binary)

• Behavior	of	the	logical	operators:
!expr has	the	value	1	if	expr has	the	value	0.참이면거짓,거짓이면참

expr1 &&	expr2 has	the	value	1	if	the	values	of	expr1 and	expr2
are	both	nonzero.	둘다참이면참,아니면거짓

expr1 ||	expr2 has	the	value	1	if	either	expr1 or	expr2 (or	both)	
has	a	nonzero	value. 둘중하나가참이면참,둘다거짓이면거짓

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 33

Result
• 0	means	false
• 1	means	true
Operand
• 0	is	treated	as	false
• >	0		is	treated	as	true

Logical	Operators
• Both	&& and	|| perform	“short-circuit”	evaluation:	they	first	
evaluate	the	left	operand,	then	the	right	one. 왼쪽먼저검사,
검사후판단가능하면오른쪽검사안함

• Example:
(i != 0) && (j / i > 0) // 영으로 나누기 방지

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 34

Logical	Operators
• The	! operator	has	the	same	precedence	as	the	unary	plus	and	
minus	operators.
• The	precedence	of	&& and	|| is	lower	than	that	of	the	relational	
and	equality	operators.
• For	example,	i < j && k == mmeans	(i < j) && (k == m).

• The	! operator	is	right	associative;	&& and	|| are	left	associative.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 35

The	if Statement
• The	if statement	allows	a	program	to	choose	between	two	
alternatives	by	testing	an	expression.
• In	its	simplest	form,	the	if statement	has	the	form
if (expression) statement
• When	an	if statement	is	executed,	expression is	evaluated;	if	its	
value	is	nonzero,	statement is	executed.

• Example:
if (line_num == MAX_LINES)
line_num = 0;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 36

The	if Statement
• Confusing	== (equality)	with	= (assignment)	is	perhaps	the	most	
common	C	programming	error.

• The	statement
if (i == 0) …

tests	whether	i is	equal	to	0.

• The	statement
if (i = 0) …

assigns	0	to	i,	then	tests	whether	the	result	is	nonzero.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 37

The	if Statement
• Often	the	expression	in	an	if statement	will	test	whether	a	
variable	falls	within	a	range	of	values.
• To	test	whether	0	£ i <	n:
if (0 <= i && i < n) …

• To	test	the	opposite	condition	(i is	outside	the	range):
if (i < 0 || i >= n) …

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 38

Compound	Statements
• In	the	if statement	template,	notice	that	statement is	singular,	
not	plural:
if (expression) statement
• To	make	an	if statement	control	two	or	more	statements,	use	a	
compound	statement.

• A	compound	statement	has	the	form
{ statements }

• Putting	braces	around	a	group	of	statements	forces	the	compiler	
to	treat	it	as	a	single	statement.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 39

Compound	Statements
• Example:
{ line_num = 0; page_num++; }

• A	compound	statement	is	usually	put	on	multiple	lines,	with	one	
statement	per	line:
{
line_num = 0;
page_num++;

}

• Example	of	a	compound	statement	used	inside	an	if statement:
if (line_num == MAX_LINES) {
line_num = 0;
page_num++;

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 40

The	else Clause
• An	if statement	may	have	an	else clause:
if (expression) statement else statement
• The	statement	that	follows	the	word	else is	executed	if	the	
expression	has	the	value	0.

• Example:
if (i > j)
max = i;

else
max = j;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 41

The	else Clause
• It’s	not	unusual	for	if statements	to	be	nested	inside	other	
if statements:	중첩가능

if (i > j)
if (i > k)
max = i;

else
max = k;

else
if (j > k)
max = j;

else
max = k;

• Aligning	each	else with	the	matching	ifmakes	the	nesting	
easier	to	see.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 42

if (i > j) {
if (i > k)

max = i;
else

max = k;
} else {

if (j > k)
max = j;

else
max = k;

}

if (i > j) {
if (i > k) {

max = i;
} else {

max = k;
}

} else {
if (j > k) {

max = j;
} else {

max = k;
}

}

Cascaded	if Statements
• A	“cascaded”	if statement	is	often	the	best	way	to	test	a	series	
of	conditions,	stopping	as	soon	as	one	of	them	is	true.

• Example:
if (n < 0)
printf("n is less than 0\n");

else
if (n == 0)
printf("n is equal to 0\n");

else
printf("n is greater than 0\n");

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 43

Cascaded	if Statements
• Although	the	second	if statement	is	nested	inside	the	first,	C	
programmers	don’t	usually	indent	it.	
• Instead,	they	align	each	else with	the	original	if:
if (n < 0)
printf("n is less than 0\n");

else if (n == 0)
printf("n is equal to 0\n");

else
printf("n is greater than 0\n");

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 44

Cascaded	if Statements
• This	layout	avoids	the	problem	of	excessive	indentation	when	the	
number	of	tests	is	large:
if (expression)

statement
else if (expression)

statement
…
else if (expression)

statement
else

statement

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 45

The	“Dangling	else”	Problem
• When	if	statements	are	nested,	the	“dangling	else”	
problem	may	occur:
if (y != 0)
if (x != 0)
result = x / y;

else
printf("Error: y is equal to 0\n");

• The	indentation	suggests	that	the	else clause	belongs	to	
the	outer	if statement.
• However,	C	follows	the	rule	that	an	else clause	belongs	to	
the	nearest	if statement	that	hasn’t	already	been	paired	
with	an	else.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 46

Conditional	Expressions
• C’s	conditional	operator	allows	an	expression	to	produce	one	of	
two	values	depending	on	the	value	of	a	condition.
• The	conditional	operator consists	of	two	symbols	(? and	:),	which	
must	be	used	together:
expr1 ? expr2 : expr3
• The	operands	can	be	of	any	type.
• The	resulting	expression	is	said	to	be	a	conditional	expression.
• it	is	often	referred	to	as	a	ternary	operator.
• The	conditional	expression	expr1 ? expr2 : expr3 should	be	read	
“if	expr1 then	expr2 else	expr3.”

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 47

Conditional	Expressions
• Example:
int i, j, k;

i = 1;
j = 2;
k = i > j ? i : j; /* k is now 2 */
k = (i >= 0 ? i : 0) + j; /* k is now 3 */

• The	parentheses	are	necessary,	because	the	precedence	of	the	
conditional	operator	is	less	than	that	of	the	other	operators	
discussed	so	far,	with	the	exception	of	the	assignment	operators.
• Conditional	expressions	are	often	used	in	return statements:
return i > j ? i : j;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 48

짧지만난해함

Conditional	Expressions
• Calls	of	printf can	sometimes	benefit	from	condition	
expressions.	Instead	of
if (i > j)
printf("%d\n", i);

else
printf("%d\n", j);

we	could	simply	write
printf("%d\n", i > j ? i : j);

• Conditional	expressions	are	also	common	in	certain	kinds	of	
macro	definitions.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 49

Boolean	Values:	1	or	0;	true	or	false

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 50

int flag;

flag = 0;
…
flag = 1;

Old	way

Not	good	
for	readability

#define TRUE 1
#define FALSE 0

flag = FALSE;
…
flag = TRUE;

C89

Natural	to
understand

#define BOOL int
BOOL flag;

C89	Better	Usage

Clearly	represents
boolean condition

if (flag == TRUE)
…
if (flag == FALSE)
…

if (flag)
…
if (!flag)
…

Boolean	Values	in	C99
• C99	provides	the	_Bool type.

• A	Boolean	variable	can	be	declared	by	writing
_Bool flag; //special integer type only with 0 or 1
flag = 5; /* flag is assigned 1 */

• C99’s	<stdbool.h> header	defines	a	macro,	bool,	that	stands	
for	_Bool.
#include <stdbool.h>
bool flag; /* same as _Bool flag; */

• also	supplies	true and	falsemacros	which	stand	for	1	and	0
flag = false;
flag = true;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 51

The	switch Statement

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 52

A	cascaded	if statement

if (grade == 4)
printf("Excellent");

else if (grade == 3)
printf("Good");

else if (grade == 2)
printf("Average");

else if (grade == 1)
printf("Poor");

else if (grade == 0)
printf("Failing");

else
printf("Illegal grade");

switch (grade) {
case 4: printf("Excellent");

break;
case 3: printf("Good");

break;
case 2: printf("Average");

break;
case 1: printf("Poor");

break;
case 0: printf("Failing");

break;
default: printf("Illegal grade");

break;
}

switch statement

The	switch Statement
• A	switch statement	may	be	easier	to	read	than	a	cascaded	if
statement.
• switch statements	are	often	faster	than	if statements.

• Most	common	form	of	the	switch statement:
switch (expression) {
case constant-expression : statements	
…
case constant-expression : statements
default : statements

}

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 53

The	switch Statement

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 54

switch (grade) {
case 4: printf("Excellent");

break;
case 3: printf("Good");

break;
case 2: printf("Average");

break;
case 1: printf("Poor");

break;
case 0: printf("Failing");

break;
default: printf("Illegal grade");

break;
}

controlling	expression:	
only	integer	type

Label	
constant	expression
evaluated	to	integer
no	duplicate	labels

order	is	not	important

Statements
can	have	more	than	1

usually	ends	with	break

The	switch Statement
• Several	case	labels	may	precede	a	group	of	statements:
switch (grade) {

case 4:
case 3:
case 2:
case 1: printf("Passing");

break;
case 0: printf("Failing");

break;
default: printf("Illegal grade");

break;
}

• If	the	default case	is	missing	and	the	controlling	expression’s	
value	doesn’t	match	any	case	label,	control	passes	to	the	next	
statement	after	the	switch.

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 55

