Expressions &
Selection Statment

adopted from KNK C Programming : A Modern Approach

Expressions

Operators

* C emphasizes expressions rather than statements.
e Expressions are built from variables, constants, and operators.

* Chas arich collection of operators, including
1. arithmetic operators (=41 & ALK

relational operators (2tA & AHXH

logical operators (=2| ®AtXH

assignment operators (&% AAHXH

A

increment and decrement operators (54 & 4tX})

and many others

Arithmetic Operators

e C provides five binary arithmetic operators:

|

~ O

o\©°

o T
|

addition
subtraction
multiplication
division
remainder

An operator is binary
if it has two operands.

Ex: A*B, A+B

here are also two unary arithmetic operators:

unary plus i = +1;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Binary Arithmetic Operators

* The value of i % j is the remainder when i is divided by j.
10 % 3 hasthevalue 1, and 12 % 4 has the value 0.

* Binary arithmetic operators—with the exception of $—allow
either integer or floating-point operands, with mixing allowed.

* When int and £1oat operands are mixed, the result has type
float.
9+ 2.5f hasthevalue 11.5,and 6.7f / 2 has the value 3.35.

The / and % Operators

* The / and % operators require special care:

* When both operands are integers, / “truncates” the result. The
valueof 1 / 2is0, not 0.5. (5% =7t 0| H 2T 2 H &)

* The % operator requires integer operands; if either operand is
not an integer, the program won’t compile. (80t 7}5)

* Using zero as the right operand of either / or % causes
undefined behavior. (02 £ LI=+ Q1S

**The behavior when / and % are used with negative operands is
implementation-defined(+&10j if2f Cf &) in C89.

*lIn C99 the result of a division is always truncated toward zero and the value
of 1 $ j hasthe samesignas i. (Bit= &4 LHE,iQl = E IE

Operator Precedence (eistxt 2429

”

* Does 1 + § * k mean “add i and 7, then multiply the result by k
or “multiply j and k, then add 1”7

* One solution to this problem is to add parentheses, writing either
(1+73) *kori1i+ (] * k).
* |f the parentheses are omitted, C uses operator precedence rules

to determine the meaning of the expression.
« RUEREEE M= 225 MM B A bthct A= BEAl

— =T

Operator Precedence

* The arithmetic operators have the following relative precedence:
Highest: + — (unary)

* / S
Lowest: + — (binary)

 Examples:
i+Jj*k isequivalentto i+ (3 * k)
-1 * =3 is equivalentto (-1i) * (-7)

+i+4+ 7/ k isequivalentto (+1i) + (7 / k)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Operator Associativity (212Xt Zgh

* Associativity comes into play when an expression contains two or
more operators with equal precedence.

* An operator is said to be left associative if it groups from left to
right.

* The binary arithmetic operators (*, /, %, +, and —) are all left
associative, so
i-J -k isequivalentto (i -7) -k
i*7j/k isequivalentto (1 *7) / k

* An operator is right associative if it groups from right to left.

* The unary arithmetic operators (+ and —) are both right
associative, so
-+ 1 isequivalentto - (+1)

Assignment Operators

1. Simple assignment: used for storing a value into a variable

2. Compound assignment: used for updating a value already
stored in a variable

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

10

Simple Assignment

* The effect of the assignment v=e is to evaluate the expression e
and copy its value into v.

* e can be a constant, a variable, or a more complicated expression:
i = 5; /* 1 1s now 5 */
5 o= i; /* J is now 5 */
k =10 * 1 + 7J; /* k 1s now 55 */

* If vand e don’t have the same type, then the value of e is
converted to the type of v

int 1;
float f;
i = 72.99f; /* 1 1s now 72 */

f = 136; /* f is now 136.0 */

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 1

Side Effects

* An operators that modifies one of its operands is said to have a
side effect.

* The simple assighment operator has a side effect: it modifies its
left operand.

* Evaluating the expression 1 = O produces the result 0 and—as a
side effect—assigns O to 1.

* Since assignment is an operator, several assignments can be
chained together:

1 = 7] =%k = 0;

* The = operator is right associative, so this assignment is
equivalent to

12

Side Effects

* Watch out for unexpected results in chained assignments as a
result of type conversion:
int 1;
float £,
i is assigned the value 33,
f = i1 = 33.3f; then fisassigned 33.0 (not 33.3).

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

13

Side Effects

* An assignment of the form v = e is allowed wherever a value of
type v would be permitted:

1 = 1;

k =1+ (3 = 1); // Embedded assignments

// source of bugs
// hard to read
printf ("%d %d %$d\n", i, 3, k);
/* prints "1 1 2" */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

14

Lvalues
* The assignment operator requires an Ivalue as its left operand.

* An lvalue represents an object stored in computer memory, not
a constant or the result of a computation.

e Variables are Ivalues; expressions such as 10 or 2 * i are not.

12 = 1i; /*** WRONG ***/
i+ 9 = 0; /*** WRONG **x*/
-1 = j; /*** WRONG ***/

* The compiler will produce an error message such as “invalid
Ivalue in assignment.”

15

Compound Assignment

* Assignments that use the old value of a variable to compute its
new value are common.

* Example:
i =1+ 2;
* Using the += compound assignment operator, we simply write:

1 += 2; /* same as 1 = 1 + 2; */

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

16

Compound Assignment

* There are nine other compound assignment operators, including
the following: —= +*= /= &=
All of them work in much the same way:
v += e adds v to e, storing the result in v
v —= e subtracts e from v, storing the result in v
v *= e multiplies v by e, storing the result in v
v /= e divides v by e, storing the resultin v

v $= e computes the remainder when v is divided by e, storing
the resultinv

e v+=-eisn’t “equivalent” tov=v +e.

* One problem is operator precedence: 1 *= j + k isn’t the same
as1=1%*7]+k.

17

Increment and Decrement Operators

* Two of the most common operations on a variable are
“incrementing” (adding 1) and “decrementing” (subtracting 1):

e C provides special ++ (increment) and —- (decrement) operators.

 The ++ operator adds 1 to its operand. The —— operator subtracts
1.

* They can be used as prefix operators (++1 and ——1) or postfix
operators (1++ and 1--).

1 =1+ 1; 1= 1 compound assignment
7 =73 - 1; 7 -= 1; operator
1++; ++1; increment & decrement

J-—; —-—1; operator

18

Increment and Decrement Operators

Evaluating the expression ++1 (a “pre-increment”) yields 1 + 1
and—as a side effect—increments 1i:

1= 1;
printf ("i is %d\n", ++1); /* prints "i 1is 2" */
printf ("1 is $d\n", 1i); /* prints "i is 2" */

Evaluating the expression 1++ (a “post-increment”) produces the
result i, but causes i to be incremented afterwards:

1= 1;
printf ("i is %d\n", i++); /* prints "i is 1" */
printf ("i is %d\n", 1i); /* prints "i is 2" *x/

v'++1 means “increment 1 immediately”

v'1i++ means “use the old value of i for now, but increment 1

later.”

19

Increment and Decrement Operators

* The —— operator has similar properties:

1= 1;
printf ("i is %d\n", --i); /* prints "i is O"
printf ("1 is %d\n", 1i); /* prints "i is 0"
1= 1;
printf ("i is %d\n", i--); /* prints "i is 1"
printf("i is %d\n", 1); /* prints "i is O"

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Increment and Decrement Operators

* When ++ or —— is used more than once in the same expression,
the result can often be hard to understand.

* Example:
1 = 1;
] =27

k = ++1 + J++;

The last statement is equivalent to
1 =1+ 1;

k =1+ 7;

J =73 + 1;

The final values of i, j, and k are 2, 3, and 4, respectively.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Increment and Decrement Operators

* In contrast, executing the statements
1 = 1;
] = 2;
k = 1++ + J++;

will give i, j, and k the values 2, 3, and 3, respectively.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Expression Evaluation

» Table of operators discussed so far:

Precedence

1

Name

Symbol(s)

increment (postfix) ++

decrement (postfix) —-

increment (prefix) ++

decrement (prefix) ——

unary plus
unary minus
multiplicative
additive

assignment

+
* / S
4+ -

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

Associativity

left

right

left
left

= right

23

Expression Evaluation

* The table can be used to add parentheses to an expression that
lacks them.

 Starting with the operator with highest precedence, put
parentheses around the operator and its operands.

* Example:

a=bt=ct+-d+--e/-f Precedence
level

a=b+= (c++) - d+--e/ -=f 1
a=b+= (c++) -d+ (-—-e) / (-1f)
a=b+= (c++) —d+ ((--e) / (-f)) 3
a=Db+= (() + ((-—e) / (-£))) 4
(a= (

Q
+
+
|
Q.
+
|
|
(D
~
|
Hh
Ul

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 24

Order of Subexpression Evaluation

* Example:
1 = 2;
J =1 * 1++;

* It’s natural to assume that j is assigned 4. However, j could just
as well be assigned 6 instead:

1.The second operand (the original value of i) is fetched, then i
is incremented.

2.The first operand (the new value of 1) is fetched.
3.The new and old values of i are multiplied, yielding 6.

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 25

Expression Statements

e C has the unusual rule that any expression can be used as a
statement.

* Example:
1 is first incremented, then the new value of 1 is

++1; _
fetched but then discarded.
* Since its value is discarded, there’s little point in using an
expression as a statement unless the expression has a side effect:

1= 1; /* useful */
1—-—; /* useful */
i* 9 - 1; /* not useful */

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 26

(=1
=

T8l HES|A 2o

* Follow up activity in the Lab time.

= AL Al =3 B} 174

S
o

Selection Statements

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

28

Statements

* So far, we've used return statements and expression
statements.

* Most of C’s remaining statements fall into three categories:
* Selection statements: 1 f and switch
e Jteration statements: while, do,and for
e Jump statements: break, continue, and goto. (return
also belongs in this category.)
e Other C statements:
 Compound statement
* Null statement

29

Logical Expressions

» Several of C’s statements must test the value of an expression to
see if it is “true” or “false.”

* For example, an i f statement might need to test the expression
i < 7j; atrue value would indicate that 1 is less than J.

e A comparison such as i1 < j yields an integer: either 0 (false) or 1
(true).

Copyright © 2008 W. W. Norton & Company. 30
All rights reserved.

Relational Operators

* C’s relational operators:

< lessthan
> greater than produce 0 (false) or 1 (true)
<= less than or equal to v when used in expressions.

>= greater than or equal to

* The precedence of the relational operators is lower than that of
the arithmetic operators.

* Forexample, i+ jJ<k-1means (1 +3) < (k-1).
* The relational operators are left associative.
1< 3 <k | (1 < j) < k
The 1 or O produced by 1 < 7 is

then compared to k

31

Equality Operators

e C provides two equality operators:

== equal to left associative
= notequal to 0 (false) or 1 (true) as result

* The equality operators have lower precedence than the
relational operators

i< 9 ==49 <k (i < 3) == (3 < k)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

32

Logical Operators

* More complicated logical expressions can be built from simpler

ones by using the logical operators: Result

! logical negation (unary) * 0O means false
&& logical and (binary) * 1 meanstrue
| | logical or (binary) Operand

e (Qistreated as false

: : >0
» Behavior of the logical operators: 0 is treated as true

lexpr has the value 1 if expr has the value 0. &0|H X, HXIO|H &

exprl && expr2 has the value 1 if the values of expr1 and expr2
are both nonzero. = C} &0[H &, OfL|H AH A

exprl || expr2 has the value 1 if either exprl or expr2 (or both)
has a nonzero value. = & StLt7 &0[H &, & Ot AN O[H AX

33

Logical Operators

* Both && and | | perform “short-circuit” evaluation: they first
evaluate the left operand, then the right one. % HX ZH A},
AAr 2 EHEHIHSoIH QES HAF orgt

* Example:
(1 '=0) && (3 / 1 >0) // BL2E LtF7] &X

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 34

Logical Operators

* The ! operator has the same precedence as the unary plus and
minus operators.

* The precedence of && and | | is lower than that of the relational
and equality operators.
* Forexample, 1 < j && k==mmeans (1 <j) && (k==m).

 The ! operator is right associative; && and | | are left associative.

Copyright © 2008 W. W. Norton & Company. 35
All rights reserved.

The 1 f Statement

 The if statement allows a program to choose between two
alternatives by testing an expression.

* Inits simplest form, the i £ statement has the form
1f (expression) statement

* When an i f statement is executed, expression is evaluated; if its
value is nonzero, statement is executed.

e Example:

1f (line num == MAX LINES)
line num = 0;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

36

The 1 f Statement

e Confusing == (equality) with = (assignment) is perhaps the most
common C programming errotr.

* The statement

if (14 == 0)

tests whether i is equal to O.
* The statement

if (14 = 0)

assigns O to i, then tests whether the result is nonzero.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

37

The 1 f Statement

e Often the expression in an 1 f statement will test whether a
variable falls within a range of values.

* To test whether0 < i <n:
if (0 <=1 && i < n)

* To test the opposite condition (i is outside the range):
1f (1 <0 || 1 >= n)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

38

Compound Statements

* |In the if statement template, notice that statement is singular,
not plural:

1f (expression) statement

* To make an i f statement control two or more statements, use a
compound statement.

A compound statement has the form
{ statements }

e Putting braces around a group of statements forces the compiler
to treat it as a single statement.

39

Compound Statements

* Example:
{ 1line num = 0; page num++; }

* A compound statement is usually put on multiple lines, with one
statement per line:

{
line_num = 0;
page num+t+;

J

 Example of a compound statement used inside an i f statement:
1f (line num == MAX LINES)
line num = 0;
page num++;

J

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

40

The else Clause

* An if statement may have an el se clause:
1f (expression) statement else statement

e The statement that follows the word el se is executed if the
expression has the value 0.

* Example:
if (1 > 3)
max = 1;
else

max = 7J;

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

The else Clause

* |t’s not unusual for 1 £ statements to be nested inside other
1f statements: & 7t=

. . . 1t (1 > 7J) | 1if (1 > 7J) |
lfif(l(i i)k) if (1> K if (1> k)
max = 1i; max = 4y } Zi;{e_{l’
else else max = k:
max = k; ’ max = kj y } ,
else } else { l else |
if (3 > k) if (3 > k) if (5 > k) |
max = Jj; max = Jj; max = Jj;
else else } else {
max = k; max = k; max = k;

}
}
}

* Aligning each else with the matching i £ makes the nesting
easier to see.

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 42

Cascaded i f Statements

* A “cascaded” if statement is often the best way to test a series
of conditions, stopping as soon as one of them is true.

* Example:
if (n < 0)
printf ("n is less than 0\n");
else
1f (n == 0)
printf ("n is equal to 0\n");
else

printf ("n is greater than 0\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

43

Cascaded i f Statements

* Although the second i f statement is nested inside the first, C

programmers don’t usually indent it.

* Instead, they align each el se with the original i f:

if (n < 0)
printf ("n is less than 0\n");
else 1f (n == 0)

printf ("n is equal to 0\n");
else
printf ("n is greater than 0\n");

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

44

Cascaded i f Statements

* This layout avoids the problem of excessive indentation when the
number of tests is large:

1f (expression)
statement

else 1f (expression)
statement

else 1f (expression)
statement

else
statement

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 45

The “Dangling else” Problem

 When if statements are nested, the “dangling else”
problem may occur:
1f (y !'= 0)
1f (x !'= 0)
result = x / vy;
else
printf ("Error: y 1s equal to 0\n");
* The indentation suggests that the el se clause belongs to

the outer i f statement.

* However, C follows the rule that an el se clause belongs to
the nearest i £ statement that hasn’t already been paired
with an else.

46

Conditional Expressions

* C’s conditional operator allows an expression to produce one of
two values depending on the value of a condition.

* The conditional operator consists of two symbols (? and :), which
must be used together:

exprl ? expr2 : expr3
* The operands can be of any type.
* The resulting expression is said to be a conditional expression.
* it is often referred to as a ternary operator.

* The conditional expression exprl ? expr2 : expr3 should be read
“if exprl then expr2 else expr3.”

47

Conditional Expressions

* Example:
int i, j, k; X8 LSSt
1= 1;
) = 2;
k=1 >3 2 1 : 3; /* k is now 2 */
k= (1 > 0721 : 0) + 3; /* k is now 3 */

* The parentheses are necessary, because the precedence of the
conditional operator is less than that of the other operators
discussed so far, with the exception of the assignment operators.

* Conditional expressions are often used in return statements:

return i > 73 2 1 : 73

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 48

Conditional Expressions

e Calls of printf can sometimes benefit from condition
expressions. Instead of

1t (1 > 73)
printf ("%d\n", 1i);
else
printf ("$d\n", 7j);
we could simply write
printf ("%d\n", 1 > 3 2 1 : J);
* Conditional expressions are also common in certain kinds of
macro definitions.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

49

Boolean Values: 1 or O; true or false

Old way C89 C89 Better Usage
int flag; fdefine TRUE 1 fdefine BOOL int
#define FALSE O .
flag = 0; BOOL flag;
.. flag = FALSE;
flag = 1; .
flag = TRUE;
Not good Natural to Clearly represents
for readability = understand boolean condition
1f (flag == TRUE) 1f (flag)
if (flag == FALSE) it (1flag)

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

50

Boolean Values in C99

* C99 provides the Bool type.

* A Boolean variable can be declared by writing
_Bool flag; //special integer type only with 0 or 1
flag = 5; /* flag is assigned 1 */

e C99’s <stdbool.h> header defines a macro, bool, that stands
for Bool.

#include <stdbool.h>
bool flag; /* same as Bool flag; */
* also supplies true and f£alse macros which stand for 1 and O

flag = false;
flag = true;

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 51

The switch Statement

A cascaded i f statement

if (grade == 4) switch (gra

printf ("Excellent"); case 4:
else 1f (grade == 3)

printf ("Good") ; case 3:
else 1f (grade == 2)

printf ("Average") ; case 2:
else 1f (grade == 1)

printf ("Poor") ; case 1:
else 1f (grade == 0)

printf ("Failing"); case 0:
else

default:

printf ("Illegal grade");

Copyright © 2008 W. W. Norton & Company.

All rights reserved.

swilitch statement

de) {

printf ("Excellent") ;
break;

printf ("Good") ;
break;

printf ("Average") ;
break;

printf ("Poor") ;
break;

printf ("Failing");
break;

printf ("Illegal grade");
break;

52

The switch Statement

A switch statement may be easier to read than a cascaded i f
statement.

 switch statements are often faster than i f statements.

e Most common form of the switch statement:

switch (expression) {
case constant-expression : statements

case constant-expression : statements
default : statements

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

53

The switch Statement

controlling expression:

switch (grade) | only integer type

case| 4: printf ("Excellent");
Label —— break;
constant expression case 3:| printf ("Good") ;
evaluated to integer break;
no duplicate labels case 2:| printf ("Average");
order is not important break;
case 1:| printf ("Poor");
break;
case 0:) printf ("Failing");

break;
printf ("Illegal grade");J

can have more than 1
usually ends with break }

Statements _._ ..
break;

Copyright © 2008 W. W. Norton & Company.

All rights reserved. 54

The switch Statement

» Several case labels may precede a group of statements:
switch (grade) {

case 4:

case 3:

case 2:

case 1: printf ("Passing");
break;

case O: printf("Failing");
break;

default: printf("Illegal grade");
break;

}

e Ifthe default case is missing and the controlling expression’s

value doesn’t match any case label, control passes to the next
statement after the switch.

Copyright © 2008 W. W. Norton & Company.
All rights reserved.

