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Operators
• C	emphasizes	expressions	rather	than	statements.

• Expressions	are	built	from	variables,	constants,	and	operators.

• C	has	a	rich	collection	of	operators,	including
1. arithmetic	operators	(수식연산자)

2. relational	operators (관계연산자)

3. logical	operators (논리연산자)

4. assignment	operators (할당연산자)

5. increment	and	decrement	operators (증감연산자)

and	many	others
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Arithmetic	Operators
• C	provides	five	binary	arithmetic	operators:
+ addition
- subtraction
* multiplication
/ division
% remainder

• There	are	also	two	unary arithmetic	operators:
+ unary	plus
- unary	minus

4

An	operator	is	binary
if	it	has	two	operands.

Ex:	A*B,	A+B

i = +1;
j = -i; 음수양수구분용
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Binary	Arithmetic	Operators
• The	value	of	i % j is	the	remainder	when	i is	divided	by	j.

10 % 3 has	the	value	1,	and	12 % 4 has	the	value	0.

• Binary	arithmetic	operators—with	the	exception	of	%—allow	
either	integer	or	floating-point	operands,	with	mixing	allowed.
• When	int and	float operands	are	mixed,	the	result	has	type	
float.
9 +	2.5f has	the	value	11.5,	and	6.7f / 2 has	the	value	3.35.
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The	/ and	% Operators
• The	/ and	% operators	require	special	care:
• When	both	operands	are	integers,	/ “truncates”	the	result.	The	
value	of	1 / 2 is	0,	not	0.5. (두수가정수이면소수점은버림)

• The	% operator	requires	integer	operands;	if	either	operand	is	
not	an	integer,	the	program	won’t	compile.	(정수만가능)

• Using	zero	as	the	right	operand	of	either	/ or	% causes	
undefined	behavior. (0으로나눌수없음)

vThe	behavior	when	/ and	% are	used	with	negative	operands	is	
implementation-defined(구현에따라다름) in	C89.

vIn	C99,	the	result	of	a	division	is	always	truncated	toward	zero	and	the	value	
of	i % j has	the	same	sign	as	i. (결과는항상내림, i의부호를따름
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Operator	Precedence (연산자우선순위)

• Does	i + j * kmean	“add	i and	j,	then	multiply	the	result	by	k”	
or	“multiply	j and	k,	then	add	i”?

• One	solution	to	this	problem	is	to	add	parentheses,	writing	either	
(i + j) * k or	i + (j * k).

• If	the	parentheses	are	omitted,	C	uses	operator	precedence rules	
to	determine	the	meaning	of	the	expression.

• 우선순위를모를때는괄호를써서먼저계산한것을표시!
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Operator	Precedence
• The	arithmetic	operators	have	the	following	relative	precedence:
Highest: + - (unary)

* / %
Lowest: + - (binary)	

• Examples:
i + j * k is	equivalent	to			i + (j * k)

-i * -j is	equivalent	to			(-i) * (-j)

+i + j / k is	equivalent	to			(+i) + (j / k)
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Operator	Associativity	(연산자결합)

• Associativity comes	into	play	when	an	expression	contains	two	or	
more	operators	with	equal	precedence.

• An	operator	is	said	to	be	left	associative	if	it	groups	from	left	to	
right.
• The	binary	arithmetic	operators	(*,	/,	%,	+,	and	-)	are	all	left	
associative,	so
i - j – k is	equivalent	to	(i - j) - k
i * j / k is	equivalent	to	(i * j) / k

• An	operator	is	right	associative	if	it	groups	from	right	to	left.
• The	unary	arithmetic	operators	(+ and	-)	are	both	right	
associative,	so
- + i is	equivalent	to		-(+i)
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Assignment	Operators
1. Simple	assignment:	used	for	storing	a	value	into	a	variable

2. Compound	assignment:	used	for	updating	a	value	already	
stored	in	a	variable
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Simple	Assignment
• The	effect	of	the	assignment	v = e is	to	evaluate	the	expression	e
and	copy	its	value	into	v.

• e can	be	a	constant,	a	variable,	or	a	more	complicated	expression:
i = 5;            /* i is now 5  */
j = i;            /* j is now 5  */
k = 10 * i + j;   /* k is now 55 */

• If	v and	e don’t	have	the	same	type,	then	the	value	of	e is	
converted	to	the	type	of	v
int i;
float f;

i = 72.99f;   /* i is now 72 */
f = 136;      /* f is now 136.0 */
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Side	Effects
• An	operators	that	modifies	one	of	its	operands	is	said	to	have	a	
side	effect.

• The	simple	assignment	operator	has	a	side	effect:	it	modifies	its	
left	operand.
• Evaluating	the	expression	i = 0 produces	the	result	0	and—as	a	
side	effect—assigns	0	to	i.

• Since	assignment	is	an	operator,	several	assignments	can	be	
chained	together:
i = j = k = 0;

• The	= operator	is	right	associative,	so	this	assignment	is	
equivalent	to
i = (j = (k = 0));
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Side	Effects
• Watch	out	for	unexpected	results	in	chained	assignments	as	a	
result	of	type	conversion:
int i;
float f;

f = i = 33.3f;
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i is	assigned	the	value	33,	
then	f is	assigned	33.0	(not	33.3).



Side	Effects
• An	assignment	of	the	form	v = e is	allowed	wherever	a	value	of	
type	v would	be	permitted:
i = 1;
k = 1 + (j = i); // Embedded assignments

// source of bugs
// hard to read

printf("%d %d %d\n", i, j, k);
/* prints "1 1 2" */
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Lvalues
• The	assignment	operator	requires	an	lvalue as	its	left	operand.

• An	lvalue represents	an	object	stored	in	computer	memory,	not	
a	constant	or	the	result	of	a	computation.
• Variables	are	lvalues;	expressions	such	as	10 or	2 * i are	not.
12 = i;      /*** WRONG ***/
i + j = 0;   /*** WRONG ***/
-i = j;      /*** WRONG ***/

• The	compiler	will	produce	an	error	message	such	as	“invalid	
lvalue in	assignment.”
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Compound	Assignment
• Assignments	that	use	the	old	value	of	a	variable	to	compute	its	
new	value	are	common.

• Example:
i = i + 2;

• Using	the	+= compound	assignment	operator,	we	simply	write:
i += 2;   /* same as i = i + 2; */
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Compound	Assignment
• There	are	nine	other	compound	assignment	operators,	including	
the	following:
All	of	them	work	in	much	the	same	way:
v += e adds	v to	e,	storing	the	result	in	v
v -= e subtracts	e from	v,	storing	the	result	in	v
v *= emultiplies	v by	e,	storing	the	result	in	v
v /= e divides	v by	e,	storing	the	result	in	v
v %= e computes	the	remainder	when	v is	divided	by	e,	storing	
the	result	in	v

• v += e isn’t	“equivalent”	to	v = v + e.
• One	problem	is	operator	precedence:	i *= j + k isn’t	the	same	
as	i = i * j + k.
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Increment	and	Decrement	Operators
• Two	of	the	most	common	operations	on	a	variable	are	
“incrementing”	(adding	1)	and	“decrementing”	(subtracting	1):
• C	provides	special	++ (increment)	and	-- (decrement)	operators.

• The	++ operator	adds	1	to	its	operand.	The	-- operator	subtracts	
1.
• They	can	be	used	as	prefix operators	(++i and	–-i)	or	postfix
operators	(i++ and	i--).
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i += 1;
j -= 1;

i = i + 1;
j = j - 1;

compound	assignment
operator

i++; ++i;
j--; --i;

increment	&	decrement
operator



Increment	and	Decrement	Operators
• Evaluating	the	expression	++i (a	“pre-increment”)	yields	i + 1
and—as	a	side	effect—increments	i:
i = 1;
printf("i is %d\n", ++i);   /* prints "i is 2" */
printf("i is %d\n", i);     /* prints "i is 2" */

• Evaluating	the	expression	i++ (a	“post-increment”)	produces	the	
result	i,	but	causes	i to	be	incremented	afterwards:
i = 1;
printf("i is %d\n", i++);   /* prints "i is 1" */
printf("i is %d\n", i);     /* prints "i is 2" */

ü++imeans	“increment	i immediately”
üi++means	“use	the	old	value	of	i for	now,	but	increment	i
later.”
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Increment	and	Decrement	Operators
• The	-- operator	has	similar	properties:
i = 1;
printf("i is %d\n", --i);   /* prints "i is 0" */
printf("i is %d\n", i);     /* prints "i is 0" */
i = 1;
printf("i is %d\n", i--);   /* prints "i is 1" */
printf("i is %d\n", i);     /* prints "i is 0" */

20Copyright	©	2008	W.	W.	Norton	&	Company.	
All	rights	reserved.



Increment	and	Decrement	Operators
• When	++ or	-- is	used	more	than	once	in	the	same	expression,	
the	result	can	often	be	hard	to	understand.

• Example:
i = 1;
j = 2;
k = ++i + j++;

The	last	statement	is	equivalent	to
i = i + 1;
k = i + j;
j = j + 1;

The	final	values	of	i,	j,	and	k are	2,	3,	and	4,	respectively.
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Increment	and	Decrement	Operators
• In	contrast,	executing	the	statements
i = 1;
j = 2;
k = i++ + j++;

will	give	i,	j,	and	k the	values	2,	3,	and	3,	respectively.
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Expression	Evaluation
• Table	of	operators	discussed	so	far:
Precedence Name Symbol(s) Associativity

1 increment	(postfix) ++ left

decrement	(postfix) --

2 increment	(prefix)	 ++ right

decrement	(prefix) --

unary	plus +

unary	minus -

3 multiplicative * / % left

4 additive + - left

5 assignment = *= /= %= += -= right
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Expression	Evaluation
• The	table	can	be	used	to	add	parentheses	to	an	expression	that	
lacks	them.

• Starting	with	the	operator	with	highest	precedence,	put	
parentheses	around	the	operator	and	its	operands.

• Example:
a = b += c++ - d + --e / -f Precedence

level
a = b += (c++) - d + --e / -f                1
a = b += (c++) - d + (--e) / (-f)            2
a = b += (c++) - d + ((--e) / (-f))          3
a = b += (((c++) - d) + ((--e) / (-f)))      4
(a = (b += (((c++) - d) + ((--e) / (-f)))))  5	
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Order	of	Subexpression	Evaluation
• Example:
i = 2;
j = i * i++;

• It’s	natural	to	assume	that	j is	assigned	4.	However,	j could	just	
as	well	be	assigned	6	instead:
1.The	second	operand	(the	original	value	of	i)	is	fetched,	then	i
is	incremented.

2.The	first	operand	(the	new	value	of	i)	is	fetched.
3.The	new	and	old	values	of	i are	multiplied,	yielding	6.
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Expression	Statements
• C	has	the	unusual	rule	that	any	expression	can	be	used	as	a	
statement.

• Example:
++i;

• Since	its	value	is	discarded,	there’s	little	point	in	using	an	
expression	as	a	statement	unless	the	expression	has	a	side	effect:
i = 1;       /* useful */
i--;         /* useful */
i * j - 1;   /* not useful */
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i is	first	incremented,	then	the	new	value	of	i is	
fetched	but	then	discarded.



HW:	짧지만복잡한표현만들기

• 실습반수업전까지계산가능한복잡한수식 5개만들어오기
• 단,작성한본인이정답을구하고,검토해서와야함

• 양식에맞게출력해오기

• Follow	up	activity in	the	Lab	time.
• 가장복잡한수식작성자로선정된사람에게초코바 1개
• 해당수식을가장짧은시간내에정답을찾는사람에게
초코바 1개

• 단,제출자제외
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Selection	Statements
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Statements
• So	far,	we’ve	used	return statements	and	expression	
statements.
• Most	of	C’s	remaining	statements	fall	into	three	categories:
• Selection	statements: if and	switch
• Iteration	statements:	while,	do,	and	for
• Jump	statements:	break,	continue,	and	goto.	(return
also	belongs	in	this	category.)

• Other	C	statements:
• Compound	statement
• Null	statement
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Logical	Expressions
• Several	of	C’s	statements	must	test	the	value	of	an	expression	to	
see	if	it	is	“true”	or	“false.”
• For	example,	an	if statement	might	need	to	test	the	expression	
i < j;	a	true	value	would	indicate	that	i is	less	than	j.

• A	comparison	such	as	i < j yields	an	integer:	either	0	(false)	or	1	
(true).
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Relational	Operators
• C’s	relational	operators:
< less	than
> greater	than
<= less	than	or	equal	to
>= greater	than	or	equal	to

• The	precedence	of	the	relational	operators	is	lower	than	that	of	
the	arithmetic	operators.
• For	example,	i +	j < k - 1means	(i + j) < (k - 1).

• The	relational	operators	are	left	associative.
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produce	0	(false)	or	1	(true)	
when	used	in	expressions.

i < j < k (i < j) < k

The	1	or	0	produced	by	i < j is	
then	compared	to	k



Equality	Operators
• C	provides	two	equality	operators:
== equal	to
!= not	equal	to

• The	equality	operators	have	lower	precedence	than	the	
relational	operators
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left	associative
0	(false)	or	1	(true)	as	result

i < j == j < k (i < j) == (j < k)



Logical	Operators
• More	complicated	logical	expressions	can	be	built	from	simpler	
ones	by	using	the	logical	operators:
! logical	negation		(unary)
&& logical	and											(binary)
|| logical	or														(binary)

• Behavior	of	the	logical	operators:
!expr has	the	value	1	if	expr has	the	value	0.참이면거짓,거짓이면참

expr1 &&	expr2 has	the	value	1	if	the	values	of	expr1 and	expr2
are	both	nonzero.	둘다참이면참,아니면거짓

expr1 ||	expr2 has	the	value	1	if	either	expr1 or	expr2 (or	both)	
has	a	nonzero	value. 둘중하나가참이면참,둘다거짓이면거짓
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Result
• 0	means	false
• 1	means	true
Operand
• 0	is	treated	as	false
• >	0		is	treated	as	true



Logical	Operators
• Both	&& and	|| perform	“short-circuit”	evaluation:	they	first	
evaluate	the	left	operand,	then	the	right	one. 왼쪽먼저검사,
검사후판단가능하면오른쪽검사안함

• Example:
(i != 0) && (j / i > 0) // 영으로 나누기 방지
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Logical	Operators
• The	! operator	has	the	same	precedence	as	the	unary	plus	and	
minus	operators.
• The	precedence	of	&& and	|| is	lower	than	that	of	the	relational	
and	equality	operators.
• For	example,	i < j && k == mmeans	(i < j) && (k == m).

• The	! operator	is	right	associative;	&& and	|| are	left	associative.
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The	if Statement
• The	if statement	allows	a	program	to	choose	between	two	
alternatives	by	testing	an	expression.
• In	its	simplest	form,	the	if statement	has	the	form
if ( expression ) statement
• When	an	if statement	is	executed,	expression is	evaluated;	if	its	
value	is	nonzero,	statement is	executed.

• Example:
if (line_num == MAX_LINES)
line_num = 0;
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The	if Statement
• Confusing	== (equality)	with	= (assignment)	is	perhaps	the	most	
common	C	programming	error.

• The	statement
if (i == 0) …

tests	whether	i is	equal	to	0.

• The	statement
if (i = 0) …

assigns	0	to	i,	then	tests	whether	the	result	is	nonzero.
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The	if Statement
• Often	the	expression	in	an	if statement	will	test	whether	a	
variable	falls	within	a	range	of	values.
• To	test	whether	0	£ i <	n:
if (0 <= i && i < n) …

• To	test	the	opposite	condition	(i is	outside	the	range):
if (i < 0 || i >= n) …
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Compound	Statements
• In	the	if statement	template,	notice	that	statement is	singular,	
not	plural:
if ( expression ) statement
• To	make	an	if statement	control	two	or	more	statements,	use	a	
compound	statement.

• A	compound	statement	has	the	form
{ statements }

• Putting	braces	around	a	group	of	statements	forces	the	compiler	
to	treat	it	as	a	single	statement.
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Compound	Statements
• Example:
{ line_num = 0; page_num++; }

• A	compound	statement	is	usually	put	on	multiple	lines,	with	one	
statement	per	line:
{ 
line_num = 0;
page_num++;

}

• Example	of	a	compound	statement	used	inside	an	if statement:
if (line_num == MAX_LINES) {
line_num = 0;
page_num++;

}
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The	else Clause
• An	if statement	may	have	an	else clause:
if ( expression ) statement else statement
• The	statement	that	follows	the	word	else is	executed	if	the	
expression	has	the	value	0.

• Example:
if (i > j)
max = i;

else
max = j;

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 41



The	else Clause
• It’s	not	unusual	for	if statements	to	be	nested	inside	other	
if statements:	중첩가능

if (i > j)
if (i > k) 
max = i;

else 
max = k;

else
if (j > k) 
max = j;

else 
max = k;

• Aligning	each	else with	the	matching	ifmakes	the	nesting	
easier	to	see.
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if (i > j) {
if (i > k) 

max = i;
else 

max = k;
} else {

if (j > k) 
max = j;

else 
max = k;

}

if (i > j) {
if (i > k) {

max = i;
} else {

max = k;
}

} else {
if (j > k) {

max = j;
} else {

max = k;
}

}



Cascaded	if Statements
• A	“cascaded”	if statement	is	often	the	best	way	to	test	a	series	
of	conditions,	stopping	as	soon	as	one	of	them	is	true.

• Example:
if (n < 0)
printf("n is less than 0\n");

else
if (n == 0)
printf("n is equal to 0\n");

else
printf("n is greater than 0\n");
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Cascaded	if Statements
• Although	the	second	if statement	is	nested	inside	the	first,	C	
programmers	don’t	usually	indent	it.	
• Instead,	they	align	each	else with	the	original	if:
if (n < 0)
printf("n is less than 0\n");

else if (n == 0)
printf("n is equal to 0\n");

else
printf("n is greater than 0\n");
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Cascaded	if Statements
• This	layout	avoids	the	problem	of	excessive	indentation	when	the	
number	of	tests	is	large:
if ( expression )

statement
else if ( expression )

statement
…
else if ( expression )

statement
else

statement
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The	“Dangling	else”	Problem
• When	if	statements	are	nested,	the	“dangling	else”	
problem	may	occur:
if (y != 0)
if (x != 0)
result = x / y;

else
printf("Error: y is equal to 0\n");

• The	indentation	suggests	that	the	else clause	belongs	to	
the	outer	if statement.
• However,	C	follows	the	rule	that	an	else clause	belongs	to	
the	nearest	if statement	that	hasn’t	already	been	paired	
with	an	else.
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Conditional	Expressions
• C’s	conditional	operator	allows	an	expression	to	produce	one	of	
two	values	depending	on	the	value	of	a	condition.
• The	conditional	operator consists	of	two	symbols	(? and	:),	which	
must	be	used	together:
expr1 ? expr2 : expr3
• The	operands	can	be	of	any	type.
• The	resulting	expression	is	said	to	be	a	conditional	expression.
• it	is	often	referred	to	as	a	ternary	operator.
• The	conditional	expression	expr1 ? expr2 : expr3 should	be	read	
“if	expr1 then	expr2 else	expr3.”
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Conditional	Expressions
• Example:
int i, j, k;

i = 1;
j = 2;
k = i > j ? i : j;          /* k is now 2 */
k = (i >= 0 ? i : 0) + j;   /* k is now 3 */

• The	parentheses	are	necessary,	because	the	precedence	of	the	
conditional	operator	is	less	than	that	of	the	other	operators	
discussed	so	far,	with	the	exception	of	the	assignment	operators.
• Conditional	expressions	are	often	used	in	return statements:
return i > j ? i : j;
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짧지만난해함



Conditional	Expressions
• Calls	of	printf can	sometimes	benefit	from	condition	
expressions.	Instead	of
if (i > j)
printf("%d\n", i);

else
printf("%d\n", j);

we	could	simply	write
printf("%d\n", i > j ? i : j);

• Conditional	expressions	are	also	common	in	certain	kinds	of	
macro	definitions.
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Boolean	Values:	1	or	0;	true	or	false
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int flag;

flag = 0;
…
flag = 1;

Old	way

Not	good	
for	readability

#define TRUE 1
#define FALSE 0

flag = FALSE;
…
flag = TRUE;

C89

Natural	to
understand

#define BOOL int
BOOL flag;

C89	Better	Usage

Clearly	represents
boolean condition

if (flag == TRUE)
…
if (flag == FALSE)
…

if (flag)
…
if (!flag)
…



Boolean	Values	in	C99
• C99	provides	the	_Bool type.

• A	Boolean	variable	can	be	declared	by	writing
_Bool flag; //special integer type only with 0 or 1
flag = 5;   /* flag is assigned 1 */

• C99’s	<stdbool.h> header	defines	a	macro,	bool,	that	stands	
for	_Bool.
#include <stdbool.h> 
bool flag;   /* same as _Bool flag; */

• also	supplies	true and	falsemacros	which	stand	for	1	and	0
flag = false;
flag = true;
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The	switch Statement

Copyright	©	2008	W.	W.	Norton	&	Company.
All	rights	reserved. 52

A	cascaded	if statement

if (grade == 4)
printf("Excellent");

else if (grade == 3)
printf("Good");

else if (grade == 2)
printf("Average");

else if (grade == 1)
printf("Poor");

else if (grade == 0)
printf("Failing");

else
printf("Illegal grade");

switch (grade) {
case 4:  printf("Excellent");

break;
case 3:  printf("Good");

break;
case 2:  printf("Average");

break;
case 1:  printf("Poor");

break;
case 0:  printf("Failing");

break;
default: printf("Illegal grade");

break;
}

switch statement



The	switch Statement
• A	switch statement	may	be	easier	to	read	than	a	cascaded	if
statement.
• switch statements	are	often	faster	than	if statements.

• Most	common	form	of	the	switch statement:
switch ( expression ) {
case constant-expression : statements	
…
case constant-expression : statements
default : statements

}
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The	switch Statement
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switch (grade) {
case 4:  printf("Excellent");

break;
case 3:  printf("Good");

break;
case 2:  printf("Average");

break;
case 1:  printf("Poor");

break;
case 0:  printf("Failing");

break;
default: printf("Illegal grade");

break;
}

controlling	expression:	
only	integer	type

Label	
constant	expression
evaluated	to	integer
no	duplicate	labels

order	is	not	important

Statements
can	have	more	than	1

usually	ends	with	break



The	switch Statement
• Several	case	labels	may	precede	a	group	of	statements:
switch (grade) {

case 4:
case 3:
case 2:
case 1:  printf("Passing");

break;
case 0:  printf("Failing");

break;
default: printf("Illegal grade");

break;
}

• If	the	default case	is	missing	and	the	controlling	expression’s	
value	doesn’t	match	any	case	label,	control	passes	to	the	next	
statement	after	the	switch.
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