
C	Fundamentals	&	
Formatted	Input/Output
adopted	from	KNK	C	Programming	:	A	Modern	Approach

C	Fundamentals

2

Program:	Printing	a	Pun
• The	file	name	doesn’t	matter,	but	the	.c extension	is	often	required.
• for	example:	pun.c

• to	compile

• to	run

#include <stdio.h> // directive

int main(void) // function
{ /* statements begin */
printf("To C, or not to C: that is the question.\n");
return 0;

} /* statements end */

% cc -o pun pun.c % gcc -o pun pun.cor

3

% ./pun

The	General	Form	of	a	Simple	Program

4

Three	key	language	features	of	C	programs	

statements

directives

int main(void)
{

}

1

2

3
begin

end

Example:				#include <stdio.h>

The	General	Form:	Directives

• Before	a	C	program	is	compiled,	it	is	first	edited	by	a	preprocessor.
• Commands	intended	for	the	preprocessor	are	called	directives.

• <stdio.h> is	a	header containing	information	about	C’s	standard	I/O	library.
• Directives	always	begin	with	a	# character.
• By	default,	directives	are	one	line	long;	
• there’s	no	semicolon	or	other	special	marker	at	the	end.

5

Three	key	language	features	of	C	programs	

directives1 Example:				#include <stdio.h>

The	General	Form:	Directives

• Library	functions	are provided	as	part	of	the	C	implementation.
• The	main function	is	mandatory.
• main is	special:	it	gets	called	automatically	when	the	program	is	executed.
• main returns	a	status	code;	the	value	0	indicates	normal	program	
termination.

• If	there’s	no	return statement	at	the	end	of	the	main function,	many	
compilers	will	produce	a	warning	message.

6

Three	key	language	features	of	C	programs	

int main(void)
{

of statements
return x + 1;

}

2 a	series	of	statements	that	have	been	
grouped	together	and	given	a	name.

A	function	that	computes	a	value	uses	a	
return statement	to	specify	what	value	it	
“returns”:

The	General	Form:	Statements

• pun.c uses	only	two	kinds	of	statements.	
• One	is	the	return statement;	the	other	is	the	function	call.

• Asking	a	function	to	perform	its	assigned	task	is	known	as	calling the	function.
• pun.c calls	printf to	display	a	string:
printf("To C, or not to C: that is the question.\n");

7

statements3

Three	key	language	features	of	C	programs	

a	command	to	be	executed	when	the	program	runs.
C	requires	that	each	statement	end	with	a	semicolon.

Printing	Strings:	printf
• When	the	printf function	displays	a	string	literal—characters	enclosed	in	
double	quotation	marks—it	doesn’t	show	the	quotation	marks.

• printf doesn’t	automatically	advance	to	the	next	output	line	when	it	
finishes	printing.

• To	make	printf advance	one	line,	include	\n (the	new-line	character)	in	the	
string	to	be	printed.

printf("To C, or not to C: that is the question.\n");

printf("To C, or not to C: ");
printf("that is the question.\n");

printf("Brevity is the soul of wit.\n --Shakespeare\n");

Same
effect

8

more	on	printf on	following	section

Comments
• A	comment begins	with	/* and	end	with	*/.
/* This is a comment */

• Comments	may	appear	almost	anywhere	in	a	program,	either	on	separate	lines	or	
on	the	same	lines	as	other	program	text.	

• Comments	may	extend	over	more	than	one	line.
/* Name: pun.c

Purpose: Prints a bad pun.
Author: K. N. King */

• In	C99,	comments	can	also	be	written	in	the	following	way:
// A comment, which ends automatically at the end of a line

• Advantages	of	// comments:
• Safer:	there’s	no	chance	that	an	unterminated	comment	will	accidentally	
consume	part	of	a	program.

• Multiline	comments	stand	out	better.

9

Variables	and	Assignment
• Most	programs	need	to	a	way	to	store	data	temporarily	during	program	
execution.

• These	storage	locations	are	called	variables.

• To	use	variables	and	assignments,	you	need	to	know
1. type
2. declaration
3. initialization

10

int height = 183;
1 32

Variables	and	Assignment:	Types
• Every	variable	must	have	a	type.
• C	has	a	wide	variety	of	types,	including	int and	float.

• A	variable	of	type	int (short	for	integer)	can	store	a	whole	number	such	as	0,	
1,	392,	or	–2553.

• A	variable	of	type	float (short	for	floating-point)	can	store	much	larger	
numbers	than	an	int variable.
• Also,	a	float variable	can	store	numbers	with	digits	after	the	decimal	
point,	like	379.125.

• Drawbacks	of	float variables:
• Slower	arithmetic

• Approximate	nature	of	float values

11

Variables	and	Assignment:	Declarations
• Variables	must	be	declared before	they	are	used.

• Both	are	legal

• When	main contains	declarations,	these	must	precede	statements:

int height;
float profit;

int height, length, width, volume;
float profit, loss;

int main(void)
{

declarations
statements

}

12

Variables	and	Assignment:	Assignment	(1/2)
• A	variable	can	be	given	a	value	by	means	of	assignment:
height = 8; // The	number	8 is	said	to	be	a	constant.

• Before	a	variable	can	be	assigned	a	value—or	used	in	any	other	way—it	must	
first	be	declared.

• A	constant	assigned	to	a	float variable	usually	contains	a	decimal	point:
profit = 2150.48;

• It’s	best	to	append	the	letter	f to	a	floating-point	constant	if	it	is	assigned	to	a	
float variable:
profit = 2150.48f;

Failing	to	include	the	fmay	cause	a	warning	from	the	compiler.

13

Variables	and	Assignment:	Assignment	(2/2)
• An	int variable	is	normally	assigned	a	value	of	type	int,	and	a	float
variable	is	normally	assigned	a	value	of	type	float.
• Mixing	types	(such	as	assigning	an	int value	to	a	float variable)	is	
possible	but	not	always	safe.

• Once	a	variable	has	been	assigned	a	value,	it	can	be	used	to	help	compute	the	
value	of	another	variable:

• The	right	side	of	an	assignment	can	be	a	formula	(or	expression, in	C	
terminology)	involving	constants,	variables,	and	operators.

height = 8;
length = 12;
width = 10;
volume = height * length * width; // volume is now 960

14

Variables	and	Assignment:	Initialization
• Some	variables	are	automatically	set	to	zero	when	a	program	begins	to	
execute,	but	most	are	not.
• A	variable	that	doesn’t	have	a	default	value	and	hasn’t	yet	been	assigned	a	
value	by	the	program	is	said	to	be	uninitialized.

• Accessing	the	value	of	an	uninitialized	variable	causes	an	unpredictable	result.
• With	some	compilers,	worse	behavior—even	a	program	crash—may	occur.

• The	initial	value	of	a	variable	may	be	included	in	its	declaration:
int height = 8; // The value 8 is said to be an initializer.

int height = 8, length = 12, width = 10;

int height, length, width = 10; // initializes only width

15

Printing	the	Value	of	a	Variable
• printf can	be	used	to	display	the	current	value	of	a	variable.
• To	write	the	following	message,	we’d	use	the	following	call	of	printf:

• %d is	a	placeholder	indicating	where	the	value	of	height is	to	be	filled	in.

• There’s	no	limit	to	the	number	of	variables	that	can	be	printed	by	a	single	call	
of	printf:
printf("Height: %d Length: %d\n", height, length);

16

Details	of	printf on	following	section

Height: h

printf("Height: %d\n", height);

Reading	Input
• scanf is	the	C	library’s	counterpart	to	printf.
• scanf requires	a	format	string	to	specify	the	appearance	of	the	input	data.

• Example	of	using	scanf to	read	an	int value:
scanf("%d", &i); /* reads an integer; stores into i */

• The	& symbol	is	usually	(but	not	always)	required	when	using	scanf.

17

Details	of	scanf on	following	section

Defining	Names	for	Constants
• Using	a	feature	known	as	macro	definition,	we	can	name	this	constant:
#define INCHES_PER_POUND 166

• When	a	program	is	compiled,	the	preprocessor	replaces	each	macro	by	the	
value	that	it	represents.

• During	preprocessing,	the	statement

will	become

• The	value	of	a	macro	can	be	an	expression:
#define RECIPROCAL_OF_PI (1.0f / 3.14159f)

• If	it	contains	operators,	the	expression	should	be	enclosed	in	parentheses.

18

weight = (volume + INCHES_PER_POUND - 1) / INCHES_PER_POUND;

weight = (volume + 166 - 1) / 166;

It	is	common	convention	to	use	only	upper-
case	letters	in	macro	names

Identifiers
• Identifiers: Names	for	variables,	functions,	macros,	and	other	entities	
• Letters,	digits,	and	underscores,	but	must	begin	with	a	letter	or	underscore:

• C	places	no	limit	on	the	maximum	length	of	an	identifier.

• Examples	of	illegal	identifiers:
10times get-next-char

• C	is	case-sensitive

19

all	are	different
job joB jOb jOB Job JoB JOb JOB

times10 _done symbol_table current_page

symbolTable currentPage

Keywords
• The	following	keywords can’t	be	used	as	identifiers:

• Keywords	(with	the	exception	of	_Bool,	_Complex,	and	_Imaginary)	
must	be	written	using	only	lower-case	letters.

• Names	of	library	functions	(e.g.,	printf)	are	also	lower-case.

20

auto
break
case
char
const
continue
default

do
double
else
enum
extern
float
for

goto
if
int
long
register

return
short
signed
sizeof
static
struct
switch

typedef
union
unsigned
void
volatile
while

inline*
restrict*
_Bool*
_Complex*
_Imaginary*
*C99	only

Layout	of	a	C	Program	(1/2)
• A	C	program	is	

a	series	of	tokens.
• Tokens	include:
• Identifiers
• Keywords
• Operators
• Punctuation
• Constants
• String	literals

• The	statement
printf("Height: %d\n", height);

consists	of	seven	tokens:

printf Identifier
(Punctuation
"Height: %d\n" String	literal
, Punctuation
height Identifier
) Punctuation
; Punctuation

21

Layout	of	a	C	Program (2/2)
• Statements	can	be	divided	over	any	number	of	lines.

• Space	between	tokens	(such	as	before	and	after	each	operator,	and	after	each	
comma)	makes	it	easier	for	the	eye	to	separate	them.

• Indentation can	make	nesting	easier	to	spot.

• Blank	lines can	divide	a	program	into	logical	units

22

Formatted	Input	and	Output

23

The	printf Function	(1/3)
• The	printf function	must	be	supplied	with	a	format	string,	followed	by	any	
values	that	are	to	be	inserted	into	the	string	during	printing:

• The	format	string	may	contain	both	ordinary	characters	and	conversion	
specifications,	which	begin	with	the	% character.

• A	conversion	specification	is	a	placeholder	representing	a	value	to	be	filled	in	
during	printing.
• %d is	used	for	int values
• %f is	used	for	float values

24

printf(format_string, expr1, expr2, …);

The	printf Function (2/3)
• Ordinary	characters	in	a	format	string	are	printed	as	they	appear	in	the	string;	
conversion	specifications	are	replaced.

• Example:

25

int i, j;
float x, y;

i = 10;
j = 20;
x = 43.2892f;
y = 5527.0f;

printf("i = %d, j = %d, x = %f, y = %f\n", i, j, x, y);

i = 10, j = 20, x = 43.289200, y = 5527.000000
Result:

The	printf Function (3/3)
• Compilers	aren’t	required	to	check	that	the	number	of	conversion	
specifications	in	a	format	string	matches	the	number	of	output	items.

• Compilers	aren’t	required	to	check	that	a	conversion	specification	is	
appropriate.
• An	incorrect	specification	will	produce	meaningless	output:

26

printf("%d %d\n", i); /*** WRONG ***/
printf("%d\n", i, j); /*** WRONG ***/

int i;

float x;

printf("%f %d\n", i, x); /*** WRONG ***/

Conversion	Specifications	(1/2)

27

%m.pX
minimum	field	width precision

conversion	specifier

optional optional

%5.3f
%8d
%-8d

12345.6789	
12345.678

12345
12345

%d - Integer
%e - Exponential	format
%f - Fixed	decimal
%g - Either	exponential	format	or	

fixed	decimal	format

Conversion	Specifications	(1/2)

28

Format	specifier Description Supported	data	
types

%c Character char
unsigned char

%d Signed	Integer

short
unsigned short
int
long

%e or %E Scientific	notation	
of	float	values

float
double

%f Floating	point float

%g or %G Similar	as	%e	or	
%E

float
double

%hi Signed	
Integer(Short)

short

%hu Unsigned	
Integer(Short)

unsigned short

%i Signed	Integer

short
unsigned short
int
long

%l or %ld or
%li Signed	Integer long

%lf Floating	point double
%Lf Floating	point long double

%lu Unsigned	integer unsigned int
unsigned long

Format	specifier Description Supported	data	
types

%lli, %lld Signed	Integer long long

%llu Unsigned	Integer unsigned long
long

%o
Octal	
representation	of	
Integer.

short
unsigned
short
int
unsigned int
long

%p Address	of	pointer	
to	void	void	*

void *

%s String char *

%u Unsigned	Integer unsigned int
unsigned long

%x or %X
Hexadecimal	
representation	of	
Unsigned	Integer

short
unsigned
short
int
unsigned int
long

%n Prints	nothing

%% Prints	%	character

Escape	Sequences	(1/2)
• The	\n code	that	used	in	format	strings	is	called	an	escape	sequence.
• Escape	sequences	enable	strings	to	contain	nonprinting	(control)	characters	
and	characters	that	have	a	special	meaning	(such	as	").

• A	partial	list	of	escape	sequences:

Alert	(bell) \a

Backspace \b

New	line \n

Horizontal	tab \t

• A	string	may	contain	any	number	of	escape	sequences:

29

printf("Item\tUnit\tPurchase\n\tPrice\tDate\n");

Item Unit Purchase

Price Date

Escape	Sequences	(2/2)
• A	string	may	contain	any	number	of	escape	sequences:

• Another	common	escape	sequence	is	\",	which	represents	the	" character:

• To	print	a	single	\ character,	put	two	\ characters	in	the	string:

30

printf("Item\tUnit\tPurchase\n\tPrice\tDate\n");

Item Unit Purchase

Price Date

printf("\"Hello!\""); /* prints "Hello!" */

printf("\\"); /* prints one \ character */

The	scanf Function
• scanf reads	input	according	to	a	particular	format.

• A	scanf format	string	may	contain	both	ordinary	characters	and	conversion	
specifications.

• The	conversions	allowed	with	scanf are	essentially	the	same	as	those	used	
with	printf.

• In	many	cases,	a	scanf format	string	will	contain	only	conversion	
specifications:

• Sample	input:
scanf will	assign	1,	–20,	0.3,	and	–4000.0	to	i,	j,	x,	and	y,	respectively.

31

int i, j;
float x, y;
scanf("%d%d%f%f", &i, &j, &x, &y);

1 -20 .3 -4.0e3

scanf(format_string, &var1, &var2, …);

How	scanfWorks	(1/4)
• scanf tries	to	match	groups	of	input	characters	with	conversion	specifications	
in	the	format	string.

• For	each	conversion	specification,	scanf tries	to	locate	an	item	of	the	
appropriate	type	in	the	input	data,	skipping	blank	space	if	necessary.

• scanf then	reads	the	item,	stopping	when	it	reaches	a	character	that	can’t	
belong	to	the	item.
• If	the	item	was	read	successfully,	scanf continues	processing	the	rest	of	
the	format	string.

• If	not,	scanf returns	immediately.

32

How	scanfWorks (2/4)
• As	it	searches	for	a	number,	scanf ignores	white-space	characters	
• space,	horizontal	and	vertical	tab,	form-feed,	and	new-line

• A	call	of	scanf that	reads	four	numbers:
scanf("%d%d%f%f", &i, &j, &x, &y);

• The	numbers	can	be	on	one	line	or	spread	over	several	lines:

• scanf “peeks”	at	the	final	new-line	without	reading	it.

33

1
-20 .3

-4.0e3
••1¤-20•••.3¤•••-4.0e3¤
ssrsrrrsssrrssssrrrrrr

(s =	skipped;	r =	read)

How	scanfWorks	(3/4)
• When	asked	to	read	an	integer,	scanf first	searches	for	a	digit,	a	plus	sign,	or	
a	minus	sign;	it	then	reads	digits	until	it	reaches	a	nondigit.

• When	asked	to	read	a	floating-point	number,	scanf looks	for
• a	plus	or	minus	sign	(optional),	followed	by
• digits	(possibly	containing	a	decimal	point),	followed	by
• an	exponent	(optional).	An	exponent	consists	of	the	letter	e (or	E),	an	
optional	sign,	and	one	or	more	digits.

• %e,	%f,	and	%g are	interchangeable	when	used	with	scanf.

• When	scanf encounters	a	character	that	can’t	be	part	of	the	current	item,	
the	character	is	“put	back”	to	be	read	again	during	the	scanning	of	the	next	
input	item	or	during	the	next	call	of	scanf.

34

How	scanfWorks (4/4)
• Sample	input:

1-20.3-4.0e3¤

• The	call	of	scanf is	the	same	as	before:

scanf("%d%d%f%f", &i, &j, &x, &y);

• Here’s	how	scanf would	process	the	new	input:
• %d :	Stores	1	into	i and	puts	the	- character	back.
• %d :	Stores	–20	into	j and	puts	the	. character	back.
• %f :	Stores	0.3	into	x and	puts	the	- character	back.	
• %f :	Stores	–4.0	× 103	into	y and	puts	the	new-line	character	back.

35

Ordinary	Characters	in	Format	Strings
• When	it	encounters	one	or	more	white-space	characters	in	a	format	string,	
scanf reads	white-space	characters	from	the	input	until	it	reaches	a	non-
white-space	character	(which	is	“put	back”).

• When	it	encounters	a	non-white-space	character	in	a	format	string,	scanf
compares	it	with	the	next	input	character.
• If	they	match,	scanf discards	the	input	character	and	continues	processing	
the	format	string.

• If	they	don’t	match,	scanf puts	the	offending	character	back	into	the	
input,	then	aborts.

• Examples:
• If	the	format	string	is	"%d/%d" and	the	input	is	•5/•96,	scanf succeeds.
• If	the	input	is	•5•/•96 ,	scanf fails,	because	the	/ in	the	format	string	
doesn’t	match	the	space	in	the	input.

• To	allow	spaces	after	the	first	number,	use	the	format	string	"%d /%d"
instead.

36

Confusing	printf with	scanf (1/2)
• Although	calls	of	scanf and	printfmay	appear	similar,	there	are	significant	
differences	between	the	two.

• One	common	mistake	is	to	put	& in	front	of	variables	in	a	call	of	printf:

• Incorrectly	assuming	that	scanf format	strings	should	resemble	printf
format	strings	is	another	common	error.

• Consider	the	following	call	of	scanf:

• scanf will	first	look	for	an	integer	in	the	input,	which	it	stores	in	the	
variable	i.

• scanf will	then	try	to	match	a	comma	with	the	next	input	character.
• If	the	next	input	character	is	a	space,	not	a	comma,	scanf will	terminate	
without	reading	a	value	for	j.

37

printf("%d %d\n", &i, &j); /*** WRONG ***/

scanf("%d, %d", &i, &j);

Confusing	printf with	scanf (2/2)
• Putting	a	new-line	character	at	the	end	of	a	scanf format	string	is	usually	a	
bad	idea.

• To	scanf,	a	new-line	character	in	a	format	string	is	equivalent	to	a	space;	
both	cause	scanf to	advance	to	the	next	non-white-space	character.

• If	the	format	string	is	"%d\n",	scanf will	skip	white	space,	read	an	integer,	
then	skip	to	the	next	non-white-space	character.

• A	format	string	like	this	can	cause	an	interactive	program	to	“hang.”

38

