Database Management System

Lecture 10

Recovery

* Some materials adapted from R. Ramakrishnan, J. Gehrke and Shawn Bowers

Basic Database Architecture

[Web Forms] [Application Front Ends] [SQL Interface
v
DBMS Plan Executor Parser
Query
. Evaluation
Operator Evaluator Optimizer Engine
v

File and Access Methods

Transaction
Manager ‘JV

Buffer Manager Recovery

Lock v
Manager

Manager

<—> Disk Space Manager

Concurrency Control
Inde)i' Files > System
Data Files ey

Database Management System

Recovery

* Which ACID properties have to do with Recovery?

» Atomicity (all or no actions happen in a transaction)

* Durability (if transaction commits, effects are permanent)

* We like to think updates happen “in place”

e Data is overwritten or deleted on disk directly

* But when you insert, delete, or update a record
* You are modifying data in a buffer (holds a copy of the page)
* The buffer is later copied back out to disk
* |f the system crashes during or after a transaction ...
* then zero or more updates may have been persisted

* This can violate atomicity and durability

Recovery System

* Recovery in a DBMS is based on a Write Ahead Log

e Also used for aborts ...

* The write ahead log
* is (often) placed on a separate disk from the data
* begins after each backup (e.g., nightly)
* Alog record is written for every insert, update, delete, begin trans.,

commit, abort, and checkpoint

* A log record contains:

* <transid, rid, action, old data, new data>

Write-Ahead Logging (WAL)

When system restarts after this crash:

CRASH!
*T1, T2, and T3 committed , |
commit
before crash T @ ¢ . |
commit
* They must be “durable” (persist), T2 ¢ ® commitl
WAL should REDO transactions T3 o o
* T4 and T5 were still running T4 @
and must be aborted T5
T6 Abort

* Effects should not be permanent,
WAL should UNDO transactions

11

 T6 was aborted before the crash

* WAL should UNDO T6
(without overriding redos)

Database Management System

Write Ahead Logs

* “Write ahead” logs must obey these rules

e The Atomic Rule:

* The log entry for an insert, update, or delete must be written to (log) disk

before the change is made to the DB

* The Durability Rule:

 All log entries for a transaction must be written to (log) disk before the

commit record is written to (log) disk

* We know what could have changed (atomic rule) ... and we know

all operations of committed transactions (durability rule)

Example Log

transid rid action old new
T1 A update 100 200
T2 C update 1000 500
T2 D update 500 1000
T2 commit

CRASH!

* What did each transaction do before the crash?

Database Management System

Example Log

transid rid action old new
T1 A update 100 200
T2 C update 1000 500
T2 D update 500 1000
T2 commit

CRASH!

* After the crash, how should the recovery manager ensure each

transaction is atomic?

Database Management System

It is More Complex in Practice

* Sources of Complexities:
* Inserts and deletes
* Updating B+ Trees (e.g., during page splits)
* Rolling back aborts at time of crash

* Crashes during recovery

* Lots of work in the DB community on implementing recovery

correctly

Handling Aborts

Write ahead logs enable transaction aborts

* The DBMS uses the Write Ahead Log and does a regular undo

* Note that in UNDO
* the DBMS applies the “old values” from the Write Ahead

* Log in reverse order for the transaction

Example Abort

transid
Tl
T2
T2
T1
Tl
Tl

rid

> W O O »

action

update
update
update
update
update
Abort

old
ABC
1000
500
300
DEF

new
DEF
500
1000
400
GHI

* A starts as ABC, is updated to DEF, then updated to GHI

* What should A be after the abort (i.e., UNDO)?

Database Management System

11

Checkpoints

Periodically the DBMS creates a checkpoint
* A“snapshot”

* Flush all DB pages to disk
* We know all updates in log prior to checkpoint have been written to disk

* May or may not need require “stop” the system ... waiting until all

transactions finish

* Writes a “checkpoint” record to the log

* Checkpoint record implies DB is in a consistent state

* Checkpoints minimize time required to recover from a crash ... by

telling us how far back to go in the log

