
Database	Management	System

Lecture	10

Recovery

*	Some	materials	adapted	from	R.	Ramakrishnan,	J.	Gehrke and	Shawn	Bowers



Basic	Database	Architecture

Database	Management	System 2



Recovery
•Which	ACID	properties	have	to	do	with	Recovery?
• Atomicity	(all	or	no	actions	happen	in	a	transaction)

• Durability	(if	transaction	commits,	effects	are	permanent)	

•We	like	to	think	updates	happen	“in	place”
• Data	is	overwritten	or	deleted	on	disk	directly	

• But	when	you	insert,	delete,	or	update	a	record
• You	are	modifying	data	in	a	buffer	(holds	a	copy	of	the	page)

• The	buffer	is	later	copied	back	out	to	disk
• If	the	system	crashes	during	or	after	a	transaction	...

• then	zero	or	more	updates	may	have	been	persisted	

• This	can	violate	atomicity	and	durability

Database	Management	System 3



Recovery	System	
• Recovery	in	a	DBMS	is	based	on	a	Write	Ahead	Log
• Also	used	for	aborts	...	

• The	write	ahead	log
• is	(often)	placed	on	a	separate	disk	from	the	data

• begins	after	each	backup	(e.g.,	nightly)	

• A	log	record	is	written	for	every	insert,	update,	delete,	begin	trans.,	
commit,	abort,	and	checkpoint	

• A	log	record	contains:
• <transid,	rid,	action,	old	data,	new	data>	

Database	Management	System 4



Write-Ahead	Logging	(WAL)
When	system	restarts	after	this	crash:	

• T1,	T2,	and	T3	committed	
before	crash
• They	must	be	“durable”	(persist),
WAL	should	REDO	transactions	

• T4	and	T5	were	still	running	
and	must	be	aborted
• Effects	should	not	be	permanent,
WAL	should	UNDO	transactions	

• T6	was	aborted	before	the	crash
• WAL	should	UNDO	T6	
(without	overriding	redos)	

Database	Management	System 5

CRASH!

T1

T2

T3

T4

T5
AbortT6

commit

commit

commit



Write	Ahead	Logs	
• “Write	ahead”	logs	must	obey	these	rules	

• The	Atomic	Rule:
• The	log	entry	for	an	insert,	update,	or	delete	must	be	written	to	(log)	disk	
before	the	change	is	made	to	the	DB	

• The	Durability	Rule:	
• All	log	entries	for	a	transaction	must	be	written	to	(log)	disk	before	the	
commit	record	is	written	to	(log)	disk	

•We	know	what	could	have	changed	(atomic	rule)	...	and	we	know	
all	operations	of	committed	transactions	(durability	rule)	

Database	Management	System 6



Example	Log

•What	did	each	transaction	do	before	the	crash?	
• T1	added	100	to	A

• T2	subtracted	500	from	C,	added	500	to	D,	and	committed	

Database	Management	System 7

transid rid action old new

T1 A update 100 200

T2 C update 1000 500

T2 D update 500 1000

T2 commit

CRASH!



Example	Log

• After	the	crash,	how	should	the	recovery	manager	ensure	each	
transaction	is	atomic?
• Since	T1	did	not	commit,	
its	changes	should	be	“rolled	back”

• That	is,	we	want	to	UNDO	T1

• Here	just	change	the	value	of	A	
on	disk	to	100	(may	not	be	100)

Database	Management	System 8

transid rid action old new

T1 A update 100 200

T2 C update 1000 500

T2 D update 500 1000

T2 commit

CRASH!

• Only T2 committed ...
• so we need to REDO the actions of T2
• Update the value of C on disk to 500
• Update the value of D to 1000 



It	is	More	Complex	in	Practice	
• Sources	of	Complexities:
• Inserts	and	deletes

• Updating	B+	Trees	(e.g.,	during	page	splits)

• Rolling	back	aborts	at	time	of	crash

• Crashes	during	recovery	

• Lots	of	work	in	the	DB	community	on	implementing	recovery	
correctly	

Database	Management	System 9



Handling	Aborts
Write	ahead	logs	enable	transaction	aborts	

• The	DBMS	uses	the	Write	Ahead	Log	and	does	a	regular	undo	

• Note	that	in	UNDO
• the	DBMS	applies	the	“old	values”	from	the	Write	Ahead	

• Log	in	reverse	order	for	the	transaction	

Database	Management	System 10



Example	Abort

• A	starts	as	ABC,	is	updated	to	DEF,	then	updated	to	GHI

•What	should	A	be	after	the	abort	(i.e.,	UNDO)?	
• A	should	be	recovered	its	starting	value	ABC!	

Database	Management	System 11

transid rid action old new

T1 A update ABC DEF

T2 C update 1000 500

T2 D update 500 1000

T1 B update 300 400

T1 A update DEF GHI

T1 Abort

Apply UNDO in Reverse Order 
A = ‘DEF’ ‘ABC’ 
B = 300 

Apply UNDO In Order 
A = ‘ABC’ ‘DEF’ 
B = 300 



Checkpoints	
Periodically	the	DBMS	creates	a	checkpoint	

• A“snapshot”	

• Flush	all	DB	pages	to	disk	
• We	know	all	updates	in	log	prior	to	checkpoint	have	been	written	to	disk	

• May	or	may	not	need	require	“stop”	the	system	...	waiting	until	all	
transactions	finish	

• Writes	a	“checkpoint”	record	to	the	log	

• Checkpoint	record	implies	DB	is	in	a	consistent	state	

• Checkpoints	minimize	time	required	to	recover	from	a	crash	...	by	
telling	us	how	far	back	to	go	in	the	log	

Database	Management	System 12


