
Database	Management	System

Lecture	9

Transaction,	Concurrency	Control

*	Some	materials	adapted	from	R.	Ramakrishnan,	J.	Gehrke and	Shawn	Bowers

Basic	Database	Architecture

Database	Management	System 2

Concurrency	Control	and	Recovery
• Transactions
• A	way	to	define	a	single	“all	or	nothing”	set	of	SQL	actions

• Based	on	a	set	of	properties	(the	“ACID”	properties)

• Enable	concurrency

• The	basis	for	crash	recovery	

Database	Management	System 3

Transactions
• A	“transaction”	is	a	set	of	SQL	statements	(that	modify	a	database)	
chosen	by	a	user	

Database	Management	System 4

Transfer $100 from one account to another (MySQL):
START	TRANSACTION;
SELECT	@A1	:=	balance	
FROM	Account	
WHERE	acctno=500;	

UPDATE	Account	
SET	balance	:=	@A1+100	
WHERE	acctno=500;	

SELECT	@A2	:=	balance	
FROM	Account	
WHERE	acctno=501;	

UPDATE	Account	
SET	balance	:=	@A2-100	
WHERE	acctno=501;	

COMMIT;	

BEGIN	TRANSACTION
READ	balance	from	account	500
ADD	$100	to	balance	of	account	500
WRITE	new	balance	to	account	500
READ	balance	in	account	501
VERIFY	balance	to	see	if	it	contains	at	least	$100	
ABORT	if	balance	is	less	than	$100	
SUBTRACT	$100	from	balance	of	account	501	
WRITE	new	balance	to	account	501	
COMMIT	TRANSACTION

Transactions
• User	(application	developer)	must	
• Begin	transaction	

• Read,	write,	and	modify	statements	intermixed	with	other	programming	
language	statements	(e.g.,	verify)	

• Plus	either	
• Commit	to	indicate	successful	completion	or	

• Abort	to	indicate	that	the	the	transaction	should	be	“rolled	back”	...	i.e.,	
erase	previous	steps	of	transaction	

• To	ensure	database	stays	in	a	consistent/correct	state	
• The	DBMS	and	programmer	must	guarantee	4	properties	of	transactions	

• These	are	called	the	“ACID”	properties

Database	Management	System 5

ACID	Properties
• Atomicity

• Consistency

• Isolation

• Durability

Database	Management	System 6

ACID	Properties

•What	if	the	OS	crashed	half-way	through	the	transaction	...	after	
$100	was	removed	from	the	first	account?	

• The	recovery	manager	of	the	DBMS	must	assure	that	the	$100	is	
deposited	back	to	the	first	account	

• Often	called	“roll	back”

Database	Management	System 7

Atomicity
A transaction happens in its entirety or not at all

ACID	Properties

• The	notion	of	“consistency”	is	specific	to	the	application	
constraints	(defined	by	the	user)	

• Thus	the	programmer	must	ensure	transactions	are	consistent	
• The	DBMS	ensures	the	transaction	is	atomic	

• E.g.,	what	if	the	transaction	only	deposited	$100?	
• Probably	not	consistent	according	to	our	example	application	

Database	Management	System 8

Consistency

If the DB starts in a consistent state, the transaction will
transform it into a consistent state

ACID	Properties

•What	if	an	another	transaction	computed	the	total	bank	balance	
after	$100	was	removed	from	the	first	account?	

• The	concurrency	control	subsystem	must
• ensure	that	all	transactions	run	in	isolation	(i.e.,	don’t	mess	up	other	
transactions)

• unless	the	programmer	chooses	a	less	strict	level	of	isolation	– similar	to	
concurrency	control	in	operating	systems	

Database	Management	System 9

Isolation

Each transaction is “isolated” from other transactions ...
DB state is as if each transaction executed by itself

ACID	Properties

•What	if	after	the	commit	the	OS	crashed	before	the	deposit	was	
written	to	disk?	

• The	recovery	manager	must	assure	that	the	deposit	was	at	least	
logged	(e.g.,	to	make	the	DB	consistent)	

Database	Management	System 10

Durability

If a transaction commits, its changes to the DB state
persist (changes are permanent)

Concurrency
•Why	is	concurrency	important?	
• Better	utilization	of	resources	

• E.g.,	while	one	user/transaction	is	reading	the	disk,	another	can	be	using	the	
CPU	or	reading	another	disk	

• Results	in	better	throughput	and	response	time	

• Many	applications	require	it	(for	performance)	

Database	Management	System 11

Concurrency
•We’ll	look	at	concurrency	in	terms	of	isolation	of	transactions	
• Isolation	is	a	problem	when	multiple	transactions	are	running,	using	the	
same	data,	and	operations	are	interleaved	

• Isolation	ensured	by	the	concurrency	control	subsystem

• This	should	be	familiar	if	you’ve	taken	the	OS	class	...	

Database	Management	System 12

Serial	Schedules
• Consider	these	transactions:	

• Deposit	to	A	and	withdraw	from	B	

• Compute	the	balance	of	A	and	B	

• Apply	interest	to	A	and	B	

• A	schedule	is	an	interleaving	of	the	actions	of	the	transactions	so	that	each	
transaction’s	order	is	preserved	

• A	schedule	of	transactions	is	serial	if	its	transactions	occur	consecutively,	one	
after	another	

Database	Management	System 13

T1:	BEGIN	A	=	A	+	100;	B	=	B	– 100;	END	

T2:	BEGIN	C	=	A	+	B;	END

T3:	BEGIN	A	=	1.06	*	A;	B	=	1.06	*	A;	END	

Serial	Schedules
•Which	of	these	is	a	schedule?	Which	is	serial?

Database	Management	System 14

S1
T1 T3
A=A+100
B=B-100

A=1.06*A
B=1.06*B

S2
T1 T3
A=A+100

B=B-100
A=1.06*A

B=1.06*B

S3
T1 T2
A=A+100

B=B-100
C=A+B

S4
T1 T3
B=B-100
A=A+100

C=A+B

Serial	Schedule!

Non-serial	Schedule!

Non-serial	Schedule!

Not	a	Schedule!

Allowable	Concurrency
•What	is	wrong	with	S3?
• It	does	not	give	the	same	result	as	any	serial	schedule	

• The	DBMS	should
• Allow	serial	schedules	like	S1

• Forbid	interleaved	schedules	like	S3	

• But	what	about	S2?
• Note	that	it	gives	the	same	result	as	S1!

• The	DBMS	should	also	allow	this	schedule!	

• If	the	DBMS	only	allows	serial	schedules,	then	it	becomes	a	batch	
system	(where	is	the	concurrency?)	

Database	Management	System 15

Serializable	Schedules
• A	schedule	is	“serializable”	if	its	effect	on	the	DB	is	the	same	as	the	
effect	on	some	serial	schedule	
• Serial	schedules	are	always	serializable	

• S2	is	serializable,	but	S3	is	not	

• Serializability is	the	same	as	the	isolation	condition	

• The	goal	of	the	concurrency	control	subsystem	is	to	ensure	
serializability

Database	Management	System 16

Schedules	as	Reads	and	Writes
• An	expression	A	=	1.06	*	A	means	– Read	A	from	disk
• Set	A	equal	to	1.06	*A

• Write	A	to	disk	

• Only	the	read and	write to	disk	matter	to	the	DBMS!
• We’ll	use	the	notation	...

• R(A) for	Read	A

• W(A) for	Write	A	

Database	Management	System 17

Schedules	as	Reads	and	Writes	
• These	are	equal	(from	DBMS/concurrency	perspective)	

Database	Management	System 18

S2
T1 T3
A=A+100

B=B-100
A=1.06*A

B=1.06*B

S2
T1 T3
R(A),	W(A)

R(B),	W(B)
R(A),	W(A)

R(B),	W(B)

Conflict	Serializability
• S2	has	a	special	structure	that	makes	it	possible	to	show	that	it	is	
serializable	...	

• Two	actions	are	“nonconflicting”	if	they	are	in	different	transactions	
and	either	they	
• Access	different	data	times	(resources)	

• Or	both	are	reads	

• If	nonconflicting actions	are	commuted	then	the	new	schedule	
gives	the	same	result	

Database	Management	System 19

Conflict	Serializability
•wo	schedules	are	“conflict equivalent”	if
• One	can	be	transformed	into	the	other	by	commuting	(swapping)	
nonconflicting actions	

• A	schedule	is	“conflict serializable”	if	it	is	conflict	equivalent	to	at	
least	one	serial	schedule	

Database	Management	System 20

Thus, every conflict serializable schedule is serializable!
(... but not necessarily the other way around)

Serializability
• Nonconflicting shown	in	Red

Database	Management	System 21

S2
T1 T3
R(A),	W(A)

R(B),	W(B)
R(A),	W(A)

R(B),	W(B)

S2
T1 T3
R(A),	W(A)
R(B),	W(B)

R(A),	W(A)
R(B),	W(B)

This is a serial schedule!
This means S2 is “conflict serializable”
(... and thus is serializable)

commute

Ais used	in	T3,	B	in	T1

Precedence	Graphs
• Verifying conflict serializability is tedious

• There is an easier way!

• Precedence graphs

• One node per transaction

• Edge from Ti to Tj if an action in Ti occurs before an action in Tj and the

actions conflict

• Theorem

• A schedule is conflict serializable if an only if its precedence graph is acyclic

Database	Management	System 22

T1 T2

SERIAL NOT	SERIAL NOT	SERIAL

S1
T1 T3
R(A)
W(A)
R(B)
W(B)

R(A)
W(A)
R(B)
W(B)

S3
T1 T2
R(A)
W(A)

R(B)
W(B)

R(A)
W(A)

R(B)
W(B)

S4
T1 T3
R(A)
W(A)

R(B)
W(B)

R(A)
R(B)
W(C)

Exercise
•With	a	partner,	draw	the	precedence	graphs	for	the	previous	
schedules	(S1-S3)	
• You’ll	first	have	to	convert	them	to	R’s	and	W’s	

Database	Management	System 23

S1
T1 T3
A=A+100
B=B-100

A=1.06*A
B=1.06*B

S3
T1 T2
A=A+100

B=B-100
C=A+B

S4
T1 T3
B=B-100
A=A+100

C=A+B

Serializable,	but..

Exercise
•With	a	partner,	draw	the	precedence	graphs	for	the	previous	
schedules	(S1-S3)	

Database	Management	System 24

T1 T2

T2

T1 T2

T2
Not	
Serializable

S6 is actually serializable:
whichever transaction
writes A last “wins”
Serializable but not
Conflict Serializable

T1 T2 T3
R(A)

R(B)

W(B)

W(A)

W(A)

R(B)

S5
T1 T2 T3
R(A)

W(B)
W(A)

W(A)

S6

Relationships

Database	Management	System 25

Serializable

Conflict		Serializable

Acyclic	Precedence
Graph

Serial

Serializability in	Practice
• Precedence	graphs	give	us	a	simple	way	to	prove	that	a	schedule	is	
(conflict)	serializable	
• But	they	do	not	work	for	all	schedules	

• In	theory,	this	could	be	used	by	a	DBMS	to	check	for	serializability ...	

• In	practice	
• A	DBMS	is	not	presented	with	schedules	...	it	only	sees	a	stream	of	
transactions	

• Instead,	locking is	used	to	achieve	“isolation”

Database	Management	System 26

Locking
• Transactions	must	obtain	a	lock	before	reading	or	updating	
(writing)	data	

• Two	kinds	of	locks:
• Shared	(S)	locks

• Exclusive	(X)	locks	

• To	read	a	record	you	MUST	get	an	S	lock	

• To	write	(modify/delete)	a	record	you	MUST	get	an	X	lock	

• Lock	information	is	maintained	by	a	“lock	manager“

Database	Management	System 27

How	Locks	Work
• If	an	object	has	an	S	(shared)	lock
• new	transactions	can	obtain	S	(shared)	locks	

• but	not X	(exclusive)	locks	

• If	an	object	has	an	X	lock
• no	other	transaction	can	obtain	any lock	on	that	object	

• If	a	transaction	cannot	obtain	a	lock
• It	is	blocked (i.e.,	waits	in	a	queue)	

Database	Management	System 28

Strict	Two	Phase	Locking	Protocol	(Strict	2PL)
• In	Strict	2PL
• Transaction	T	obtains	(S	and	X)	locks	gradually,	as	needed

• T	holds	all	locks	until	end	of	transaction	(commit/abort)	

Database	Management	System 29

time

#	of	Locks
held	by	a	

transaction	T

0
1
2
3
4 All	locks	are	released

at	the	end,	
upon	commit	or	abort

This guarantees serializability!
• Still permits interleaved schedules
• But can lead to deadlock

Strict	Two	Phase	Locking	Protocol	(Strict	2PL)
• Examples

Database	Management	System 30

S6
T1 T2 T3
R(A)

W(A)
W(A)

W(A)

S6	(S2PL)
T1 T2 T3
X(A)
R(A)
W(A)
Commit

X(A)
W(A)
Commit

X(A)
W(A)
Commit

S7	(S2PL)
T1 T2

X(B)
X(B)

X(C)
W(C)
Commit

X(A)
W(A)

X(C)
W(C)
Commit

Strict	Two	Phase	Locking	Protocol	(Strict	2PL)
• Yet	another	example
• T1:W(A),W(B)
• T2:W(B),W(A)

Database	Management	System 31

S7	(S2PL)
T1 T2
X(A)
W(A)

Waiting
for
X(B)
…

X(B)
W(B)

Waiting
for
X(A)
…

DEADLOCK!!

Deadlocks	in	DBMS
•What	is	a	Deadlock?
• A	cycle	of	transactions,	e.g.,T1	...	Tn where	each	Ti is	waiting	for	Ti-1	to	
release	a	lock!

• Causes	these	transactions	to	sleep/wait	forever

• Deadlocks	can	occur	in	strict	2PL

• Solutions
• Always	access	resources	in	the	same	order	(impractical)	

• The	DBMS	will	typically	detect deadlocks

• ...	and	then	abort the	transaction	(it	thinks)	has	used	the	least	resources	

Database	Management	System 32

