Database Management System

Lecture 8

Join

* Some materials adapted from R. Ramakrishnan, J. Gehrke and Shawn Bowers

Today’s Agenda

* Join Algorithm

Database Management System

Join Algorithms

aaaaaaaaaaaaaaaaaaaaaaaa

Join Algorithms

SELECT * Sailors(sid, snam, rating, age)

. Boats(bid, bname, color)
FROM Reserves R, Sailors S Reserves(sid, bid, day)
WHERE R.sid = S.sid

* R=Sisvery common

* R X S followed by a selection is inefficient ... why?
* So we process joins (rather than cross product) when possible

* Much effort in query processing invested in join algorithms

Database Management System

Notations

* M -- pages in R
* P, -- tuples per page
* N --pagesinS$S

* P, -- tuples per page

table R

table S

page

page

tuple

tuple

tuple

tuple

Database Management System

Join Algorithms

* Simple nested loops Join

Join on i-th column of R and j-th column of S
1. foreach tuplerin R do
2. foreachtuplesinSdo

3. if ri==s;then add <r, s> to result

For R>=S ...
e \WWe call R the “outer” relation
e \We call S the “inner” relation

Database Management System

Join Algorithms

* For each tuple in the outer relation R, we scan the entire inner
relation S tuple-by-tuple ...
* If M =1000 pages in R, P, =100 tuples/page
* If N =500 Pagesin S, P = 80 tuples/page
* If 100 I/Os per second
* CostR=S=M+ (P, * M) * N=1000 + 100*1000*500 I/Os
* 50,001,000 I/0Os = 500,010 seconds = 6 days!

Database Management System

Simple Nested Loops Join

* This example highlights
* Simple nested loop join isn’t very practical

* We need algorithms that optimize joins

* There are also the other operations to consider ...

Database Management System

Simple Nested Loops Join

Table 1 on Disk Table 2 on Disk
2. ...
c Memory Buffers 2. ...
3. ... 7o
1. .. 6
5. .. :
9. .. U
1. ..
5...

Database Management System

Simple Nested Loops Join

Table 1 on Disk

2. ...
6. ...
3. ...

v

Memory Buffers

Table 2 on Disk

&

/

* Load 1st page of Table 1 into memory
* Load 1st page of Table 2 into memory

e Start checking join conditon (e.g., R.sid = S.sid)

Database Management System

10

Simple Nested Loops Join

Table 1 on Disk Table 2 on Disk
2. ...
c Memory Buffers 2. ...
3. ... 7o

6. ...
1. 3... = 6
5. .. :

9... T

query Answer

Database Management System

Simple Nested Loops Join

Table 1 on Disk Table 2 on Disk
2. ...
c Memory Buffers 2. ...
3. ... 7o

,
6. ...
1. .. 3 6

5. o
‘ No Match!
A discard
query Answer e -
5...

Database Management System

Simple Nested Loops Join

Table 1 on Disk

o

v

Memory Buffers

Table 2 on Disk

...

into mer

~

nory

6. ...
9. ..

query Answer

Database Management System

Load 2nd page of Table 2

13

Simple Nested Loops Join

Table 1 on Disk

o

v

Memory Buffers

...

query Answer

Database Management System

Table 2 on Disk

Load 3rc

6. ...
9. ..
] page of Tat

le 2

into memory

14

Simple Nested Loops Join

Table 1 on Disk

2. ...
6. ...

Memory Buffers

Table 2 on Disk

3. ..

v

2. ...

C2..0
7

3...

/

query Answer

Go to next tuple in
1st page of Table 1

(Re)Load 1st page of Table2 into memory

Database Management System

15

Simple Nested Loops Join

Table 1 on Disk Table 2 on Disk
2. ..
c Memory Buffers 2. ...
3 7. ..

2.o (Re)Load 2nd page of
Table 2 into memory
1. ... 3 9. .. \ ;

‘ Match!
2...2

6 6 and so forth... -

92

query Answer

Database Management System

Simple Nested Loops Join

Table 1 on Disk Table 2 on Disk
2. ...
c Memory Buffers 2. ...
3. ... 7o
ge of

Does this algorithm work for R.sid < S.sid ? oy
51 Does this work for cross for cross product

{} Match!
2....2. ...

6....6. .. and so forth...

query Answer

v e

Database Management System 17

Join Algorithms (Revisited)

* simple nested loops join

Join on i-th column of R and j-th column of S
1. foreach tuplerin R do

2. foreachtuplesinSdo

3. if ri==s;then add <r, s> to result

* For each tuple in the outer relation R, we scan the entire inner
relation S tuple-by-tuple ...
* If M = 1000 pages in R, P, = 100 tuples/page
* If N =500 Pagesin S, P = 80 tuples/page
* If 100 I/Os per second
* CostR=S=M+ (P, * M) * N=1000 + 100*1000*500 I/Os
* 50,001,000 I/Os = 500,010 seconds = 6 days!

Database Management System

18

Join Algorithms (Revisited)

* “page-oriented” nested loops join

Join on i-th column of R and j-th column of S

1. foreach page of tuples in R do

2. foreach page of tuplesin S do

3. foreach record r and s in memory

4. if r; ==s; then add <r, s> to result
* For each page in R, get each page in S ...

 If M =1000 pages in R,N = 500 Pages in S,and 100 I/Os per sec.
e CostR=S=M+M* N=1000 + 1000*500 = 501,000 1/0Os

* CostS=*R=N+N*M =500 +500*1000 = 500,500 I/Os

* Thus, we typically use smaller relation as outer relation

* 500,500 I/Os = 1.4 hours

Page-Oriented Nested Loops Join

Table 1 on Disk Table 2 on Disk
2. ...
c Memory Buffers 2. ...
3. ... 7o
1. ..
6. ..
5... :
9. .. U
1. ..
5...

Database Management System

Page-Oriented Nested Loops Join

Table 1 on Disk

2. ...
6. ...
3. ...

Memory Buffers

Table 2 on Disk

N

i

/

Load 1st page of Table 1 into memory
Load 1st page of Table 2 into memory

Check every combination of records in buffers

Database Management System

21

Page-Oriented Nested Loops Join

Table 1 on Disk

2. ..
6. ...
3. ..

Memory Buffers

Table 2 on Disk

N

v

(3o

N

Do the same thing for 2nd page in table 2

Database Management System

22

Page-Oriented Nested Loops Join

Table 1 on Disk

2. ..
6. ...
3. ..

Memory Buffers

Table 2 on Disk

N

i

Do the same thing for 3rd page in table 2

Database Management System

N

23

Page-Oriented Nested Loops Join

Table 1 on Disk

2. ..
6. ...
3. ..

Memory Buffers

Table 2 on Disk

v

/

9.

Repeat for the 2nd page of Table 1
and so on...

Database Management System

24

Another Alternative Algorithm: Use Buffer

* "Block” nested loops join

Join on i-th column of R and j-th column of S

1. Assume B pages of memory in buffer

2. Assign one page of memory in buffer to output
3. Load B-2 pages of tuples from R

4. Load 1 page of tuples from S

5. foreach record r and s in memory

8. if ri == sj then add <r, s> to result

* For multiple pages in R, get each page in S ... check all pairs and output —
If M = 1000 pages in R,N =500 Pages in S,B = 35,and 100 I/Os per sec.
« CostR=S=M+(M/(B-2))* N =1000 + (1000/33)*500 = 16,000 1/Os
e CostS*R=N+N*M=500+(500/33)*1000 = 15,500 I/Os
* 15,500 I/Os = 3 minutes

Block Nested Loops Join

Table 1 on Disk

Table 2 on Disk

Database Management System

(25' Memory Buffers 2. ..
S S=
- T 9. ..
«<
* Load 1st page of Table 2 into memory 1
* Load as many pages of Table 1 into memory as 5. ...
possible

Check every combination of records in buffers

26

Yet Another Alternative Algorithm: Use Index

* Index nested loops join

Join on i-th column of R and j-th column of S

1. Assuming there is an index on the j-th column of S
2. foreach tuplerinR do

3. find tuples s in S with matching search key r,
4. for each such s, add <r, s> to result

* For records in R, use search key to obtain matching S records
 If M =1000 pages in R, PR =100 tuples/page, and 100 I/Os per sec.

* Cost R<S =M+ (M*PR) * cost of finding matching S tuples
= 1000 + (1000*100) * 3 = 300,100 1/Os = 1 hour

* Cost S~ R =500+ (500*80)*4 = 160,500 |/Os = 30 minutes
* If probing Ris 2 I/Os, then = 15 minutes

Page-Oriented Nested Loops Join

Table 1 on Disk

2. ...
6. ...
3. ...

Memory Buffers

Table 2 on Disk

N

i

6. ...
3...

Table 2 index

* Load 1st page of Table 1 into memory
* For each tuple in page, probe index of Table 2
e Qutput resulting tuples

Database Management System

28

And Another Alternative Algorithm: Sort

* If each relation is sorted on the join attributes ...

* Cost of joining R and S can be reducedto M + N

e ComparelstinRand 1stinS
2. ... * If match output <r, s>
3 3. .. * Otherwise discard smallest and repeat

N

e But what if R and S are not sorted?

* We need to sort them

* The Challenge: The tables do not fit into memory!

* The Solution: External Sorting

* Note that other relational operator algorithms also require sorting

Database Management System 29

N-Way External Sorting

* Employ the “merge” step in the mergesort algorithm

* On the first pass:
* Read pages of file until memory (buffers) full
 Sort data in buffer pages on (search/sort) key

e Write result back out to disk

* Result is a “sorted run” ...
A sorted run consists of a (sub-) set of small sorted files

N-Way External Sorting

* Employ the “merge” step in the mergesort algorithm

* Once we have a “sorted run”
* Do an “N-way” merge
... rather than a 2-way merge as in mergesort

e N=B-—1isthe number of available buffers

* One buffer reserved for output
* Results in a set of additional passes

* In each pass we create larger sorted sub-files

Ex: 4 Buffer Pages

3 20 11 10 12 4 15 26 8
25 13 2 19 5 22 16 9 18
14 6 21 1 24 27 7 17 23
1 6 13 20 4 9 16 24 8
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
New File of 3 sorted sub-files
First Pass:

load B = 4 pages, sort, and store as sorted sub-files

Database Management System

32

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
Load Buffer —
) . q Merge B — 1 of the
2 5 18 sorted sub files
3 7 23
(sorted runs)

Database Management System

33

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
Output . q Merge B — 1 of the
15 Page .
5 18 sorted sub files
7 23
(sorted runs)
1
2

Database Management System

34

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
Loafj Buffer . p 5 Merge B—1 Of the
again .
10 5 18 sorted sub files
11 7 23
(sorted runs)
1
2

Database Management System

35

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
;)t;tput q Merge B — 1 of the
nd Page .
10 18 sorted sub files
11 7 23
(sorted runs)
1 4
2 5
3 6

Database Management System

36

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
;);Jtput q Merge B — 1 of the
'“ Page .
10 18 sorted sub files
11 23
(sorted runs)
1 4 7
2 5
3 6

Database Management System

37

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
Loafj Buffer 5 5 Merge B—1 Of the
again .
10 12 18 sorted sub files
11 15 23
(sorted runs)
1 4 7
2 5
3 6

Database Management System

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
;);Jtput Merge B — 1 of the
'“ Page .
10 12 18 sorted sub files
11 15 23
(sorted runs)

1 4 7
2 5 8
3 6 9

Database Management System

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
OtﬁtpUt Merge B — 1 of the
4™ Page .
12 18 sorted sub files
15 23
(sorted runs)
1 4 7 10
2 5 8 11
3 6 9

Database Management System

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
Loafj Buffer 12 Merge B—1 Of the
again .
14 12 18 sorted sub files
19 15 23
(sorted runs)
1 4 7 10
2 5 8 11
3 6 9

Database Management System

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
Output > Merge B — 1 of the
4th Page .
14 18 sorted sub files
19 15 23
(sorted runs)
1 4 7 10
2 5 8 11
3 6 9 12

Database Management System

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
Loafj Buffer T Merge B — 1 of the
again .
17 18 sorted sub files
19 22 23
(sorted runs)
1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

Database Management System

43

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
gttjtput Merge B — 1 of the
Page .
sorted sub files
19 22 23
(sorted runs)
1 4 7 10 13 16
2 5 8 11 14 17
3 6 9 12 15 18

Database Management System

44

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
Otl;tput Merge B — 1 of the
7' Page .
sorted sub files
22 23
(sorted runs)
1 4 7 10 13 16 19
2 5 8 11 14 17
3 6 9 12 15 18

Database Management System

45

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
Loafj Buffer 50 Merge B — 1 Of the
again .
21 sorted sub files
25 22 23
(sorted runs)
1 4 7 10 13 16 19
2 5 8 11 14 17
3 6 9 12 15 18

Database Management System

46

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
Output Merge B — 1 of the
7th Buffer .
sorted sub files
25 22 23
(sorted runs)
1 4 7 10 13 16 19
2 5 8 11 14 17 20
3 6 9 12 15 18 21

Database Management System

47

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 8
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23

In this case 3-way merge

Buffer
Output Merge B — 1 of the
8th Buffer .
sorted sub files
25 23
(sorted runs)
1 4 7 10 13 16 19 22
2 5 8 11 14 17 20
3 6 9 12 15 18 21

Database Management System

48

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
Loafj Buffer - Merge B — 1 of the
again .
26 sorted sub files
25 27 23
(sorted runs)
1 4 7 10 13 16 19 22
2 5 8 11 14 17 20
3 6 9 12 15 18 21

Database Management System

49

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 3
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
Output Merge B — 1 of the
8th Buffer .
26 sorted sub files
25 27
(sorted runs)
1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

Database Management System

50

Ex: 4 Buffer Pages

1 6 13 20 4 9 16 24 8
2 10 14 21 5 12 17 26 18
3 11 19 25 7 15 22 27 23
Buffer In this case 3-way merge
Output Merge B — 1 of the
oth Buffer i
DONE!! sorted sub files
(sorted runs)
1 4 7 10 13 16 19 22 25
2 5 8 11 14 17 20 23 26
3 6 9 12 15 18 21 24 27

Database Management System

51

N-Way External Sorting

* Merge may require multiple passes

* At each merge pass the number of sub-files is reduced by B—-1

initial sort

15t Merge

2" Merge

Database Management System

52

N-Way External Sorting

* The cost:
* Each pass does 2*M 1/Os (for M pages in table)
* We read and write the entire file (all pages) in each pass

* So ... how many passes?

* Number of passes depends on buffer space available
* Passes = [LogB -1 (M/B)]... Why M/B?
* Can sort 100 million pages in 4 passes w/ 129 pages of memory

* Can sort M pages using B memory pages in 2 passes if VM < B (often true)

Sort Merge Join

* Sort R on join attribute (if not already sorted)
* Sort S on join attribute (if not already sorted)

* Merge Rand S

* Scan of R until R-tuple > current S-tuple

* Then scan S until S-tuple > R-tuple

e Repeat until R-tuple = S-tuple

At this point, we have a match, and output

* Then resume scanning Rand S

Sort Merge Join

* Quter relation R is scanned once
* Each time an R-tuple r matches first S-tuple
* We form a “group” of S-tuples that match r
* Each such group is scanned once per matching R tuple
* Either:
 This group fits into memory (and the scan is “free”)

* Or we have extra page I/Os (to reread the group)

Database Management System

55

Sort Merge Join

* Best case cost (all matches in memory):

* Cost to sort R + Cost to sort S + (M+N)

* Worst case cost (all R and S have same value)

* Matching group is the entire S relation

e Costto SortR + CosttosortS+ M + M*N

* ... note this is worse than page-oriented nested loops! (since you also have to
sort R and S)

Sort Merge Join

* For Reserves and Sailors:
* Reserves has 1000 pages
e Sailors has 500 pages
* With 35 pages in the buffer, each sorted in 2 passes

* Best case cost is:

e 4*1000 + 4*500 + 1000 + 500 = 7500 1/0s = 1 minute

* ... multiply by 4 since it takes 2 passes and each pass reads and writes each

page of file

Database Management System

57

Sorting using B+ Trees

* Lets say the table we want to sort has a B+ Tree defined on the

sorting attributes
* Can the B+ Tree help to retrieve records in order?

* [t can help if the B+ Tree is clustered

* We can retrieve records in order by traversing leaf pages

* Records either stored in leaf pages or can be obtained from leaf pages

* [t can be a very bad idea if B+ Tree is not clustered

 Why?

Database Management System 58

Sorting via Clustered B+ Trees

e Cost for clustered case

* Root to the left-most leaf, then retrieve all pages

e What if it is unclustered?

» Additional cost of retrieving data records

* Each page fetched just once

* Always better than external sorting!

Database Management System

59

Sorting via Clustered B+ Trees

* Similar to the case of doing a range query

* unclustered case - data entries
* Each entry on one leaf page can point to a different page

* In general, one I/O per data record!

Database Management System

60

Hash Join

* Simple case: entire S table fits into main memory

* Build an in-memory hash index for S (“build” phase)

* recall a hash index maps keys to buckets of records

* Scan R and find matching S-records (“probe” phase)

* this is identical to the index nested loops join

* Costis:
* Cost to read R (the outer relation)
* Cost toread S (the inner relation + build index)
* Each time we read a page in R we find all matches with S

e So total costis M + N!

Hash Join

* What do we do if S does not fit into memory?
» Define a hash function h that can be used to partition Rand S
* Each S partition should be small enough to fit into main memory
* Apply h to R and S and store each resulting partition in a file

* Do the simple case (index nested loop join) on each pair of matching

partitions (files)

Hash Join

foreach rin R, h(r)

Probe R partitions

R partitions S partitions
P1 P1
P? foreach sin S, h(s) P2
Pn Pn

Store each in File

P1

v

P2 >

P1

simple hash join

P2

Pn —

Pn

Database Management System

Store each in File

Probe S partitions

63

Hash Join

* Partitions:
* We assume that the number of partitions k < B

* Each partition may have many pages

* Cost of Hash Join:
* 2*M to partition R (read and write)
* 2*N to partition S (read and write)
* Cost to join partitions: M + N
* Total cost is: 3*(M+N)
* For reserves and sailors:

* 3*%(1000 + 500) = 4500 1/Os = 45 seconds

Database Management System

64

Sort Merge Join vs. Hash Join

* Sort-Merge Join
* Less sensitive to data “skew” (e.g., clusters of similar values)

* Result is sorted (... more on this later)

e Hash Join

» Highly parallelizable (join partitions concurrently)

* For inequality conditions (e.g., R.name < S.name)

* Hash and Sort-Merge Join not applicable

* Block nested loops likely to be the best approach

Comparison of (approximate) costs

Join Algorithm

Simple Nested Loops Join 50,000,000 6 days

Page Nested Loops Join 500,000 1.4 hours

Block Nested Loops Join 16,000 3 minutes

Index Nested Loops Join 160,500 30 minutes
Sorted-merge Join 7500 (at best) 1 minute (at best)
Hash Join 4500 45 seconds
Assuming:

R has 1000 pages, 100 tuples/page
S has 500 pages, 80 tuples/page
35 buffer pages

100 I/Os per second

Database Management System 66

For Next Week

e Read
e Ch. 16

Database Management System

67

