Database Management System

Lecture 8

Join

Today's Agenda

• Join Algorithm

Join Algorithms

Join Algorithms

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

Sailors(sid, snam, rating, age) Boats(bid, bname, color) Reserves(sid, bid, day)

- R ⋈ S is very common
 - R X S followed by a selection is inefficient ... why?
 - So we process joins (rather than cross product) when possible
 - Much effort in query processing invested in join algorithms

Notations

- M -- pages in R
- P_R -- tuples per page
- N -- pages in S
- P_S -- tuples per page

table R page

tuple

tuple

table S

page

tuple

tuple

Join Algorithms

Simple nested loops Join

Join on i-th column of R and j-th column of S

- 1. foreach tuple r in R do
- 2. foreach tuple s in S do
- 3. if $r_i == s_j$ then add $\langle r, s \rangle$ to result

For $R \bowtie S$...

- We call R the "outer" relation
- We call S the "inner" relation

Join Algorithms

- For each tuple in the outer relation R, we <u>scan</u> the entire inner relation S tuple-by-tuple ...
 - If M = 1000 pages in R, $P_R = 100$ tuples/page
 - If N = 500 Pages in S, $P_S = 80$ tuples/page
 - If 100 I/Os per second
 - Cost R \bowtie S = M + (P_R * M) * N = 1000 + 100*1000*500 I/Os
 - 50,001,000 I/Os ≈ 500,010 seconds ≈ **6 days**!

- This example highlights
 - Simple nested loop join isn't very practical
 - We need algorithms that optimize joins
- There are also the other operations to consider ...

Table 1 on Disk

2. ...

6. ...

3. ...

9. ...

Memory Buffers

Table 2 on Disk

2. ...

7. ...

6. ...

Table 1 on Disk

- 2. ...
- 6. ...
- 3. ...

- 1. ...
- 5. ...
- 9. ...

Memory Buffers

3. ...

Match!

query Answer

Table 2 on Disk

- 2. ...
- 7. ...

- 6. ...
- 9. ..

- 1. ...
- 5. ...

Table 1 on Disk

- 2. ...
- 6. ...
- 3. ...

- 1. ...
- 5. ...
- 9. ...

Memory Buffers

3. ...

query Answer

No Match! discard 2. ... 2. ...

Table 2 on Disk

- 2. ...
- 7. ...

- 6. ...
- 9. ..

1. ..

5. ...

Join Algorithms (Revisited)

simple nested loops join

Join on i-th column of R and j-th column of S

- 1. foreach tuple r in R do
- 2. foreach tuple s in S do
- 3. if $r_i == s_i$ then add $\langle r, s \rangle$ to result
- For each tuple in the outer relation R, we <u>scan</u> the entire inner relation S tuple-by-tuple ...
 - If M = 1000 pages in R, $P_R = 100$ tuples/page
 - If N = 500 Pages in S, $P_s = 80$ tuples/page
 - If 100 I/Os per second
 - Cost R \bowtie S = M + (P_R * M) * N = 1000 + 100*1000*500 I/Os
 - 50,001,000 I/Os ≈ 500,010 seconds ≈ **6 days**!

Join Algorithms (Revisited)

- "page-oriented" nested loops join
 Join on i-th column of R and j-th column of S
 - 1. foreach page of tuples in R do
 - 2. foreach page of tuples in S do
 - 3. foreach record r and s in memory
 - 4. if $r_i == s_i$ then add $\langle r, s \rangle$ to result
- For each page in R, get each page in S ...
 - If M = 1000 pages in R, N = 500 Pages in S, and 100 I/Os per sec.
 - Cost R \bowtie S = M + M * N = 1000 + 1000*500 = 501,000 I/Os
 - Cost S \bowtie R = N + N * M = 500 + 500*1000 = 500,500 I/Os
 - Thus, we typically use smaller relation as outer relation
 - 500,500 I/Os ≈ **1.4 hours**

Table 1 on Disk

2. ...

6. ...

3. ...

9. ...

Memory Buffers

Table 2 on Disk

2. ...

7. ...

6. ...

- Load 1st page of Table 1 into memory
- Load 1st page of Table 2 into memory
- Check every combination of records in buffers

1. ...

5. ...

Another Alternative Algorithm: Use Buffer

- "Block" nested loops join
 - Join on i-th column of R and j-th column of S
 - 1. Assume B pages of memory in buffer
 - 2. Assign one page of memory in buffer to output
 - 3. Load B-2 pages of tuples from R
 - 4. Load 1 page of tuples from S
 - 5. foreach record r and s in memory
 - 8. if ri == sj then add <r, s> to result
- For multiple *pages* in R, get each *page* in S ... check all pairs and output If M = 1000 pages in R, N = 500 Pages in S, B = 35, and 100 I/Os per sec.
 - Cost R \bowtie S = M + (M / (B 2)) * N = 1000 + (1000/33)*500 \approx 16,000 I/Os
 - Cost S \bowtie R = N + N * M = 500 + (500/33)*1000 \approx 15,500 I/Os
 - 15,500 I/Os ≈ **3 minutes**

Block Nested Loops Join

• Check every combination of records in buffers

possible

Yet Another Alternative Algorithm: Use Index

- Index nested loops join
 - Join on i-th column of R and j-th column of S
 - 1. Assuming there is an index on the j-th column of S
 - 2. foreach tuple r in R do
 - 3. find tuples s in S with matching search key r_i
 - 4. for each such s, add <r, s> to result
- For records in R, use search key to obtain matching S records
 - If M = 1000 pages in R, PR = 100 tuples/page, and 100 I/Os per sec.
 - Cost R \bowtie S = M + (M*PR) * cost of finding matching S tuples = 1000 + (1000*100) * 3 \approx 300,100 I/Os \approx 1 hour
 - Cost S \bowtie R = 500 + (500*80)*4 \approx 160,500 I/Os \approx **30 minutes**
 - If probing R is 2 I/Os, then ≈ 15 minutes

Table 2 on Disk

2. ... 7. ...

6. ... 9. ...

- Load 1st page of Table 1 into memory
- For each tuple in page, probe index of Table 2
- Output resulting tuples

1. ...

5. ...

And Another Alternative Algorithm: Sort

- If each relation is sorted on the join attributes ...
- Cost of joining R and S can be reduced to M + N

- Compare 1st in R and 1st in S
- If match output <r, s>
- Otherwise discard smallest and repeat

- But what if R and S are not sorted?
 - We need to sort them
 - The Challenge: The tables do not fit into memory!
 - The *Solution*: External Sorting
 - Note that other relational operator algorithms also require sorting

N-Way External Sorting

- Employ the "merge" step in the mergesort algorithm
- On the first pass:
 - Read pages of file until memory (buffers) full
 - Sort data in buffer pages on (search/sort) key
 - Write result back out to disk
- Result is a "sorted run" ...

A sorted run consists of a (sub-) set of small sorted files

N-Way External Sorting

- Employ the "merge" step in the mergesort algorithm
- Once we have a "sorted run"
 - Do an "N-way" merge
 - ... rather than a 2-way merge as in mergesort
 - N = B 1 is the number of available buffers
 - One buffer reserved for output
- Results in a set of additional passes
- In each pass we create larger sorted sub-files

New File of 3 sorted sub-files

First Pass:

load B = 4 pages, sort, and store as sorted sub-files

Buffer

In this case 3-way merge

Load Buffer

Merge B - 1 of the sorted sub files (sorted runs)

Buffer In this case 3-way merge

Output 1st Page

Merge B -1 of the sorted sub files (sorted runs)

1 2 3

Buffer In this case 3-way merge

Load Buffer again

Merge B -1 of the sorted sub files (sorted runs)

1 2 3

Buffer In this case 3-way merge

Output 2nd Page

Merge B -1 of the sorted sub files (sorted runs)

Buffer In this case 3-way merge

Output 3rd Page

Buffer In this case 3-way merge

Load Buffer again

Buffer In this case 3-way merge

Output 3rd Page

Buffer In this case 3-way merge

Output 4th Page

Buffer In this case 3-way merge

Load Buffer again

Buffer In this case 3-way merge

Output 4th Page

Buffer In this case 3-way merge

Load Buffer again

Buffer In this case 3-way merge

Output 6th Page

Buffer In this case 3-way merge

Output 7th Page

Buffer In this case 3-way merge

Load Buffer again

Buffer In this case 3-way merge

Output 7th Buffer

Output 8th Buffer

Buffer In this case 3-way merge

Load Buffer again

Buffer In this case 3-way merge

Output 8th Buffer

Buffer In this case 3-way merge

Output 9th Buffer DONE!!

1 2 3	4	7	10	13	16	19	22	25
	5	8	11	14	17	20	23	26
	6	9	12	15	18	21	24	27
3	6	9	12	15	18	21	24	27

N-Way External Sorting

- Merge may require multiple passes
- At each merge pass the number of sub-files is reduced by B 1

N-Way External Sorting

• The cost:

- Each pass does 2*M I/Os (for M pages in table)
- We read and write the entire file (all pages) in each pass
- So ... how many passes?
- Number of passes depends on buffer space available
 - Passes = $\lceil Log B 1 (M/B) \rceil$... Why M/B?
 - Can sort 100 million pages in 4 passes w/ 129 pages of memory
 - Can sort M pages using B memory pages in 2 passes if VM < B (often true)

- Sort R on join attribute (if not already sorted)
- Sort S on join attribute (if not already sorted)
- Merge R and S
 - Scan of R until R-tuple ≥ current S-tuple
 - Then scan S until S-tuple ≥ R-tuple
 - Repeat until R-tuple = S-tuple
 - At this point, we have a match, and output
 - Then resume scanning R and S

- Outer relation R is scanned once
 - Each time an R-tuple r matches first S-tuple
 - We form a "group" of S-tuples that match r
 - Each such group is scanned once per matching R tuple
 - Either:
 - This group fits into memory (and the scan is "free")
 - Or we have extra page I/Os (to reread the group)

- Best case cost (all matches in memory):
 - Cost to sort R + Cost to sort S + (M+N)
- Worst case cost (all R and S have same value)
 - Matching group is the entire S relation
 - Cost to Sort R + Cost to sort S + M + M*N

• ... note this is worse than page-oriented nested loops! (since you also have to sort R and S)

- For Reserves and Sailors:
 - Reserves has 1000 pages
 - Sailors has 500 pages
 - With 35 pages in the buffer, each sorted in 2 passes
- Best case cost is:
 - $4*1000 + 4*500 + 1000 + 500 = 7500 I/Os \approx 1 minute$

• ... multiply by 4 since it takes 2 passes and each pass reads and writes each page of file

Sorting using B+ Trees

- Lets say the table we want to sort has a B+ Tree defined on the sorting attributes
- Can the B+ Tree help to retrieve records in order?
- It can help if the B+ Tree is clustered
 - We can retrieve records in order by traversing leaf pages
 - Records either stored in leaf pages or can be obtained from leaf pages
- It can be a very bad idea if B+ Tree is not clustered
 - Why?

Sorting via Clustered B+ Trees

- Cost for clustered case
 - Root to the left-most leaf, then retrieve all pages
- What if it is unclustered?
 - Additional cost of retrieving data records
 - Each page fetched just once
- Always better than external sorting!

Sorting via Clustered B+ Trees

- Similar to the case of doing a range query
- unclustered case data entries
 - Each entry on one leaf page can point to a different page
 - In general, one I/O per data record!

- Simple case: entire S table fits into main memory
 - Build an in-memory hash index for S ("build" phase)
- recall a hash index maps keys to buckets of records
 - Scan R and find matching S-records ("probe" phase)
- this is identical to the index nested loops join
- Cost is:
 - Cost to read R (the outer relation)
 - Cost to read S (the inner relation + build index)
 - Each time we read a page in R we find all matches with S
 - So total cost is M + N!

- What do we do if S does not fit into memory?
 - Define a hash function h that can be used to partition R and S
 - Each S partition should be small enough to fit into main memory
 - Apply h to R and S and store each resulting partition in a file
 - Do the simple case (index nested loop join) on each pair of matching partitions (files)

• Partitions:

- We assume that the number of partitions k < B
- Each partition may have many pages
- Cost of Hash Join:
 - 2*M to partition R (read and write)
 - 2*N to partition S (read and write)
 - Cost to join partitions: M + N
 - Total cost is: 3*(M+N)
 - For reserves and sailors:
 - $3*(1000 + 500) = 4500 I/Os \approx 45 seconds$

Sort Merge Join vs. Hash Join

- Sort-Merge Join
 - Less sensitive to data "skew" (e.g., clusters of similar values)
 - Result is sorted (... more on this later)
- Hash Join
 - Highly parallelizable (join partitions concurrently)
- For inequality conditions (e.g., R.name < S.name)
 - Hash and Sort-Merge Join not applicable
 - Block nested loops likely to be the best approach

Comparison of (approximate) costs

Join Algorithm	I/Os	Time	
Simple Nested Loops Join	50,000,000	6 days	
Page Nested Loops Join	500,000	1.4 hours	
Block Nested Loops Join	16,000	3 minutes	
Index Nested Loops Join	160,500	30 minutes	
Sorted-merge Join	7500 (at best)	1 minute (at best)	
Hash Join	4500	45 seconds	

Assuming:

- R has 1000 pages, 100 tuples/page
- S has 500 pages, 80 tuples/page
- 35 buffer pages
- I 00 I/Os per second

For Next Week

- Read
 - Ch. 16