
Database	Management	System
Lecture	6

Storage	and	File	Organization

Index

*	Some	materials	adapted	from	R.	Ramakrishnan,	J.	Gehrke and	Shawn	Bowers



Today’s	Agenda
• Storing	data	in	the	disk

• Index
• ISAM

• B+	tree

2Database	Management	System



Storing	data

3Database	Management	System



Basic	Database	Architecture

Database	Management	System 4



Bird	eye	view	on	query	optimization
• Given	an	SQL	query	

• Translate	it	into	relational	algebra	

• Find	equivalent	query	plans
• different	ways	to	order	operators

• different	ways	to	implement	each	operator	

• Pick	a	cheap	plan	(per	estimated	cost)	Execute	the	plan	...	

•We	are	going	to	learn
• How	are	operators	implemented?

• How	is	data	stored	on	disk?

Database	Management	System 5



The	Plan

Database	Management	System 6

Query	Optimization

Relational	Operator	Algorithms

File	and	Access	Methods

Buffer	Management

Disk	Space	Management

DB

Relational	Algebra	Query	Tree

4

3

2

1Disk	access	is	expensive!!

Search	for	a	cheap	plan

Join	Algorithm,	etc

Heap,	index,	etc.

O/S	issues
(They	may	be	handled	by
a	DBMS	or	by	the	OS)



Types	of	Physical	Storage
• Cache
• fastest	and	most	costly	form	of	storage

• volatile	...	content	lost	if	power	failure,	system	crash,	etc.	

• managed	by	the	hardware	and/or	operating	system	

•Main	Memory
• fast	access	

• in	most	applications,	too	small	to	store	an	entire	DB	

• Volatile	

Database	Management	System 7

Note: many “main memory only” databases are available 
... and used increasingly for applications with small storage requirements and as memory 
sizes increase 



Types	of	Physical	Storage
•Magnetic	(“Hard”)	Disk	Storage	
• primary	medium	for	long-term	storage	of	data	

• typically	can	store	entire	database	(all	relations	and	access	structures)	

• data	must	be	moved	from	disk	to	main	memory	for	access	and	written	
back	for	storage	

• direct-access,	i.e.,	it	is	possible	to	read	data	on	disk	in	any	order	

• usually	survives	power	failures	and	system	crashes	(disk	failure	can	

• occur,	but	less	frequently)	We	focus	on	disk	storage!	

•We	focus	on	disk	storage!

Database	Management	System 8



Components	of	a	Disk

Database	Management	System 9

spindle

sectortracks

disk	head
ar
m
	a
ss
em

bl
y

platter

rotates	7200rpm

read/write	
at	any	one	time



To	read/write	a	data	from	the	disk
• Position	arm	(seek)

•wait	for	data	to	spin	by

• read/write	from	the	location

Database	Management	System 10



Components	of	a	Disk
• Each	track	is	made	up	of	fixed	size	sectors

• page	size	is	a	multiple	of	sector	size
• unit	of	transfer

• size	depends	on	system	and	configuration

• all	tracks	that	you	can	reach	from	one	position	of	the	arm	is	called	
cylinder

Database	Management	System 11



Cost	of	accessing	data	on	a	disk
• Time	to	access	(read/write)	data

• Key	to	lower	I/O	cost:	reduce	seek	&	rotational	delays!	you	have	to	
wait	for	the	transfer	time,	no	matter	what	

• Query	cost	often	measured	in	number	of	page	I/Os
• often	simplified	to	assume	each	page	I/O	costs	the	same

• random	I/O	is	more	expensive	than	Sequential	I/O	

Database	Management	System 12

seek time = moving arms to position disk head on track 
rotational delay = waiting for sector to rotate under head 
transfer time = actually moving data to/from disk surface 



Memory	Vs.	Disk	access	Time
• Lets	say	disk	access	time	(all	three	costs	together)	is	about	5	
milliseconds	(ms)	

• and	memory	access	time	is	about	50	nanoseconds	(ns)	
• 5	ms =	5,000,000	ns
therefore	disk	access	is	100,000	times	slower	than	memory	access!	

Database	Management	System 13



Block	(page)	size	Vs.	Record	Size
• The	terms	“block”	and	“page”	are	often	used	interchangeably	...	
• ...	(e.g.,	depending	on	how	a	DBMS	is	implemented)	

• A	block	generally	refers	to	a	contiguous	sequence	of	sectors	from	a	
single	track	
• unit	of	(physical)	storage	on	a	disk,	and	transfer	between	main	memory	and	
disk	

• a	page	is	a	“block”	in	logical	memory	...	smallest	unit	of	transfer	supported	
by	an	OS	(virtual	memory,	paging)	

• Pages/blocks	range	in	size	(typically	around	512b	to	8kb)

Database	Management	System 14



Block	(page)	size	Vs.	Record	Size
• A	database	system	seeks	to	minimize	the	number	of	block	transfers	
between	disk	and	main	memory	

• Transfer	can	be	reduced	by	keeping	as	many	blocks	as	possible	in	
main	memory	
• Buffer	is	the	portion	of	main	memory	available	to	store	copies	of	disk	blocks	

• Buffer	manager	is	responsible	for	allocating	and	managing	buffer	space	

• If	possible,	store	file	blocks	sequentially:	
• Consecutive	blocks	on	same	track,	followed	by	

• Consecutive	tracks	on	same	cylinder,	followed	by	

• Consecutive	cylinders	adjacent	to	each	other	
• First	two	incur	no	seek	time	or	rotational	delay,	seek	for	third	is	only	one	
track

Database	Management	System 15



Buffer	Manager
• Program	calls	buffer	manager	when	it	needs	blocks	from	disk	
• the	program	is	given	the	address	of	the	block	in	main	memory,	if	it	is	already	
in	the	buffer	

• if	block	not	in	buffer,	the	buffer	manager	adds	it	...	

• Replaces	(throws	out)	other	blocks	to	make	space	

• The	thrown	out	block	is	is	written	back	to	the	disk	if	it	was	modified	
(since	last	write	to	disk)	

• Once	space	is	allocated,	the	buffer	manager	reads	in	the	block	from	disk	
to	the	buffer	and	returns	the	address	

Database	Management	System 16



Buffer	Replacement	Policies
• Operating	systems	often	replace	the	block	least	recently	used	(LRU	
strategy)	
• In	LRU,	past	(use)	is	a	predictor	of	future	(use)

• Alternatively,	queries	have	well-defined	access	patterns	(e.g.,	
sequential	scans)	
• A	database	system	can	exploit	user	queries	to	predict	block	accesses	

• LRU	can	be	an	inefficient	strategy	for	certain	access	patterns	that	involve	
(e.g.,	repeated)	sequential	scans	

• The	query	optimizer	can	provide	hints	on	replacement	strategies	

Database	Management	System 17



Buffer	Replacement	Policies

•Most	recently	used	(MRU)	strategy	
• Pin	the	block	currently	being	processed	

• After	final	tuple	of	that	block	processed,	the	block	is	unpinned	and	becomes	
the	most	recently	used	block	

• Keeps	older	blocks	around	longer	(good	for	scan	problem)	

• Buffer	manager	can	use	statistics	regarding	the	probability	that	a	
request	will	reference	a	particular	relation	

Database	Management	System 18

Pinned block = not allowed to be written back to disk 



File	Organization
• A	database	can	be	stored	as	a	collection	of	files	

• Row-oriented	storage
• Each	file	is	a	sequence	of	records	

• Each	record	is	a	sequence	of	fields	

Database	Management	System 19



File	Organization
• Typical	organization	of	records	in	files
• Assume	the	record	size	is	fixed	(not	always	the	case	...)	

• Each	file	has	records	of	one	particular	type	only

• ...	different	files	used	for	different	relations	

Database	Management	System 20

file
header

record	
1

record	
2 … record	

n
record	

1
record	

2 … record	
n

block	1 block	2File



Fixed-Length	Records
• Simple	approach
• Store	record	i starting	at	byte	n	*	(i – 1),	where	n	is	the	size	of	each	(fixed-
length)	record

• Record	access	is	simple,	but	records	may	span	blocks	

• Deletion	of	record	i (to	avoid	fragmentation)	
• Move	(shift)	records	i +	1,	...,	n	to	i,	...,	n	– 1

• Move	record	n	to	I

• Maintain	positions	of	free	records	in	a	free	list	

Database	Management	System 21



Fixed-Length	Records:	Free	Lists
• In	the	file	header,	store	the	address	of	the	first	record	whose	
content	is	deleted	

• Use	this	first	record	to	store	the	address	of	the	second	available	
record,	and	so	on	

• These	stored	addresses	act	as	“pointers”	...	they	“point”	to	the	
location	of	a	record	(like	a	linked	list)	

• Tricky	to	get	right	(often	the	case	with	pointers)

Database	Management	System 22



Variable-Length	Records
• Variable-length	records	are	often	needed	
• for	record	types	that	allow	a	variable	length	for	one	or	more	fields	(e.g.,	
varchar)	

• if	a	file	is	used	to	store	more	than	one	relation	

• Approaches	for	storing	variable	length	records	

• End-of-record	markers
• Fields	“packed”	together

• Difficult	to	reuse	space	of	deleted	records	(fragmentation)	– No	space	for	
record	to	grow	(e.g.,	due	to	an	update)

• ...	in	this	case,	must	move	the	record	

Database	Management	System 23



Variable-Length	Records:	Approaches
• End-of-record	markers
• Fields	“packed”	together

• Difficult	to	reuse	space	of	deleted	records	(fragmentation)	– No	space	for	
record	to	grow	(e.g.,	due	to	an	update)

• ...	in	this	case,	must	move	the	record	

Database	Management	System 24



Variable-Length	Records:	Approaches
• Field	delimiters
• Requires	scan	of	record	to	get	to	n-th field	value

• Requires	a	field	for	a	NULL	value	

Database	Management	System 25

Field1 5 Field2 5 Field3 5 Field3 5



Variable-Length	Records:	Approaches
• Each	record	as	an	array	of	field	offsets	
• For	overhead	of	the	offset,	we	get	direct	access	to	any	field	

• NULL	values	represented	by	assigning	begin	and	end	pointers	of	a	field	to	the	
same	address	

Database	Management	System 26

Field1 Field2 Field3 Field3



Variable-Length	Records:	Approaches
• Using	each	record	as	an	array	of	field	offsets	can	cause	problems	
when	attributes	are	modified	
• growth	of	a	field	requires	shifting	all	other	fields

• a	modified	record	may	no	longer	fit	into	the	block

• a	(large)	record	can	span	multiple	blocks	

Database	Management	System 27



Variable-Length	Records:	Approaches
• Block	headers
• maintain	pointers	to	records	

• contain	pointers	to	free	space	area	

• records	inserted	from	end	of	the	block	

• records	can	be	moved	around	to	keep	them	contiguous	

Database	Management	System 28

Field1 Field2 Field3 Field3#entries free	
space



Blocks	within	a	file
• Heap	File	(unsorted	file)
• Most	simple	file	structure

• Records	are	unordered

• Record	can	be	placed	anywhere	in	the	file	where	space	– Useful	when	
scanning	is	the	main	operation	

• Sequential	File
• Records	are	ordered	according	to	a	search	key

• Hash	File
• Hash	function	determines	which	block	of	the	file	a	record	is	placed

Database	Management	System 29



Indexing

30Database	Management	System



What	is	an	index?
• Lets	say	we	have	a	large	collection	of	items
• For	example,	a	library	of	“holdings”

• A	store	filled	with	music	albums	(CDs)

• Medical	records	in	a	medical	office	

• All	the	webpages	on	the	internet	

• How	can	we	find	a	particular	item	quickly?
• That	is,	we	have	a	“search	key”	(value	entered	by	user)

• We	are	looking	for	records	that	match	the	search	key	

• A	common	approach	is	to	use	some	form	of	indexing

Database	Management	System 31



Search	Keys
•What	are	some	possible	search	keys	for
• Books?	

• Music	Albums?	

• Medical	records?

• Web	pages?	

Database	Management	System 32



Database	Indexes
• Possible	Search	key	for

•We	can	build	an	index	on	any	attribute	

• We	can	build	an	index	on	any	subset	of	attributes	
• E.g.,<Age,Name>	

• We	can	build	multiple	indexes	for	the	same	table	

• Can	you	think	of	a	disadvantage	to	building	many	indexes?	

• Note:	A	Search	Key	is	not	the	same	as	a	Key	for	a	table	
• Search	key	values	may	not	be	unique!	

Database	Management	System 33

Emp(ID,Name,Age,Address) 



Index	for	a	File	(Database	Table)
• An	“index”	is	a	data	structure	that	speeds	up	selections	(searching)	
on	the	search	key	field(s)	

• An	index	converts	a	search	key	k	into	a	data	entry	k*	

• Given	k*,	we	can	get	to	the	record(s)	with	the	search	key	k	in	one	
page	I/O	(or	less)	

Database	Management	System 34

k1 v1 v2

k2 v3 v4

k3 v5 v6

… … …

relational	Table

<k1,	r1>

<K2,	r2>

<k3,	r3>

…

r1:	<k1,	v1,	v2>

r2:	<k2,	v3,	v4>

r3:	<k3,	v5,	v6>

…

Index
blocks/pages

disk
blocks/pages	(k*)



Index	for	a	File	(Database	Table)	
• Alternatives	for	data	entries	k*
• Actual	data	record	with	search	value	k

• <k,	rid	of	data	record	with	search	key	k>

• <k,	list	of	rids	of	data	records	with	search	key	k>	

• Choice	is	orthogonal	to	the	indexing	technique	used	to	locate	data	
entry	k*	

Database	Management	System 35



Most	Indexes	are	Tree	Structured
• Tree-structured	indexes	support
• Range	searches	(e.g.,	gpa >	3.0)

• Equality	searches	(e.g.,	type	=	‘action’)	

•Why	not	just	store	the	file	sorted	on	search	key?	
• Can	perform	binary	search	to	find	matching	records	

• For	range	search,	find	first	record	and	scan	forward	(backward)	

• While	binary	search	is	fast	O(log	n)	...	

• The	cost	is	high	because	we	are	doing	the	search	over	disk	blocks	(records	
stored	on	disk	in	blocks)	

• We	still	sort	...	just	not	for	binary	search

Database	Management	System 36



Most	Indexes	are	Tree	Structured
• Basic	idea:
• Store	only	search	keys	in	a	multi-level	index

• Search	becomes	much	cheaper	

• ISAM	(indexed	sequential	access	method)
• Static	structure	(old	technology)
• Index	is	build	just	once	when	file	is	loaded	
• Uses	overflow	areas	
• Tree	can	become	very	unbalanced	(w/	insertions	&	deletions)	

• B+	tree	(a	B-tree	with	all	data	stored	in	leaf	nodes)
• Dynamic	structure

• Index	is	adjusted	as	records	are	inserted	and	deleted	in	the	file
• Index	remains	balanced

Database	Management	System 37



ISAM	Tree	Creation
• File	creation
• Allocate	leaf	(data)	pages	sequentially,	sorted	by	search	key

• Then	allocate	index	pages	

• Index	entries	– <k,	page	id>	
• Used	to	direct	search	to	data	entries	(in	leaf	pages)	

Database	Management	System 38



ISAM	Layout

Database	Management	System 39

k1 ki… ki+1 … … kn…

… …

…Internal
pages

Leaf
pages

overflow	pagesprimary	pages

k1 page	id	
1 k2 page	id	

2 kn page	id	
n…

index	entry



ISAM	operations
• Search
• Start	at	root

• Use	key	comparisons	to	find	leaf	(like	binary	search)

• Cost	is	O(logf n)	for	entries	per	index	f	and	leaf	pages	n	

• However,	inserts	and	deletions	can	create	problems	...	

• Insert
• Find	leaf	data	entry	belongs	to	and	add	(or	create	overflow)	

• Delete	
• Find	and	remove	data	entry	(deallocate	overflow	if	needed)	

Database	Management	System 40



Example

Database	Management	System 41

30 53 55 57 60 70 88 93 100 120 133 138

55 60

Assume	each	node	holds	2	entries
Keys	are	53,	55,	60,	70,	88,	30,	57,	88,	100,	93,	120,	138,	138
1. Sort	the	keys
2. Create	index

100 133

88



Example:	Search

Database	Management	System 42

30* 53* 55* 57* 60* 70* 88* 93* 100* 120* 133* 138*

55 60

Search	120
1. visit	the	head	of	the	tree

1. larger	than	follow	right,
2. smaller	than	follow	left
3. in	between	take	the	middle
4. repeat	until	found

100 133

88

3

2

1



Example:	Insert

Database	Management	System 43

30* 53* 55* 57* 60* 70* 88* 93* 100* 120* 133* 138*

55 60

Insert	33*,	56*,	89*,90*,91*
1. same	as	search	
2. if	the	node	is	full	make	overflow

100 133

88

3

2

1

33* 56* 89* 90*

91*



Example:	Delete

Database	Management	System 44

30* 53* 55* 57* 60* 70* 88* 93* 120* 133* 138*

55 60

Delete	100*,	91*,	56*
1. same	as	search	
2. delete	the	entry

100 133

88

33* 89* 90*



B+	Tree
• Ensures	the	tree	stays	balanced
• Insert,	delete,	search	are	O(logf n)

• Where	f	denotes	the	“fanout”	

•Minimum	50%	occupancy	(except	for	root)
• Each	node	contains	d	<=	m	<=	2d	entries

• The	parameter	d	is	called	the	order	of	the	tree	

•Maintains	a	doubly	linked	list	of	data-entry	pages	

• Supports	equality	and	range	searches	efficiently	

Database	Management	System 45



B+	Tree:	Most	widely	used	index
• Ensures	the	tree	stays	balanced	
• Insert,	delete,	search	are	O(logf n)

• Where	f	denotes	the	“fanout”	

•Minimum	50%	occupancy	(except	for	root)
• Each	node	contains	d	<=	m	<=	2d	entries

• The	parameter	d	is	called	the	order	of	the	tree	

•Maintains	a	doubly	linked	list	of	data-entry	pages	

• Supports	equality	and	range	searches	efficiently	

Database	Management	System 46



B+tree Layout

Database	Management	System 47

k1 ki… ki+1 … … kn…

… …

…Internal
pages

Leaf
pages

k1 page	id	
1 k2 page	id	

2 kn page	id	
n…

index	entry



Example:	Search

Database	Management	System 48

5 14

Suppose	we	have	2,	3,	5,	7,	8,	14,	16,	22,	4,	27,	29,	33,	34,	38,	39

2* 3* 5* 7* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

27 33

22

How	many	page	I/Os are	required	to	find
- entry	24*
- entry	30*
- all	data	entries	>15*	and	<30*



Example:	Update

Database	Management	System 49

insert/modify/delete	require	finding	data	entry	in	leaf
When	inserting,	if	the	page	is	full,	the	page	has	to	split
- one	entry	is	added	to	parent
- changes	may	have	snow	ball	effect
- root	is	special
- this	maintains	the	tree	balance

5 14

2* 3* 5* 7* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

27 33

22



Example:	delete

Database	Management	System 50

Delete	7,	14

5 14

2* 3* 5* 7* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

27 33

22

1 find	7

Combine (merge) pages on delete to maintain 50% full constraint
• – Changes also “bubble” up the tree 



Example:	delete

Database	Management	System 51

Delete	7,	14

5 14

2* 3* 5* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

27 33

22

1 find	7

2 Delete	7

Combine (merge) pages on delete to maintain 50% full constraint
• – Changes also “bubble” up the tree 



Example:	delete

Database	Management	System 52

Delete	7,	14

5 14

2* 3* 5* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

27 33

22

1 find	7

2 Delete	7

3 Shift	8;	
check	for	underflow

Combine (merge) pages on delete to maintain 50% full constraint
• – Changes also “bubble” up the tree 



Example:	delete

Database	Management	System 53

Delete	7,	14

5 14

2* 3* 5* 8* 14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

27 33

22

1 find	7

2 Delete	7

3 Shift	8;	
check	for	underflow

4 find	14

Combine (merge) pages on delete to maintain 50% full constraint
• – Changes also “bubble” up the tree 



Example:	delete

Database	Management	System 54

Delete	7,	14

5

2* 3* 5* 8* 16* 22* 24* 27* 29* 33* 34* 38* 39*

27 33

22

1 find	7

2 Delete	7

3 Shift	8;	
check	for	underflow

4 find	14

5 Delete	14;	
parent	is	also	deleted

Combine (merge) pages on delete to maintain 50% full constraint
• – Changes also “bubble” up the tree 



Example:	delete

Database	Management	System 55

Delete	7,	14

5

2* 3* 5* 8* 16* 22* 24* 27* 29* 33* 34* 38* 39*

27 33

22

1 find	7

2 Delete	7

3 Shift	8;	
check	for	underflow

4 find	14

5 Delete	14;	
parent	is	also	deleted

6 Detected	underflow;
merge

merge

merge

Combine (merge) pages on delete to maintain 50% full constraint
• – Changes also “bubble” up the tree 



Example:	delete

Database	Management	System 56

Delete	7,	14

5

2* 3* 5* 8* 16* 22* 24* 27* 29* 33* 34* 38* 39*

27 33

22

1 find	7

2 Delete	7

3 Shift	8;	
check	for	underflow

4 find	14

5 Delete	14;	
parent	is	also	deleted

6 Detected	underflow;
merge

merge

Combine (merge) pages on delete to maintain 50% full constraint
• – Changes also “bubble” up the tree 



Example:	delete

Database	Management	System 57

Delete	7,	14

5 22 27 33

2* 3* 5* 8* 16* 22* 24* 27* 29* 33* 34* 38* 39*

1 find	7

2 Delete	7

3 Shift	8;	
check	for	underflow

4 find	14

5 Delete	14;	
parent	is	also	deleted

6 Detected	underflow;
merge

Combine (merge) pages on delete to maintain 50% full constraint
• – Changes also “bubble” up the tree 



Notes	on	B+	tree
• Creating	a	B+	tree	by	incremental	inserts	
• Is	really	slow!	

• Instead,	we	can	“bulk”	load	the	items	

• This	means	build	the	tree	bottom	up	from	the	sorted	data	entries	(leaves)	

• Results	in	fewer	I/Os to	build	the	index	

• Important	to	increase	fan	out	...	why?	

Database	Management	System 58



Costs	associated	with	indexes
• If	you	define	an	index	in	your	database	you	will	incur	three	costs	
• Additional	space	to	store	the	index

• Updates	will	be	slower	(rebalance	the	tree)	– More	optimization	choices	

• The	advantage	is	many	queries	will	run	faster	
• But	need	to	determine	if	it	makes	sense	with	your	workload	

• i.e.,	does	the	trade-off	of	query	versus	update	time	make	sense	for	your	
application	

Database	Management	System 59



To	do
• Review
• Ch.	8	

• Ch 9:	intro	9.1,	9.3-9.7

• Ch.	10:	Intro,	10.1-10.6

Database	Management	System 60


