Database Management System

Lecture 6
Storage and File Organization

Index

* Some materials adapted from R. Ramakrishnan, J. Gehrke and Shawn Bowers

Today’s Agenda

e Storing data in the disk

* Index
e [SAM

* B+ tree

Database Management System

Storing data

aaaaaaaaaaaaaaaaaaaaaaaa

Basic Database Architecture

DBMS Plan Executor Parser
Query
. Evaluation
Operator Evaluator Optimizer Engine
v
<—> File and Access Methods [€——>
Transaction
Manager \lf
<> Buffer Manager <> REEOLEL)
Manager
Lock v
Manager _
<—> Disk Space Manager <—>
Concurrency Control

Index Files
v > System
Data Files Catalog

Database Management System

Bird eye view on query optimization

* Given an SQL query
* Translate it into relational algebra

* Find equivalent query plans
* different ways to order operators

« different ways to implement each operator

* Pick a cheap plan (per estimated cost) Execute the plan ...

* We are going to learn
* How are operators implemented?

e How is data stored on disk?

The Plan

Search for a cheap plan
Join Algorithm, etc
Heap, index, etc.

O/S issues
(They may be handled by
a DBMS or by the OS)

Disk access is expensive!!

Relational Algebra Query Tree

— Query Optimization 4
-3 Relational Operator Algorithms 3
—— File and Access Methods ?

— Buffer Management

— Disk Space Management

Database Management System

Types of Physical Storage

* Cache
* fastest and most costly form of storage
* volatile ... content lost if power failure, system crash, etc.

* managed by the hardware and/or operating system

* Main Memory
* fast access
* in most applications, too small to store an entire DB

e \Volatile

Note: many “main memory only” databases are available
...and used increasingly for applications with small storage requirements and as memory
sizes increase

Types of Physical Storage

* Magnetic (“Hard”) Disk Storage

* primary medium for long-term storage of data
* typically can store entire database (all relations and access structures)

* data must be moved from disk to main memory for access and written

back for storage
 direct-access, i.e., it is possible to read data on disk in any order
 usually survives power failures and system crashes (disk failure can

 occur, but less frequently) We focus on disk storage!

* We focus on disk storage!

Components of a Disk

tracks

spindle
f‘/rotates 7200rpm
Q\sector

-

N

disk head

read/write
at any one time

arm assembly

f

platter

Database Management System

To read/write a data from the disk

* Position arm (seek)
* wait for data to spin by

* read/write from the location

Database Management System

10

Components of a Disk

* Each track is made up of fixed size sectors

e page size is a multiple of sector size

* unit of transfer

* size depends on system and configuration

* all tracks that you can reach from one position of the arm is called

cylinder

Cost of accessing data on a disk

* Time to access (read/write) data

seek time = moving arms to position disk head on track
rotational delay = waiting for sector to rotate under head
transfer time = actually moving data to/from disk surface

* Key to lower |/O cost: reduce seek & rotational delays! you have to

wait for the transfer time, no matter what

* Query cost often measured in number of page I/Os
* often simplified to assume each page 1/O costs the same

* random I/O is more expensive than Sequential I/0

Memory Vs. Disk access Time

* Lets say disk access time (all three costs together) is about 5

milliseconds (ms)

e and memory access time is about 50 nanoseconds (ns)

* 5ms =5,000,000 ns

therefore disk access is 100,000 times slower than memory access!

Block (page) size Vs. Record Size

* The terms “block” and “page” are often used interchangeably ...

* ...(e.g., depending on how a DBMS is implemented)

* A block generally refers to a contiguous sequence of sectors from a
single track
* unit of (physical) storage on a disk, and transfer between main memory and
disk
* a pageis a “block” in logical memory ... smallest unit of transfer supported
by an OS (virtual memory, paging)
* Pages/blocks range in size (typically around 512b to 8kb)

Block (page) size Vs. Record Size

* A database system seeks to minimize the number of block transfers

between disk and main memory

* Transfer can be reduced by keeping as many blocks as possible in

main memory
 Buffer is the portion of main memory available to store copies of disk blocks

» Buffer manager is responsible for allocating and managing buffer space

* |f possible, store file blocks sequentially:
* Consecutive blocks on same track, followed by
* Consecutive tracks on same cylinder, followed by
* Consecutive cylinders adjacent to each other

* First two incur no seek time or rotational delay, seek for third is only one

track

Buffer Manager

* Program calls buffer manager when it needs blocks from disk

* the program is given the address of the block in main memory, if it is already
in the buffer

* if block not in buffer, the buffer manager adds it ...
* Replaces (throws out) other blocks to make space

* The thrown out block is is written back to the disk if it was modified

(since last write to disk)

* Once space is allocated, the buffer manager reads in the block from disk

to the buffer and returns the address

Buffer Replacement Policies

* Operating systems often replace the block least recently used (LRU
strategy)

* In LRU, past (use) is a predictor of future (use)

 Alternatively, queries have well-defined access patterns (e.g.,
sequential scans)

* A database system can exploit user queries to predict block accesses

* LRU can be an inefficient strategy for certain access patterns that involve

(e.g., repeated) sequential scans

* The query optimizer can provide hints on replacement strategies

Buffer Replacement Policies

Pinned block = not allowed to be written back to disk

* Most recently used (MRU) strategy

* Pin the block currently being processed

» After final tuple of that block processed, the block is unpinned and becomes

the most recently used block

* Keeps older blocks around longer (good for scan problem)

* Buffer manager can use statistics regarding the probability that a

request will reference a particular relation

File Organization

e A database can be stored as a collection of files

* Row-oriented storage
* Each file is a sequence of records

* Each record is a sequence of fields

Database Management System

19

File Organization

* Typical organization of records in files
* Assume the record size is fixed (not always the case ...)
* Each file has records of one particular type only

e ... different files used for different relations

file Irecord record record | record | record
header 1 2 n 1 2

File block 1 block 2

n |

Database Management System

20

Fixed-Length Records

* Simple approach

 Store record i starting at byte n * (i— 1), where n is the size of each (fixed-

length) record

* Record access is simple, but records may span blocks

* Deletion of record i (to avoid fragmentation)
* Move (shift) recordsi+1, ..., ntoi, ... n—1
* Move record nto /

* Maintain positions of free records in a free list

Fixed-Length Records: Free Lists

* In the file header, store the address of the first record whose

content is deleted

e Use this first record to store the address of the second available

record, and so on

* These stored addresses act as “pointers” ... they “point” to the

location of a record (like a linked list)

* Tricky to get right (often the case with pointers)

Variable-Length Records

* Variable-length records are often needed

* for record types that allow a variable length for one or more fields (e.g.,

varchar)

* if a file is used to store more than one relation
* Approaches for storing variable length records

e End-of-record markers

* Fields “packed” together

* Difficult to reuse space of deleted records (fragmentation) — No space for

record to grow (e.g., due to an update)

* ... in this case, must move the record

Variable-Length Records: Approaches

* End-of-record markers
 Fields “packed” together

* Difficult to reuse space of deleted records (fragmentation) — No space for

record to grow (e.g., due to an update)

* ... in this case, must move the record

Database Management System

24

Variable-Length Records: Approaches

* Field delimiters
* Requires scan of record to get to n-th field value

* Requires a field for a NULL value

Fieldl | 5| Field2 | 5| Field3 | 5| Field3

Database Management System

5

25

Variable-Length Records: Approaches

* Each record as an array of field offsets

* For overhead of the offset, we get direct access to any field

 NULL values represented by assigning begin and end pointers of a field to the

same address

Fieldl

Field2

Field3

Field3

Database Management System

26

Variable-Length Records: Approaches

* Using each record as an array of field offsets can cause problems
when attributes are modified

* growth of a field requires shifting all other fields
* a modified record may no longer fit into the block

* a (large) record can span multiple blocks

Variable-Length Records: Approaches

* Block headers
* maintain pointers to records
e contain pointers to free space area
* records inserted from end of the block

* records can be moved around to keep them contiguous

N

Hentries free Field1 Field2 Field3 Field3
space

Database Management System

Blocks within a file

* Heap File (unsorted file)
* Most simple file structure

* Records are unordered

* Record can be placed anywhere in the file where space — Useful when

scanning is the main operation

* Sequential File

e Records are ordered according to a search key

 Hash File

* Hash function determines which block of the file a record is placed

Indexing

Database Management System

30

What is an index?

* Lets say we have a large collection of items
* For example, a library of “holdings”
* A store filled with music albums (CDs)
* Medical records in a medical office

* All the webpages on the internet

* How can we find a particular item quickly?
* That is, we have a “search key” (value entered by user)

* We are looking for records that match the search key

A common approach is to use some form of indexing

Search Keys

* What are some possible search keys for
* Books?
* Music Albums?
* Medical records?

* Web pages?

Database Management System

32

Database Indexes

* Possible Search key for
Y Emp(ID,Name,Age,Address)
* We can build an index on any attribute

* We can build an index on any subset of attributes

* E.g.,<Age,Name>
* We can build multiple indexes for the same table

e Can you think of a disadvantage to building many indexes?

Note: A Search Key is not the same as a Key for a table

» Search key values may not be unique!

Index for a File (Database Table)

* An “index” is a data structure that speeds up selections (searching)

on the search key field(s)
* An index converts a search key k into a data entry k*

* Given k*, we can get to the record(s) with the search key k in one
disk

Index blocks/pages (k*)

relational Table blocks/pages

rl: <ki, vi, v2>
<k, r1> /

r2: <k2, v3, va>
k2 v3 va <K2, r2> —

k3 V5 v6 <k3, 13> — 3. k3 V5 v
r3: <k3, V5, v6>

page |/O (or less)

k1 vl v2

Index for a File (Database Table)

* Alternatives for data entries k*
e Actual data record with search value k
<k, rid of data record with search key k>

* <k, list of rids of data records with search key k>

* Choice is orthogonal to the indexing technique used to locate data

entry k*

Most Indexes are Tree Structured

* Tree-structured indexes support
* Range searches (e.g., gpa > 3.0)

* Equality searches (e.g., type = ‘action’)

* Why not just store the file sorted on search key?
* Can perform binary search to find matching records
* For range search, find first record and scan forward (backward)
* While binary search is fast O(log n) ...

* The cost is high because we are doing the search over disk blocks (records

stored on disk in blocks)

* We still sort ... just not for binary search

Most Indexes are Tree Structured

* Basic idea:
 Store only search keys in a multi-level index

* Search becomes much cheaper

* [SAM (indexed sequential access method)
e Static structure (old technology)
* Index is build just once when file is loaded
* Uses overflow areas

* Tree can become very unbalanced (w/ insertions & deletions)

* B+ tree (a B-tree with all data stored in leaf nodes)

* Dynamic structure

* Index is adjusted as records are inserted and deleted in the file

* Index remains balanced

ISAM Tree Creation

* File creation

 Allocate leaf (data) pages sequentially, sorted by search key

* Then allocate index pages

* Index entries — <k, page id>

» Used to direct search to data entries (in leaf pages)

Database Management System

38

ISAM Layout

| page id page id
! k1 1 1 k2)
index entry
Internal
pages
Leaf
pages

kn

page id

primary pages

C

Database Management System

overflow pages

39

ISAM operations

e Search

e Start at root
* Use key comparisons to find leaf (like binary search)
* Cost is O(log, n) for entries per index f and leaf pages n

* However, inserts and deletions can create problems ...

* Insert

* Find leaf data entry belongs to and add (or create overflow)

e Delete

* Find and remove data entry (deallocate overflow if needed)

Example

Assume each node holds 2 entries

Keys are 53, 55, 60, 70, 88, 30, 57, 88, 100, 93, 120, 138, 138

1. Sort the keys
2. Create index

55

60

-

30 | 53

57

88

100 | | 133

93

100

120

133

138

Database Management System

41

Example: Search

Search 120
1. visit the head of the tree
1. larger than follow right,
2. smaller than follow left
3. in between take the middle
4.

repeat until found @
- 88

55 || 60

o

30* | 53* 55% | 57* 60* | 70*

88*

93*

133*

138*

Database Management System

42

Example: Insert

Insert 33*, 56*, 89*,90*,91*

1. same as search

2. if the node is full make overflow

@88

2
55 || 60 100 | | 133
30* | 53* 55% | 57* 60* | 70* 88* | 93* | |100*/120*| |133*|138*
b !
33* 56* 89* | 90*

Database Management System

S

43

Example: Delete

Delete 100*, 91*, 56*
1. same as search
2. delete the entry

88
55 || 60 100 || 133
4{///, l 4{///,
30% | 53* | |55% 57*| | 60* 70* | |88*|93* 120* |133*138*
! !
33+ 89* | 90*

Database Management System

44

B+ Tree

* Ensures the tree stays balanced

* Insert, delete, search are O(Iogfn)

* Where f denotes the “fanout”

* Minimum 50% occupancy (except for root)
e Each node contains d <= m <= 2d entries

* The parameter d is called the order of the tree
* Maintains a doubly linked list of data-entry pages

* Supports equality and range searches efficiently

B+ Tree: Most widely used index

* Ensures the tree stays balanced

* Insert, delete, search are O(log; n)

* Where f denotes the “fanout”

* Minimum 50% occupancy (except for root)
e Each node contains d <= m <= 2d entries

* The parameter d is called the order of the tree
* Maintains a doubly linked list of data-entry pages

* Supports equality and range searches efficiently

B+tree Layout

[page id page id
! k1 1 k2)
index entry
Internal
pages

kn

page id

Database Management System

47

Example: Search

Suppose we have 2, 3,5, 7, 8, 14, 16, 22, 4, 27, 29, 33, 34, 38, 39

How many page |/Os are required to find

2*

entry 24*
entry 30*
all data entries >15* and <30*
22
5 14 27 33
3* €> 5% | 7% | g* 14*16* €>22*%24% 27*[29% 33*

34*

38*

39*

Database Management System

48

Example: Update

insert/modify/delete require finding data entry in leaf
When inserting, if the page is full, the page has to split
- one entry is added to parent

- changes may have snow ball effect

- root is special

- this maintains the tree balance

22
5 14 27 || 33
2% | 3* €>(5* | 7% | 8* 14*16* €>22%24* 27*29* 33*34*38*39*

Database Management System 49

Example: delete

Delete 7, 14

find 7

22
5 14 27 || 33
2% | 3* €>(5* | 7% | 8* 14*|16* €>22%24* 27*29* 33*34*38*(39*

Combine (merge) pages on delete to maintain 50% full constraint
* — Changes also “bubble” up the tree

Database Management System 50

Example: delete

Delete 7, 14

find 7
Delete 7

22
5 14 27 || 33
2% | 3* <> 5* 8* 14*|16* €>22%24* 27*29* 33*34*38*(39*

Combine (merge) pages on delete to maintain 50% full constraint
* — Changes also “bubble” up the tree

Database Management System 51

Example: delete

Delete 7, 14
find 7
2 | Delete7
3| Shift8;
~ check for underflo
u W >
5 14 27 33
2% | 3% €> 5* | 8* 14*16* 22*[24% 27*[29% 33*

34*

38*

39*

Combine (merge) pages on delete to maintain 50% full constraint

* — Changes also “bubble” up the tree

Database Management System

52

Example: delete

Delete 7, 14
find 7 @ find 14
2 | Delete7
3 | Shift§;
~ check for underflo
u W >
5 14 27 33
2% | 3% €> 5* | 8* 14*16* 22*[24% 27*[29% 33*

34*

38*

39*

Combine (merge) pages on delete to maintain 50% full constraint

* — Changes also “bubble” up the tree

Database Management System

53

Example: delete

Delete 7, 14
find 7 @ find 14

2 | Delete7 Delete 14;
N arent is also deleted

3| shifts: P
~ check for underflo

u W >
5 27 33
2% | 3% €> 5* | 8* 16* 22*[24% 27*[29% 33*

34*

38*

39*

Combine (merge) pages on delete to maintain 50% full constraint

* — Changes also “bubble” up the tree

Database Management System

54

Example: delete

Delete 7, 14
find 7 @ find 14 @ Detected underflow;

C merge

2 | Delete7 Delete 14;
N arent is also deleted

3| shifts: P
~ check for underflo

u W >
5 27 33
\ " 2
2% | 3% €> 5* | 8* 16* €>22%24* 27*[29% 33*

34*

38*

39*

%

merge

Combine (merge) pages on delete to maintain 50% full constraint

* — Changes also “bubble” up the tree

Database Management System

55

Example: delete

@ find 14

Delete 14;
parent is also deleted

22

Delete 7, 14
find 7
2 | Delete7
3| Shift8;
~ check for underflow
5
2% | 3% €> 5% | 8* |16* €

SN2

>

27

33

22%*

24*

27*

29*

@ Detected underflow;
merge

33*

34*

38*

39*

Combine (merge) pages on delete to maintain 50% full constraint

* — Changes also “bubble” up the tree

Database Management System

56

Example: delete

Delete 7, 14

1| find7

3| Shift8;
check for underflow

@ find 14
2 | Delete?7 Delete 14;

parent is also deleted

5 22 27 || 33
2% | 3% 5% | 8% |16% €—>22%*24*

@ Detected underflow;

merge

27*

29%*

Combine (merge) pages on delete to maintain 50% full constraint

* — Changes also “bubble” up the tree

Database Management System

33*

34*

38*

39*

57

Notes on B+ tree

* Creating a B+ tree by incremental inserts
* Is really slow!
* Instead, we can “bulk” load the items
* This means build the tree bottom up from the sorted data entries (leaves)

* Results in fewer 1/Os to build the index

* Important to increase fan out ... why?

Database Management System

58

Costs associated with indexes

* If you define an index in your database you will incur three costs
» Additional space to store the index

* Updates will be slower (rebalance the tree) — More optimization choices

* The advantage is many queries will run faster
* But need to determine if it makes sense with your workload

* i.e., does the trade-off of query versus update time make sense for your

application

To do

* Review
* Ch. 8
* Ch9:intro 9.1, 9.3-9.7
* Ch. 10: Intro, 10.1-10.6

Database Management System

60

