
Database	Management	System

Lecture	4

Database	Design	– Normalization	and	View

*	Some	materials	adapted	from	R.	Ramakrishnan,	J.	Gehrke and	Shawn	Bowers

Today’s	Agenda
• Normalization

• View

2Database	Management	System

Normalization

3Database	Management	System

Normalization
• Process	or	replacing	a	table	with	two	or	more	tables

Database	Management	System 4

EID Name Dept DeptName

A01 Joshua 12 CS

A12 Bean 10 HR

A13 Bean 12 CS

A03 Kevin 12 CS

EID Name Dept

A01 Joshua 12

A12 Bean 10

A13 Bean 12

A03 Kevin 12

Vs.

DeptID DeptName

10 CS

12 HR

EmpDept

Emp Dept

Which	schema	is	better?
Why?

Normalization	Issues
• The	EmpDept schema	combines	two	different	concepts	
• Employee	information,	together	with

• Department	information	

• To	join	or	not	to	join	that	is	the	question
• If	we	separate	the	two	concepts	we	could	save	space	but	some	queries	would	run	
slower	(Joins)	

• If	we	combine	the	two	ideas	we	have	redundancy	but	some	queries	would	run	faster	
(no	Joins)	

• So	we	have	a	tradeoff	...	

• Redundancy	has	a	side	effect:	“anomalies”

Database	Management	System 5

Types	of	Anomalies

• “Update	Anomaly”:	If	the	CS	department	changes	its	name,	we	must	change	
multiple	rows	in	EmpDept

• “Insertion	Anomaly”:	If	a	department	has	no	employees,	where	do	we	store	
its	id	and	name?	

• “Deletion	Anomaly”:	If	A12	quits,	the	information	about	the	HR	department	
will	be	lost	

• These	are	in	addition	to	redundancy	in	general
• For	example,	the	department	name	is	stored	multiple	times	

Database	Management	System 6

EID Name Dept DeptName
A01 Joshua 12 CS
A12 Bean 10 HR
A13 Bean 12 CS
A03 Kevin 12 CS

EmpDept

Using	NULL	Values

• Using	NULL	values	can	help	insertion	and	deletion	anomalies	

• But	NULL	values	have	their	own	issues	
• They	make	aggregate	operators	harder	to	use	

• Not	always	clear	what	NULL	means

• May	need	outer	joins	instead	of	ordinary	joins	

• In	this	case,	EID	is	a	primary	care,	and	so	it	cannot	contain	a	NULL	value!	

• They	don’t	address	update	anomalies	or	redundancy	issues

Database	Management	System 7

EID Name Dept DeptName
A01 Joshua 12 CS
NULL NULL 10 HR
A13 Bean 12 CS
A03 Kevin 12 CS

EmpDept

Decomposition

• Normalization	involves	decomposing	(partitioning)	the	table	into	separate	
tables	

• Check	to	see	if	redundancy	still	exists	(...	repeat)
• The	key	to	understanding	when	and	how	to	decompose	schemas	is	through	...	
“functional	dependencies”	

• which	generalizes	the	notion	of	keys	

Database	Management	System 8

EID Name Dept
A01 Joshua 12
A12 Bean 10
A13 Bean 12
A03 Kevin 12

DeptID DeptName
10 CS
12 HR

Emp Dept

Keys

• Because	EID	is	a	key:	
• If	two	rows	have	the	same	EID	value,	then	they	have	the	same	value	for	every	other	
attribute	

• Thus	given	an	EID	value,	the	other	values	are	“determined”	

• A	Key	is	like	a	“function”:	
• f	:	EID	→	Name	× Dept × DeptName – E.g.,	f(A01)	=	<Joshua,	12,	CS>	

• Recall	functions	always	return	the	same	value	for	a	given	value	

Database	Management	System 9

EID Name Dept DeptName
A01 Joshua 12 CS
A12 Bean 10 HR
A13 Bean 12 CS
A03 Kevin 12 CS

EmpDept

Functional	dependencies

• We	say	that	EID	“functionally	determines”	all	other	attributes	

• This	relationship	among	attributes	is	called	a	“Functional	Dependency”	(FD)	

• We	write	FDs	as:
EID	→	Name,	Dept,	DeptName
or
EID	→	Name,	EID	→	Dept,	EID	→	DeptName

Database	Management	System 10

EID Name Dept DeptName
A01 Joshua 12 CS
A12 Bean 10 HR
A13 Bean 12 CS
A03 Kevin 12 CS

FDs	that	are	not	implied	by	keys	

• Is	Name	→	Dept a	functional	dependency?
• No,	e.g.,	<Bean,	10>	and	<Bean,	12>	

• Is	Dept →	DeptName a	functional	dependency?	
• Yes	in	this	table	it	is	

• In	general,	it	would	be	expected	that	departments	only	have	one	name	

Database	Management	System 11

EID Name Dept DeptName
A01 Joshua 12 CS
A12 Bean 10 HR
A13 Bean 12 CS
A03 Kevin 12 CS

Functional	Dependencies	
• For	sets	A	and	B	of	attributes	in	a	relation,	we	say	that	A	(functionally)	
determines	B	...	or	A	→	B	is	a	Functional	Dependency	(FD)	
• if	whenever	two	rows	agree	on	A	they	also	agree	on	B	

• An	FD	defines	a	function	in	the	“mathematical	sense”	

• There	are	two	special	kinds of	FDs:
• “Key	FDs”	of	the	form	X	→A	where	X	contains	a	key	(X	is	called	a	superkey)	

• “Trivial	FDs”	of	the	form	A	→	B	such	that	A	⊇ B

• ...	e.g.,	(Name,	Dept)	→	Dept

• these	are	boring	but	become	important	later	

Database	Management	System 12

Functional	Dependencies	
• Functional	dependencies,	like	keys,	are	based	on	the	semantics	of	the	
application	

• Likely	functional	dependencies:	
• ssn →	name	

• account	→	balance	

• Unlikely	functional	dependencies:	
• date	→	trasactionid

• checkamt ->	checknumber

Database	Management	System 13

Enforcing	Functional	Dependencies	
• For	the	table

• There	is	an	FD	from	dept →	deptname

• Although	eid is	the	key	for	this	table	...	
• ...	is	it	still	possible	for	there	to	be	two	names	for	the	same	department?	

• YES!	

Database	Management	System 14

Emp(eid,	name,	dept,	deptname)	

Every	Key	Implies	a	Set	of	FDs	
• For	the	table

• We	have	the	following	FDs	based	on	ssn being	a	key:	
• eid →	name

• eid →	dept

• eid →	deptname

• Each	key	implies	a	set	of	functional	dependencies	from	the	key	to	the	non-
key	attributes	

Database	Management	System 15

Emp(eid,	name,	dept,	deptname)	`

Functional	Dependencies	and	Keys	
• Given	a	table	R	with	attributes	a	and	b	together	forming	a	key,	the	following	
FDs	are	implied	
• Given	R(a,	b,	c,	d,	e)	

• Which	we	can	also	write	as	ab	→	cde

Database	Management	System 16

ab → c
ab → d
ab → e

Functional	Dependencies	May	Suggest	Keys	
• If	we	know	these	FDs:	

• then	ssn is	a	key	for	a	table	with	these	attributes:

Database	Management	System 17

ssn →	name	
ssn →	hiredate
ssn →	phone	

Employee(ssn,	name,	hiredate,	phone)	

What	are	the	key	and	non-trivial	FDs?	
• Which	of	these	will	be	enforced?

Database	Management	System 18

Customer(CustID,	Address,	City,	Zip,	State)	

Enrollment(StdntID, ClassID, Grade, InstrID, StdntName, InstrName)

Non-Trivial	Functional	Dependencies	
• The	FDs	that	are	not	enforced	by	the	DBMS	lead	to	both	redundancy	and	
anomalies	(only	keys	are	enforced)	

• Not	all	redundancy	is	covered	by	FDs

• name	stored	redundantly,	and	same	employee	can	have	more	than	one	name	

• Cannot	be	determined	from	the	instance	(instead,	based	on	application	
semantics)	
• We	can	determine	what	is	not	an	FD

• DB	data	mining	approaches	infer	“FDs”	(i.e.,	association	rules)	

Database	Management	System 19

Emp(ssn,	name,	salary,	birthdate)
Employee(ssn,	name,	address)	

Example	Decomposition	based	on	FDs	
• For	this	table

• We	can	move	the	non-trivial	FDs	into	their	own	table	with	dnum as	the	key:	

• The	Emp table	becomes:

• ...	and	Emp.dept is	now	a	foreign	key	to	Dept.dnum

Database	Management	System 20

Emp(ssn,	name,	birthdate,	address,	dnum,	dname,	dmgr)	

Dept(dnum,	dname,	dmgr)	

Emp(ssn,	name,	birthdate,	address,	dept)	

Normalization	based	on	FDs
• Identify	all	all	the	FDs
• FDs	implied	by	the	keys

• FDs	not	implied	by	the	keys	(the	“troublesome”	ones)	

• Generate	one	or	more	new	tables	from	the	FDs	not	implied	by	the	keys	
• Each	new	tables	should	only	have	FDs	implied	by	the	key	

• Remove	the	attributes	from	original	table	that	are	functionally	dependent	
on	“troublesome”	FDs	

• Specify	appropriate	foreign	keys	to	these	new	tables	

Database	Management	System 21

Reasoning	about	Functional	Dependencies	

• Two	natural	FDs	are	
• EID	→	DeptID and	DeptID →	DeptName

• These	two	FDs	imply	EID	→	DeptName

• If	two	tuples	agree	on	EID,	then	by	EID	→	DeptID they	agree	on	DeptID ...	
• ...	and	if	they	agree	on	DeptID,	then	by	DeptID →	DeptName they	agree	on	
DeptName

• The	set	of	FDs	implied	by	a	given	set	F	of	FDs	is	called	the	closure	of	F	...	
which	is	denoted	F+

Database	Management	System 22

EmpDept(EID,	Name,	DeptID,	DeptName)	

Armstrong’s	Axioms	
• The	closure	F+	of	F	can	be	computed	using	these	axioms	
• Reflexivity(재귀):	If	X⊇Y,	then	X→Y

• Augmentation(부가):	If	X	→	Y,	then	XZ	→	YZ	for	any	Z

• Transitivity(이행):	If	X→Y	and	Y→Z	then	X→Z	

• Repeatedly	applying	these	rules	to	F	until	we	no	longer	produce	any	new	
FDs	results	in	a	sound	and	complete	inference	procedure	...	

• Soundness
• Only	FDs	in	F+ are	generated	when	applied	to	FDs	in	F	

• Completeness
• Repeated	application	of	these	rules	will	generate	all	FDs	in	F+

Database	Management	System 23

Finding	Keys	
• We	can	determine	if	a	set	of	attributes	X	is	a	key	for	s	relation	R	by	
computing	X+ as	follows	

• Let	the	set	of	attributes	of	R	be	A

• X	is	a	key	for	R	if	and	only	if	X+ =	A	

Database	Management	System 24

Compute X+ from X
let X+= {X}
repeat until there is no change in X+

{
if Y → Z is an FD and Y ⊆ X+ Then

X+ = X+∪ Z
}
return X+

Example	
• Given	the	schema	R(A,	B,	C,	D,	E)	such	that	

• Find	the	keys	of	this	schema,	besides	A	...	

• Start	with	BC	→	A	as	one	example	
• BC	determines	A	is	given

• A	→ABCDE	because A	is	a	key

• BC	→	ABCDE	by	transitivity	

• Thus,	BC	is	a	key!	

• You	should	understand	the	axioms	and	the	algorithm	...	
they	will	come	in	handy	when	normalizing	

Database	Management	System 25

BC	→	A	
DE	→	C	

Redundancy	and	Functional	Dependencies	
• Example	schema	

• Note	that	every	non-key	FD	is	associated	with	some	redundancy	

• Our	game	plan	is	to	use	non-key	and	non-trivial	FDs	to	decompose	any	
relation	into	a	form	that	has	no	redundancy	...	

• ...	resulting	in	a	so-called	“Normal	Form”

Database	Management	System 26

EmpDept(EID, Name, Dept, DeptName)

Assigned(EmptID, JobID, EmpName, Percent)

Enrollment(StdntID, ClassID, Grade, InstrID, StdntName, InstrName)

Boyce-Codd Normal	Form	(BCNF)	
• A	relation	is	in	“Boyce-Codd Normal	Form”	if	all	of	its	FDs	are	either	
• Trivial	FDs	(e.g.,	AB	→	A)	or

• Key	FDs	

• Which	(if	any)	of	these	relations	is	in	BCNF?	

Database	Management	System 27

EmpDept(EID, Name, Dept, DeptName)

Assigned(EmptID, JobID, EmpName, Percent)

Enrollment(StdntID, ClassID, Grade, InstrID, StdntName, InstrName)

BCNF	and	Redundancy	
• BCNF	relations	have	no	redundancy	cause	by	FDs	
• A	relation	has	redundancy	if	there	is	an	FD	between	attributes

• ...	and	there	can	be	repeated	entries	of	data	for	those	attributes	

• For	example,	consider	

• if	the	relation	is	in	BCNF,	then	the	FD	must	be	a	key	FD,	and	so	DeptID must	be	a	key	

• implying	that	any	pair	such	as	<12,	CS>	can	appear	only	once!

Database	Management	System 28

DeptID DeptName

12 CS

10 HR

12 CS

Decomposition	into	BCNF	
• An	algorithm	for	decomposing	a	relation	R	with	attributes	A	into	a	collection	
of	BCNF	relations	

Database	Management	System 29

if R is not in BCNF and X → Y is a non-key FD then
decompose R into A – Y and XY
if A – Y and/or XY is not in BCNF then

recursively apply step 1 (to A – Y and/or XY)

Example	

• First	use	the	non-key	FD	StdntID →	StdntName

• ...	which	gives	the	decomposition	

• Now	use	the	non-key	FD	ClassID →	InstrID

• ...	which	gives	the	decomposition	

• All	relations	are	now	in	BCNF!

Database	Management	System 30

Enrollment(StdntID,	ClassID,	Grade,	InstrID,	StdntName)	

Enrollment(StdntID,	ClassID,	Grade,	InstrID)	
Student(StdntID,	StdntName)	

Enrollment(StdntID,	ClassID,	Grade)	
ClassInstructor(ClassID,	InstrID)	
Student(StdntID,	StdntName)	

Another	Example
• Given	the	schema

• and	assuming	FDs	

• ...	lets	Decompose	it	into	BCNF	relations	

Database	Management	System 31

Loans(BranchID,	LoanID,	Amount,	Assets,	CustID,	CustName)	

BranchID →	Assets	
CustID →	CustName

Loans(BranchID,	LoanID,	Amount,	CustID)	
Customer(CustID,	CustName)	
Branch(BranchID,	Assets)
– Loans.BranchID REFERENCES	Branch.BranchID
– Loans.CustID REFERENCES	Customer.CustID

Lossless	Decomposition	
• Some	decompositions	may	lose	information	content	

• For	example,	lets	say	we	decomposed:	

• into

• a	row	(223,	A)	in	StudentGrade implies	student	223	received	an	A	in	some	course	

• and	a	row	(421,	A)	in	ClassGrade means	that	some	student	received	an	A	in	course	
421	

• but	now	we	have	no	way	to	recreate	the	original	table!	

• This	decomposition	is	“Lossy”	

Database	Management	System 32

Enroll(StdntID,	ClassID,	Grade)	

StudentGrade(StdntID,	Grade)	
ClassGrade(ClassID,	Grade)	

Lossless	Decomposition	
• A	decomposition	of	a	schema	with	FDs	F	into	attribute	sets	X	and	Y	is	
“lossless”	if	for	every	instance	R	that	satisfies	F:	

• That	is,	we	can	recover	R	from	the	natural	join	of	the	decomposed	versions	
of	R	

Database	Management	System 33

R =	πX(R)	⋈ πY(R)

Example	of	a	Lossless	Decomposition	

Database	Management	System 34

EID Name Dept DeptName
A01 Joshua 12 CS
A12 Bean 10 HR
A13 Bean 12 CS
A03 Kevin 12 CS

EmpDept

EID Name Dept
A01 Joshua 12
A12 Bean 10
A13 Bean 12
A03 Kevin 12

X	=	EID,	Name,	Dept
Dept DeptName
12 CS
10 HR
12 CS
12 CS

Y	=	Dept,	DeptName

πX(R) πY(R)

πX(R) ⋈ πY(R) = R

R

Example	of	a	Lossy Decomposition	

Database	Management	System 35

SID ClassID Grade
123 cs223 A
456 cs421 A

Enroll

SID Grade
123 A
456 A

X	=	SID,	Grade
ClassID Grade
cs223 A
cs421 A

Y	=	ClassID,	Grade

πX(R) πY(R)

πX(R) ⋈ πY(R) ≠ R

R

SID ClassID Grade
123 cs223 A
456 cs223 A
123 cs421 A
456 cs421 A

Producing	Only	Lossless	Decompositions
• We	only	want	to	produce	lossless	decompositions	

• This	is	easy	to	guarantee:	

• The	decomposition	of	R	with	respect	to	FDs	F	into	attributes	sets	A1	and	A2	
is	lossless	if	and	only	if	A1	∩	A2	contains	a	key	for	either	A1	or	A2	
• If	they	have	a	key	in	common,	they	can	be	joined	back	together	– Note	that	{StdntID,	
Grade}	∩	{ClassID,	Grade}	=	{Grade}

• See	page	620	in	the	text	

• This	implies	that	the	BCNF	decomposition	algorithm	produces	only	lossless	
decompositions	
• In	this	case	F	includes	the	FD	X→Y	and	the	decomposition	is	A1	=	A	– Y	and	A2	=	X∪Y	

• Therefore	A1	∩	A2	=	X	is	a	key	for	X∪A

Database	Management	System 36

Producing	Only	Lossless	Decompositions
• Given	the	schema	R(S,	C,	G)	with	FD	SC	→	G	

• Is	the	decomposition	into	R1(S,	G)	and	R2(C,	G)	lossless	or	lossy?	Why?	
• Take	the	intersection	of	the	two	sets	{S,	G}	∩	{C,	G}	=	G	

• Then	determine	if	G	is	a	key	for	either	table	

• That	is,	does	G	→	C?	

• NO	

• Does	G	→	S?	

• NO	

• Therefore,	this	decomposition	is	lossy!

Database	Management	System 37

Dependency	Preserving	Decompositions
• Decompositions	should	also	preserve	FDs	

• For	example	
• Addr,	City,	State	→	Zip	

• Zip	→	State	

• Consider	this	decomposition	

• Although	this	is	BCNF,	it	does	not	preserve	the	FD	
• Addr,	City,	State	→	Zip	

• Here	are	some	values

Database	Management	System 38

Emp(EID,Addr,	City,	State,	Zip)

Emp(EID,Addr,	City,	Zip)	
ZipState(Zip,	State)	

<123,	111	W	1st,	Spokane,	99999>		<99999,WA>	
<456,	111	W	1st,	Spokane,	00000>		<00000,WA>	

Dependency	Preserving	Decompositions
• Let	R	be	a	schema	with	FDs	F	and	X,	Y	sets	of	attributes	in	R	

• A	dependency	A→	B	is	in	X	if	all	attributes	of	A	and	all	attributes	of	B	are	in	X	

• The	projection	FX	of	dependencies	F	on	attributes	X	is	the	closure	of	the	FDs	
in	X	

• The	decomposition	of	R	into	schemas	with	attributes	X	and	Y	is	“dependency	
preserving”	if	(FX∪ FY)+ =	F+

Database	Management	System 39

Example
• Consider	Emp(Addr,	City,	State,	Zip)	with

• If	we	decompose	Emp so	that	X	=	{Addr,	City,	Zip}	and	Y	=	{Zip,	State}	what	
are	the	projections	FX	and	FY?	

• Is	X,Y	a	dependency	preserving	decomposition?
• No	...	(Zip	→	State)+ does	not	contain	Addr,City,State →	Zip	and	so	it	can	never	
recreate	F+

Database	Management	System 40

FX	=	∅
FY	=	{Zip	→	State}	

(Addr,City,State→Zip not	in	X,	Zip→State not	in	X)
(Zip→State is	in	Y)

F	=	{	Addr,	City,	State	→	Zip,	Zip	→	State	}	

Third	Normal	Form	(3NF)	
• Some	schemas	do	not	have	both	a	lossless	and	dependency	preserving	
composition	into	BCNF	schemas	

• Every	schema	has	has	a	lossless	dependency	preserving	decomposition	into	
3NF	...	

• A	schema	R	with	FDs	F	is	in	3NF	if	for	every	X→Y	in	F	either:	
• X→Y	is	a	trivial	FD	(i.e.,	X	⊇ Y)

• X→Y	is	a	key	FD	(i.e.,	X	is	a	superkey

• Y	is	a	part	of	some	key	for	R

Database	Management	System 41

Definition	of	BCNF	

Third	Normal	Form	(3NF)
• In	other	words,	3NF	allows	FDs	that	only	partially	(i.e.,	do	not	fully)	depend	
on	the	key	...	

• For	Emp(Addr,	City,	State,	Zip)	with

• the	keys	are:	(Addr,	City,	State)	and	(Addr,	City,	Zip)	

• Although	there	is	no	decomposition	of	this	relation	into	BCNF	...	

• This	relation	is	in	3NF!

Database	Management	System 42

F	=	{	Addr,	City,	State	→	Zip,	Zip	→	State	}	

Wrapping	up
• Almost	all	schemas	can	be	decomposed	into	BCNF	schemas	that	preserve	all	
FDs	
• But	every	once	in	a	while	we	get	a	schema	like	the	previous	one	

• So,	if	we	do	not	have	an	ideal	decomposition	(lossless,	dependency	
preserving)	into	BCNF,	we	can	decompose	into	3NF	and	have	a	lossless	and	
dependency-preserving	schema	
• But	with	some	minor	redundancy	

Database	Management	System 43

View

Database	Management	System 44

Views
• A	“view”	is	a	query	that	is	stored	in	the	database	and	that	acts	as	a	“virtual”	
table	

• For	example:	

• Views	can	be	used	just	like	base	tables	within	another	query	or	in	another	
view	

Database	Management	System 45

CREATE VIEW astudents AS
SELECT *
FROM Students
WHERE gpa > 3.0;

SELECT *
FROM astudents WHERE age > 20;

Implementing	Views	
• The	DBMS	expands	(i.e.,	rewrites)	your	query	to	include	the	view	definition	

• •	This	query	is	expanded	to	

Database	Management	System 46

SELECT	ClassID
FROM	astudent S,	enrollment	E
WHERE	S.StdntID =	E.StdntID

SELECT	ClassID
FROM	(SELECT	*	FROM	student	WHERE	gpa >=	4.0)	AS	S,	

enrollment	E	
WHERE	S.StdntID =	E.StdntID;	

Views	for	Security
• For	a	base	table:

• This	view	gives	a	“secure”	version	of	the	student	relation	

• Here,	using	the	view	we	avoid	exposing	the	SSN,	Telephone,Email,etc.	

Database	Management	System 47

Student(StdntID,	SSN,	Name,Address,Telephone,	Email,	...)	

CREATE	VIEW	sstudent AS	
SELECT	StdntID,	Name,Address
FROM	Student;	

Views	for	Integration
• Different	companies	might	have	different	but	similar	“parts”	databases	

• We	can	combine	these	parts	DBs	into	a	single	version	using	a	view	definition	

• For	instance,	if	company	1	uses	pounds	and	company	2	uses	kilograms	for	
part	weights:	

Database	Management	System 48

PartsCo1(PartID,	weight,	...)	
PartsCo2(PartID,	weight,	...)	

CREATE	VIEW	Part	AS
(SELECT	PartID,	2.2066*weight,	...	
FROM	PartsCo1)
UNION
(SELECT	PartID,	weight,	...	
FROM	PartsCo2);	

View	Update	Problem
• Views	cannot	always	be	updated	unambiguously	

• For	example,	for	

• And	views	

• How	do	we	change	the	GPA	of	CS	majors	from	3.5	to	3.6	using	majorgpa?	

• How	do	we	delete	a	row	(e.g.,	<jim,	cpsc>)	from	stddept?

Database	Management	System 49

Students(stdntid,gpa,deptid,...)
Department(deptid,dname,office,head,...)	

CREATE	VIEW	majorgpa AS	SELECT	major,	
AVG(gpa)	FROM	Students
GROUP	BY	major	

CREATE	VIEW	stddept AS
SELECT	stdnNd,	dname
FROM	Students	JOIN	Department	
USING	(depNd)	

View	Update	Problem	
• A	view	can	in	general	be	updated	if	
• It	is	defined	over	a	single	base	table

• It	uses	only	selection	and	projection

• It	does	not	use	aggregates,	group	by

• It	does	not	use	DISTINCT	

• It	does	not	use	set	operations	(UNION,	INTERSECT,	MINUS)	

• Different	products	provide	different	support	for	views,	especially	w.r.t
updates

• Many	more	details	not	discussed	here	

Database	Management	System 50

Data	Independence	
• Multiple	levels	of	abstraction	support	data	independence	
• Changes	isolated	to	their	“levels”

• This	is	very	desirable	since	things	change	often!

Database	Management	System 51

External View:
What application programmers see

Logical View:
The conceptual or logical relations

PhyisicalView:
Optimized/normalized relations including
indexes

Phyisical Storage (on disk(s) ...)

External	Schema	
A

External	Schema	
A

Logical	Schema

Physical	Schema

For	Next	Week
• Review	– Quiz	on	the	material
• Ch.	19	to	19.6

• Reading	assignments
• Ch.	19	to	19.6

• Be	sure	you	understand
• Keys,	Functional	Dependencies,	and	Boyce-Codd Normal	Form	(FD)	

• Normalization,	BCNF,	3NF

52Database	Management	System

