
Database	Management	System

Lecture	2

Relational	Algebra	and	SQL

*	Some	materials	adapted	from	R.	Ramakrishnan,	J.	Gehrke

Today’s	Agenda
• Relational	Algebra

• Complex	SQL

2Database	Management	System

Relational	Algebra

3Database	Management	System

Relational	DB	and	Algebra
• SQL

• Practical	definition	of	relational	DB
• Operates	on	Tables	(bags)

• Operations
• Keywords

• Statements:	SELECT,	FROM,	WHERE,…

• Relational	Algebra

• Mathematical	definition	of	Relational	DB
• Operates	on	Relations	(Sets)

• Operations
• set-based	operations

• Intersection,	Union,...

• The	default	is	to	produce	a	bag	of	
rows	as	a	query	result

• Want	a	set,	use	DISTINCT

4Database	Management	System

Describing	a	relational	DB	mathematically
• Two	ingredients
• A	relation	is	a	set	of	tuples

• Define	query	operators	as	a	set	functions

5Database	Management	System

Recap:	Cross	product	with	Set
• Let	A	=	{a,	b,	c}	and	B	=	{1,	2}

• Cross	product	in	set	theory	is	defined	as	ordered	pairs	(2-tuples)	where	each	
pair	consists	of	an	element	from	A	and	B

• How	about	A	=	{a,	b,	c},	B	=	{1,	2},	and	C	=	{α,	β}?

A	× B	=	{(a,	1),	(b,	1),	(c,	1),	(a,	2),	(b,	2),	(c,	2)}

6Database	Management	System

Defining	Relations

• Any	instance	of	the	relation	is	always	a	subset	(⊆) of attributes

• name × sal × num × status

• Each	relation	instance	is	a	subset	of	the	cross	product	of	its	domains

• one	element	of	a	relation	is	called	tuple

• A	relation	is	always	a	set	by	definition

Person(name,	salary,	num,	status)
name	=	{all	possible	strings	of	30	characters}
salary	=	{real	numbers	between	0	and	100,000,000}
num =	{integer	between	0	and	9999}
status	=	{“a”,	“b”}

7Database	Management	System

Recap:	Set	Theory

• What	do	these	return?
• A	∩	B

• A ∪ B

• A	– B

• A	× B

A	=	{1,	3,	5,	7}																			B	=	{1,	2,	3,	4}

8Database	Management	System

Relational	Algebra	has	Additional	Operations

• Introducing	new	operators	
(C	for	condition,	L	for	attribute	list,	R	for	renaming	specification)
• A⋈cB

• A÷B

• 𝝈c	(A)

• 𝜋 L(A)

• 𝜌 R(A)

A	=	{1,	3,	5,	7}																			B	=	{1,	2,	3,	4}

9Database	Management	System

Relational	Algebra	as	a	Query	Language
• We	don’t	normally	use	relational	algebra	directly
• Products	don’t	allow	you	to	write	relational	algebra	queries	

• But,	it	is	used	internally	in	a	DBMS	to	represent	a	query	plan	

• It	is	also	often	used	in	theoretical	work	on	databases	
• (although	fragments	of	first	order	logic	are	frequently	used	as	well	...)	

10Database	Management	System

Relational	Algebra	Queries	w/out	Operators	
• What	does	the	following	SQL	query	return?

• Answer:	Student
(It	is	called	identity	function)

• A	relation	name	by	itself	is	a	valid	relational	algebra	query

• Listing	the	relation	name	just	returns	the	tuples	in	the	relation

SELECT	*
FROM	Student;

Student
John	Cusack
Will Smith

Student

11Database	Management	System

Relational	Algebra:	Selection	operator	(𝝈)

• The	relational	algebra	query

• Is	similar	to	the	SQL	query

Number Owner Balance Type
7003001 Jane	Smith 1,000,000 Savings

7003003 Alfred	Hitchcock 4,400,200 Savings

7003005 Takumi	Fujiwara 2,230,000 Checking

7003007 Brian Mills 1,200,000 Savings

Account

𝝈 Balance<3000 (Account)

SELECT	*
FROM	Account
WHERE	Balance	<	3,000,000;

12Database	Management	System

Relational	Algebra:	Selection	operator	(𝝈)
• Select	(𝝈)	is	a	unary	operator:

• It	is	always	applied	to	a	single	relation

𝝈 :	R	→	R

𝝈 Balance<3000 (Account)

Select	operator Relation	or	relational
algebra	expression

the	predicate	(condition)
Attribute	Comparator	(≥,	>,	=,	≠,	<,	≤)	Attribute|Constant

13Database	Management	System

Exercises
• 𝝈 Balance<3,000,000 (Account)

• 𝝈 Number<7003005 (Account)

• 𝝈 Balance=Number (Account)

• 𝝈 Type=“checking” (𝝈 Balance<3,000,000 (Account))

Number Owner Balance Type
7003001 Jane	Smith 1,000,000 Savings

7003003 Alfred	Hitchcock 4,400,200 Savings

7003005 Takumi	Fujiwara 2,230,000 Checking

7003007 Brian Mills 1,200,000 Savings

Account

14Database	Management	System

Relational	Algebra:	Projection	Operator(𝜋)

• The	relational	algebra	query:

• Is	similar	to	the	SQL	query

Number Owner Balance Type
7003001 Jane	Smith 1,000,000 Savings

7003003 Alfred	Hitchcock 4,400,200 Savings

7003005 Takumi	Fujiwara 2,230,000 Checking

7003007 Brian Mills 1,200,000 Savings

Account

𝜋 Number,	Owner (Account)

SELECT	Number,	Owner
FROM	Account;

15Database	Management	System

Relational	Algebra:	Projection	operator	(𝜋)
• Projection	(𝜋)	is	a	unary	operator:

• It	is	always	applied	to	a	single	relation

𝜋 :	R	→	R

𝜋 Number,	Owner (Account)

Projection	operator Relation	or	relational
algebra	expression

List	of	attributes	to	keep

16Database	Management	System

Example

Number Owner Balance Type
7003001 Jane	Smith 1,000,000 Savings

7003003 Alfred	Hitchcock 4,400,200 Savings

7003005 Takumi	Fujiwara 2,230,000 Checking

7003007 Brian Mills 1,200,000 Savings

7003009 Alfred	Hitchcock 3,400,200 Checking

Account

𝜋 Owner (Account)
SELECT	Number
FROM	Account;

Vs.

Owner
Jane	Smith

Alfred	Hitchcock

Takumi	Fujiwara

Brian Mills

Number
7003001

7003003

7003005

7003007

7003009

• Relations	are	always	sets
• Query	answer	is	a	set	of	names
• and	J.	Smith	appears	just	once

in	the	answer

17Database	Management	System

Combining	Select	and	Project
• Are	any	of	these	equivalent	?

𝜋 Owner(𝝈 Balance	<	3,000,000 (Account))
𝝈 Balance<3,000,000(𝜋 Owner,	Balance (Account))
𝜋 Owner(𝝈 Balance<3,000,000(𝜋 Owner,	Balance(Account)))
𝝈 Type	=	“checking” (𝝈 Balance<3,000,000(𝜋 Owner,	Balance(Account)))

Number Owner Balance Type
7003001 Jane	Smith 1,000,000 Savings

7003003 Alfred	Hitchcock 4,400,200 Savings

7003005 Takumi	Fujiwara 2,230,000 Checking

7003007 Brian Mills 1,200,000 Savings

7003009 Alfred	Hitchcock 3,400,200 Checking

Account

18Database	Management	System

Relational	Algebra:	Cross	Product	operator	(×)
• Used	in	the	basic	definition	of	a	relation
• “An	instance	of	a	relation	is	a	subset	of	the	cross	product	of	its	domains”

• Is	also	an	operator	in	the	relational	algebra

19Database	Management	System

Example
• Suppose	we	have	following	two	relations

• The	cross	product
produces	every
possible	combinations
of	teacher	and	courses

Teacher(TID,	Tname)										Course(CID,	Cname)

TID Tname

101 Emma Thompson

105 Billy	Elliot

110 John	Waine

Teacher
CID Cname

346 How	to	Act

491 How	to	Think

Course

TID Tname CID Cname

101 Emma Thompson 346 How	to	Act

101 Emma Thompson 491 How	to	Think

105 Billy	Elliot 346 How	to	Act

105 Billy	Elliot 491 How	to	Think

110 John	Waine 346 How	to	Act

110 John	Waine 491 How	to	Think

Teacher	X	Course

20Database	Management	System

SELECT	*	FROM	Teacher,	Course;

Relational	Algebra:	Join	operator	(⋈)
• Join	()	is	a	binary	operator

• It	is	always	applied	to	a	two	relations	and	returns	one
⋈	:	R	× R	→	R

Account	⋈Number=Account Deposit

relation	or	relational	
algebra	expression

Relation	or	relational
algebra	expression

the	join	predicate	(condition)
Attribute	comparator(≥,	>,	=,	≠,	<,	≤) Attribute

21Database	Management	System

Relational	Algebra:	Join	operator	(⋈)

• The	relational	algebra	query

• is	equivalent	to

Account

Number Owner Balance Type

Accnt TxID Date Amount

Deposit

Account	⋈	Number=Accnt(Deposit)

𝝈 Number	=	Accnt (Account	× Deposit)

22Database	Management	System

Relational	Algebra:	Join	operator	(⋈)
• The	join	operator	is	defined	for	convenience

• Any	query	with	a	join	can	always	be	rewritten	into	cross	product	followed	by	
selection

R1	⋈	a1=a2R2≡	𝝈 a1=a2	(R1	× R2)

23Database	Management	System

Notes	on	Join
• Each	simple	Boolean	predicate	in	the	join	condition	must	compare	an	
attribute	from	one	relation	to	an	attribute	in	the	other	relation

• type=“checking”	is	not	a	join	condition

• if	you	have	a	join	with	NO	condition,	then	it	is	just	a	cross	product

Account	⋈	Number	=	Account	^	type	=	“checking”	Deposit

24Database	Management	System

Examples

• S	⋈	advisor=fid	(F)

• S	⋈	S.age <	F.age (F)

• The	most	common	join	is	called	a	equi-join	(for	equality	condition)

sid name advisor age

101 Bill 301 20

102 John 302 20

103 Edward 301 19

104 Albert 301 19

105 Thompson 302 19

S	instance	of	Student
fid name age

301 Morrison 45

302 Groot 37

F	instance	of	Faculty

R1	⋈	A1	=	A2	R2

25Database	Management	System

select	*	from	Student	as	s,	Faculty	as	f	where	s.advisor =	f.fid;

select	*	from	Student	as	s,	Faculty	as	f	where	s.age <	f.age;

SQL	statement	to	an	relational	Algebra	expression

• SELECT-FROM-WHERE	queries	are	sometimes	described	as	equivalent	to	the	
Select-Project-Join	(SPJ)	subset	of	relational	algebra

SELECT	DISTINCT	attributes
FROM	T1,	T2,	…
WHERE	conditions

?
𝜋 attributes(𝝈 conditions	(T1	× T2	× …))

26Database	Management	System

Complex	SQL

27Database	Management	System

More	SQL	query	constructs

SELECT
FROM
WHERE

…
…
…

(SELECT	… FROM	…WHERE	…)

UNION
(SELECT	… FROM	…WHERE	…)

ORDER	BY
GROUP	BY
HAVING

…
…
…

1.
2.
3.

4.

5.

1.	Extensions:	SUM,	COUNT,	MIN,	AVG,	etc
2.	Extensions	include	various	kinds	of	JOINs
3.	Additional	comparators,	e.g.	EXISTS,	IN,	ANY

4.	Operators	that	takes	two	or	more	complete
SQL	queries	as	arguments,	e.g.,	UNION	and	
INTERSECT

5.	Several	additional	clauses,	e.g.,	ORDER	BY,	
GROUP	BY,	and	HAVING

28Database	Management	System

More	SQL	query	constructs

SELECT
FROM
WHERE

…
…
…

(SELECT	… FROM	…WHERE	…)

UNION
(SELECT	… FROM	…WHERE	…)

ORDER	BY
GROUP	BY
HAVING

…
…
…

1.
2.
3.

4.

5.

1.	Extensions:	SUM,	COUNT,	MIN,	AVG,	etc
2.	Extensions	include	various	kinds	of	JOINs
3.	Additional	comparators,	e.g.	EXISTS,	IN,	ANY

4.	Operators	that	takes	two	or	more	complete
SQL	queries	as	arguments,	e.g.,	UNION	and	
INTERSECT

5.	Several	additional	clauses,	e.g.,	ORDER	BY,	
GROUP	BY,	and	HAVING

29Database	Management	System

Sample	Database
• Let’s	consider	the	following	DB	for	the	examples

• We	are	going	to	other	DBs	time	to	time

Customer(Number,	Name,	Address,	Crating,	
Camount,	Cbalance,	Salesperson)

Salesperson(Number,	Name,	Address,	Office)

foreign	key	
customer.Salesperson ->Salesperson.Number

30Database	Management	System

SELECT	(1/4)
• Aggregate	Operators:	COUNT,	SUM,	MIN,	MAX,	and	AVG

• If	one	aggregate	operator	appears	in	the	SELECT	clause
• ALL	OF	THE	ENTRIES	in	the	select	clause	MUST	BE	AN	AGGREGATE	OPERATOR

• Unless	the	query	includes	a	GROUP	BY	clause	(more	on	later)

SELECT	MIN(Cbalnace),	MAX(Cbalance),	AVG(Cbalance)
FROM	Customer;

SELECT	MIN(Cbalnace),	MAX(Cbalance),	AVG(Cbalance)
FROM	Customer
WHERE	age	>	35;

31Database	Management	System

Stop	to	think
• What	would/should	the	query	result	be?

• Is	it	allowed?

SELECT	Name,	Crating,	AVG(Cbalance)
FROM	Customer;

32Database	Management	System

SELECT (2/4)
• What	is	the	difference	between	these	two	queries?

• When	will	these	two	queries	return	the	same	answer?
• or	what	are	the	conditions	for	it	to	happen

SELECT	COUNT(Name)
FROM	Customer;

SELECT	DISTINCT	Name
FROM	Customer;

Vs.

33Database	Management	System

SELECT (3/4)
• What	is	the	implication	of	using	DISTINCT	
• When	computing	the	SUM	or	AVG	of	an	attribute?

• When	computing	the	MIN	or	MAX	of	an	attribute?

SUM(DISTINCT(AGE))		Vs.		SUM(age)

MIN(DISTINCT(AGE))			Vs.					MIN(age)

The	SUM	or	AVG	will	be	computed	only	distinct	values

No	Difference:	the	result	does	not	depend	on	whether	
or	not	duplicates	are	removed

34Database	Management	System

SELECT (4/4)
• SELECT	clause	list	can	also	include	simple	arithmetic	expressions	using
+,	-,	*,	/

SELECT	(Camount – Cbalance)	AS	AvailableCredit,	Name
FROM	Customer
WHERE	Camount >	0

35Database	Management	System

More	SQL	query	constructs

SELECT
FROM
WHERE

…
…
…

(SELECT	… FROM	…WHERE	…)

UNION
(SELECT	… FROM	…WHERE	…)

ORDER	BY
GROUP	BY
HAVING

…
…
…

1.
2.
3.

4.

5.

1.	Extensions:	SUM,	COUNT,	MIN,	AVG,	etc
2.	Extensions	include	various	kinds	of	JOINs
3.	Additional	comparators,	e.g.	EXISTS,	IN,	ANY

4.	Operators	that	takes	two	or	more	complete
SQL	queries	as	arguments,	e.g.,	UNION	and	
INTERSECT

5.	Several	additional	clauses,	e.g.,	ORDER	BY,	
GROUP	BY,	and	HAVING

36Database	Management	System

FROM:	Syntactic	Sugars	and	new	operators
• There	are	a	number	of	join	types	that	can	be	expressed	in	FROM	clause
• Inner	join	(the	regular	join)

• Cross	join

• natural	join

• left	outer	join

• right	outer	join

• full	outer	join

syntactic	sugars	that	can	be	expressed
using	SELECT-FROM-WHERE	queries

New	operators

37Database	Management	System

FROM
• These	two	queries	are	equivalent

SELECT	C.Name,	S.Name
FROM	Customer	C	JOIN Salesperson	S	ON C.Salesperson =	S.Number
WHERE	C.Crating <	6;

1.

2. SELECT	C.Name,	S.Name
FROM	Customer	C,	Salesperson	S
WHERE	C.Salesperson =	S.Number AND	C.Crating <	6;

𝜋 C.Name,	S.Name(𝝈C.CreditRating <	6(Customer	⋈C.Salesperson =	S.Number Salesperson))	

𝜋 C.Name,	S.Name(𝝈C.CreditRating <	6^C.Salesperson	=	S.Number(Customer	× Salesperson))	

38Database	Management	System

FROM:	JOIN	with	USING	clause
• JOIN	with	USING	clause	when	attributes	in	the	2	tables	have	the	same	name

• These	Two	queries	are	equivalent

• USING	clause	doesn’t	need	(and	can’t	have)	a	correlation	name

Course(CNumber,	CName,	Description)	
Teacher(TNumber,	TName,	Phone)	
Offering(CNumber,	TNumber,	Time,	Days,	Room)	

SELECT	C.CNumber,	C.CName,	Room	
FROM	Course	C	JOIN Offering	USING(CNumber);	

SELECT	C.CNumber,	C.Name,	Room	
FROM	Course	C	JOIN Offering	O	ON C.CNumber=O.CNumber;	

39Database	Management	System

FROM:	Basic	Join	≡	(INNER)	JOIN	
• For	the	INNER	JOIN

• The	query	result	includes	all	“matches”	but	excludes
• customer	rows	that	do	not	have	a	Salesperson

• Salesperson	rows	that	are	not	assigned	to	any	customers

• The	keyword	“INNER”	is	optional
• above	query	is	equivalent	to

SELECT	C.Name,	S.Name
FROM	Customer	C	INNER	JOIN	Salesperson	S	ON C.Salesperson =	S.Number;	

SELECT	C.Name,	S.Name
FROM	Customer	C	JOIN	Salesperson	S	ON C.Salesperson =	S.Number;	

40Database	Management	System

FROM:	cross	product	≡	CROSS	JOIN	
• The	following	queries	are	equivalent

SELECT	*
FROM	Customer,	Salesperson;

SELECT	*
FROM	Customer	CROSS	JOIN	Salesperson;

41Database	Management	System

FROM:	Equi-Jioin vs.	Natual Join	(1/3)
• When	the	join	is	based	on	equality	of	attributes,	we	always	have	two	
identical	attributes	in	the	result

Name DeptID

Smith 1

James 2

Brown 3

Johnson 1

Robert

Faculty
DeptID DeptName

1 Engineering

2 Communications

3 Marketing

Department

SELECT	*
FROM	Faculty	F	INNER	JOIN	Department	D
ON	F.DeptID =	D.DeptID;
F.Name F.DeptID D.DeptID D.DeptName

Smith 1 1 Engineering

Johnson 1 1 Engineering

James 2 2 Communication

Brown 3 3 Markeing

Equi-Join

42Database	Management	System

FROM:	Equi-Jioin vs.	Natual Join	(1/3)
• Equi-Join	with	the	USING	construct:	applicable	with	columns	having	same	
name

Name DeptID

Smith 1

James 2

Brown 3

Johnson 1

Faculty
DeptID DeptName

1 Engineering

2 Communications

3 Marketing

Department

SELECT	*
FROM	Faculty	F	INNER	JOIN	Department	D
USING	(DeptID);
Name DeptID DeptName

Smith 1 Engineering

Johnson 1 Engineering

James 2 Communication

Brown 3 Markeing

Equi-Join	with	
USING	construct

43Database	Management	System

FROM:	Equi-Jioin vs.	Natual Join	(3/3)
• NATURAL	JOIN:	Equi-Join	with	only	one	column	for	each	equally	named	
columns

Name DeptID

Smith 1

James 2

Brown 3

Johnson 1

Faculty
DeptID DeptName

1 Engineering

2 Communications

3 Marketing

Department

SELECT	*
FROM	Faculty	NATURAL	JOIN	Department;

Name DeptID DeptName

Smith 1 Engineering

Johnson 1 Engineering

James 2 Communication

Brown 3 Markeing

NATURAL	JOIN
If you don’t specify which attributes to
join on, natural join will join on
all attributes with the same name

44Database	Management	System

FROM:	more	on	NATURAL	JOIN	(1/2)
• NATURAL	JOIN	is	like	a	“macro”	that	joins	tables	with	an	equality	condition	
for	all	attributes	with	the	same	name	

• NATURAL	JOIN	drops	one	of	duplicate	columns	automatically

Course(CNumber,	CName,	Description)	

Teacher(TNumber,	TName,	Phone)	

Offering(CNumber,	TNumber,	Time,	Days,	Room)	

45Database	Management	System

FROM:	more	on	NATURAL	JOIN (2/2)
• List	the	course	and	teacher	name	for	all	course	offerings

• This	query	can	be	expressed	with	the	NATURAL	JOIN	or	with	an	INNER	JOIN
• These	two	queries	are	equivalent

• They	are	equivalent	because	the	join	attributes	have	the	same	attribute	names	

• But	is	it	always	useful?

SELECT	CName,	TName
FROM	Course	C,	Offering	O,	Teaching	T
WHERE	C.CNumber =	O.CNumber AND	O.TNumber =	T.Tnumber

SELECT	CName,	TName
FROM	Course	NATURAL	JOIN	Offering	NATURAL	JOIN	Teacher;	

46Database	Management	System

FROM:	INNER	JOIN	Vs.	OUTER	JOIN	(1/2)
• For	the	INNER	JOIN

• the	query	result	does	not	include	(p.40)
• a	customer	that	does	not	have	a	salesperson

• a	salesperson	that	is	not	assigned	to	any	customers

SELECT	C.Name,	S.Name
FROM	Customer	C	INNER	JOIN	Salesperson	S	ON	C.Salesperson =	S.Number

47

Number Name Address Crating Camount Cbalance Salesperson

1 Smith 1st Str. 700 10,000 9,000 55

2 Jones 2nd Str. 700 8,000 4,000 77

3 Mills 3rd Str. 700 11,000 8,000 NULL

Customer

Number Name Address Office

55 Miller 5th Str. 101

77 Khan 7th Str. 102

83 Dunham 8th Str. 103

Salesperson

Database	Management	System

FROM: INNER	JOIN	Vs.	OUTER	JOIN	(2/2)
• An	INNER	(regular)	JOIN	includes	only	those	customers	that	have	
salespersons	(only	the	matches)	

• A	LEFT	OUTER	JOIN	will	include	all	matches	plus	all	– customers	that	do	not	
have	a	Salesperson	

• A	RIGHT	OUTER	JOIN	will	include	all	matches	plus	all	– salespersons	that	are	
not	assigned	to	any	customers	

• A	FULL	OUTER	JOIN	will	include	all	of	these

48

SELECT	C.Name,	S.Name
FROM	Customer	as	C	INNER	JOIN	Salesperson	as	S	

ON	C.Salesperson =	S.Number;	

Database	Management	System

FROM:	LEFT	OUTER	JOIN

49

Number Name Address Crating Camount Cbalance Salesperson

1 Smith 1st Str. 700 10,000 9,000 55

2 Jones 2nd Str. 700 8,000 4,000 77

3 Mills 3rd Str. 700 11,000 8,000 NULL

Customer

Number Name Address Office

55 Miller 5th Str. 101

77 Khan 7th Str. 102

83 Dunham 8th Str. 103

Salesperson

INNER	JOIN on	C.Salesperson =	S.Number gives:

LEFT	OUTER	JOIN	on	C.Salesperson =	S.Number gives:	

1 Smith 1st Str. 700 10,000 9,000 55 55 Miller 5th Str. 101

2 Jones 2nd Str. 700 8,000 4,000 77 77 Khan 7th Str. 102

1 Smith 1st Str. 700 10,000 9,000 55 55 Miller 5th Str. 101

2 Jones 2nd Str. 700 8,000 4,000 77 77 Khan 7th Str. 102

3 Mills 3rd Str. 700 11,000 8,000 NULL NULL NULL NULL NULL

Database	Management	System

FROM:	RIGHT	OUTER	JOIN

50

Number Name Address Crating Camount Cbalance Salesperson

1 Smith 1st Str. 700 10,000 9,000 55

2 Jones 2nd Str. 700 8,000 4,000 77

3 Mills 3rd Str. 700 11,000 8,000 NULL

Customer

Number Name Address Office

55 Miller 5th Str. 101

77 Khan 7th Str. 102

83 Dunham 8th Str. 103

Salesperson

INNER	JOIN on	C.Salesperson =	S.Number gives:

RIGHT	OUTER	JOIN	on	C.Salesperson =	S.Number gives:	

1 Smith 1st Str. 700 10,000 9,000 55 55 Miller 5th Str. 101

2 Jones 2nd Str. 700 8,000 4,000 77 77 Khan 7th Str. 102

1 Smith 1st Str. 700 10,000 9,000 55 55 Miller 5th Str. 101

2 Jones 2nd Str. 700 8,000 4,000 77 77 Khan 7th Str. 102

NULL NULL NULL NULL NULL NULL NULL 83 Dunham 8th Str. 103

Database	Management	System

FROM:	FULL	OUTER	JOIN

51

Number Name Address Crating Camount Cbalance Salesperson

1 Smith 1st Str. 700 10,000 9,000 55

2 Jones 2nd Str. 700 8,000 4,000 77

3 Mills 3rd Str. 700 11,000 8,000 NULL

Customer

Number Name Address Office

55 Miller 5th Str. 101

77 Khan 7th Str. 102

83 Dunham 8th Str. 103

Salesperson

INNER	JOIN on	C.Salesperson =	S.Number gives:

RIGHT	OUTER	JOIN	on	C.Salesperson =	S.Number gives:	

1 Smith 1st Str. 700 10,000 9,000 55 55 Miller 5th Str. 101

2 Jones 2nd Str. 700 8,000 4,000 77 77 Khan 7th Str. 102

1 Smith 1st Str. 700 10,000 9,000 55 55 Miller 5th Str. 101

2 Jones 2nd Str. 700 8,000 4,000 77 77 Khan 7th Str. 102

3 Mills 3rd Str. 700 11,000 8,000 NULL NULL NULL NULL NULL

NULL NULL NULL NULL NULL NULL NULL 83 Dunham 8th Str. 103

Database	Management	System

*	not	supported	in	mysql

FROM:	a	form	of	subquery
• You	can	put	a	complete	query	expression	in	the	FROM	clause
• also	known	as	nested	queries	or	subqueries

• Parentheses	are	important

52

SELECT	...
FROM	Employee	E,	(SELECT	...	FROM	...	WHERE	...)	
WHERE	...	

Database	Management	System

Relational	Algebra	Operators

53Database	Management	System

Eight	standard	relational	algebra	operators
• 𝜋 project We	have	seen	already

• 𝝈 select We	have	seen	already

• ∪ union From	set	theory

• ∩ intersect From	set	theory

• – difference From	set	theory

• × cross	product	 We	have	seen	already

• ⋈ join We	have	seen	already

• ÷ divide

• 𝜌 renaming

54

can	only	used	with	
union-compatible	relations

Database	Management	System

Union-compatible	relations
• Two	relations	are	union-compatible	if
• have	same	number	of	attributes

• have	same	domains

• Example

55

Checking(CNum: int, COwner: string, CBalance: int)

Savings(SNum: int, SOwner: string, SBalance: int)

Database	Management	System

Example: ∪ union

56

Cnum Cowner Cbalance
101 Smith 1000

102 Mills 2000

104 Jones 1000

105 Schwab 3000

Checking

Snum Sowner Sbalance
103 Smith 5000

Savings

Checking	∪	Savings
Cnum Cowner Cbalance
101 Smith 1000

102 Mils 2000

104 Jones 1000

105 Schwab 3000

103 Smith 5000

note	that	attributes	are	from	
the	first	relation	in	the	query

Database	Management	System

SELECT	CNum,	COwner,	CBalance
FROM	Checking
UNION		
SELECT	SNum,	SOwner,	SBalance
FROM	Savings;

Example: ∩ intersection

57

Cnum Cowner Cbalance
101 Smith 1000

102 Mils 2000

104 Jones 1000

105 Schwab 3000

Checking

Snum Sowner Sbalance
103 Smith 5000

Savings

Checking	∩ Savings

𝜋Cowner(Checking)	∩	𝜋 Sowner(Savings)	

?It	is	empty	– no	tuples	appear	in	both	relations	

Smith	– the	only	owner	in	SavingsAcount

Database	Management	System

Example:	– difference
• Find	all	tuples	that	are	in	the	Checking	relation	but	are	not	in	the	Savings	
relation	

• Everyone	in	Checking	except	Smith	

58

CheckingAccount −	SavingsAccount

𝜋 COwner(CheckingAccount)	−	𝜋 SOwner(SavingsAccount)	

Database	Management	System

*	not	supported	in	mysql

Workaround	for	difference	operation
example	query
SELECT	*	FROM	p	LEFT	OUTER	JOIN	q	ON	p.id =	q.id WHERE	q.id IS	NULL

More	SQL	query	constructs

SELECT
FROM
WHERE

…
…
…

(SELECT	… FROM	…WHERE	…)

UNION
(SELECT	… FROM	…WHERE	…)

ORDER	BY
GROUP	BY
HAVING

…
…
…

1.
2.
3.

4.

5.

1.	Extensions:	SUM,	COUNT,	MIN,	AVG,	etc
2.	Extensions	include	various	kinds	of	JOINs
3.	Additional	comparators,	e.g.	EXISTS,	IN,	ANY

4.	Operators	that	takes	two	or	more	complete
SQL	queries	as	arguments,	e.g.,	UNION	and	
INTERSECT

5.	Several	additional	clauses,	e.g.,	ORDER	BY,	
GROUP	BY,	and	HAVING

59Database	Management	System

UNION	and	INTERSECTION
• Two	complete	queries	with	UNION	
in	between

60

• Two	complete	queries	with	
INTERSECT	in	between

(SELECT	C.Name
FROM	Customer	C	
WHERE	C.Name LIKE	“B%”)	
UNION
(SELECT	S.Name
FROM	Salesperson	S	
WHERE	S.Name LIKE	“B%”);	

(SELECT	C.Name
FROM	Customer	C)	
INTERSECT
(SELECT	S.Name
FROM	Salesperson	S);	

• Two	complete	queries	with	EXCEPT	
(i.e.,	DIFFERENCE)	in	between
• MySQL	doesn’t	support	EXCEPT

(SELECT C.Name
FROM Customer C)
EXCEPT
(SELECT S.Name
FROM Salesperson S);

Database	Management	System

ALL	in	UNION,	INTERSECT,	and	EXCEPT
• If	you	don’t	specify	ALL,	the	result	is	computed	on	sets
• Eliminate	duplicates	from	first	operand

• Eliminate	duplicates	from	second	operand

• Compute	operation

• Eliminate	duplicates	from	result

• Note	the	difference	and	chose	wisely
• UNION	Vs. UNION	ALL

• INTERSECT	Vs. INTERSECT	ALL

• EXCEPT	Vs.	EXCEPT	ALL

61Database	Management	System

More	SQL	query	constructs

SELECT
FROM
WHERE

…
…
…

(SELECT	… FROM	…WHERE	…)

UNION
(SELECT	… FROM	…WHERE	…)

ORDER	BY
GROUP	BY
HAVING

…
…
…

1.
2.
3.

4.

5.

1.	Extensions:	SUM,	COUNT,	MIN,	AVG,	etc
2.	Extensions	include	various	kinds	of	JOINs
3.	Additional	comparators,	e.g.	EXISTS,	IN,	ANY

4.	Operators	that	takes	two	or	more	complete
SQL	queries	as	arguments,	e.g.,	UNION	and	
INTERSECT

5.	Several	additional	clauses,	e.g.,	ORDER	BY,	
GROUP	BY,	and	HAVING

62Database	Management	System

GROUP	BY
• Any	SQL	query	can	have	the	answer	“grouped”
• one	output	row	for	each	group

63

SELECT	Salesperson,	COUNT(*)
FROM	Customer;	

SELECT	Salesperson,	COUNT(*)	
FROM	Customer
GROUP	BY	Salesperson;	

Number Name Address Crating Camount Cbalance Salesperson

1 Smith 1st Str. 700 10,000 9,000 55

2 Jones 2nd Str. 700 8,000 4,000 77

3 Mills 3rd Str. 700 11,000 8,000 NULL

Customer
Salesperson COUNT(*)

55 1

77 1

NULL 1

Database	Management	System

GROUP	BY

64

SELECT	Salesperson,	COUNT(*)	
FROM	Customer
GROUP	BY	Salesperson;	

Number Name Address Crating Camount Cbalance Salesperson

1 Smith 1st Str. 700 10,000 9,000 55

2 Jones 2nd Str. 700 8,000 4,000 77

3 Mills 3rd Str. 700 11,000 8,000 NULL

4 Bill 4th Str. 700 13,000 5,000 55

5 Jane 5th Str. 800 3,000 3,000 55

6 Harley 8th Str. 700 2,000 8,000 20

7 Khale 9th Str. 900 6,000 1,000 77

Customer

Database	Management	System

Example:	GROUP	BY

65

SELECT	Salesperson,	COUNT(*)	
FROM	Customer
GROUP	BY	Salesperson;	

1.	Make	groups	resulting	in	4	Groups
2.	Evaluate	
“SELECT	Salesperson,	Count(*)”	for	each	group

Number Name Address Crating Camount Cbalance Salesperson

1 Smith 1st Str. 700 10,000 9,000 55

2 Jones 2nd Str. 700 8,000 4,000 77

3 Mills 3rd Str. 700 11,000 8,000 NULL

4 Bill 4th Str. 700 13,000 5,000 55

5 Jane 5th Str. 800 3,000 3,000 55

6 Harley 8th Str. 700 2,000 8,000 20

7 Khale 9th Str. 900 6,000 1,000 77

Customer
Salesperson COUNT(*)

55 3

NULL 1

77 2

20 1

Database	Management	System

SQL	HAVING
• HAVING	clause	specifies	a	predicate	evaluated	against	each	group

• A	group	is	in	the	result	if	it	satisfies	the	HAVING	condition

66

SELECT	Salesperson,	COUNT(*)	
FROM	Customer
GROUP	BY	Salesperson	HAVING	COUNT(*)	>	1;	

Number Name Address Crating Camount Cbalance Salesperson

1 Smith 1st Str. 700 10,000 9,000 55

2 Jones 2nd Str. 700 8,000 4,000 55

3 Mills 3rd Str. 700 11,000 8,000 NULL

Customer
Salesperson COUNT(*)

55 2

Database	Management	System

Example:	GROUP	BY

67

SELECT	Salesperson,	COUNT(*)	
FROM	Customer
GROUP	BY	Salesperson
HAVING	COUNT(*)	>	1;	

1.	Make	groups	resulting	in	4	Groups
2.	Check	if	COUNT(*)	>1	holds
3.	Evaluate
“SELECT	Salesperson,	Count(*)”	for	each	group

Number Name Address Crating Camount Cbalance Salesperson

1 Smith 1st Str. 700 10,000 9,000 55

2 Jones 2nd Str. 700 8,000 4,000 77

3 Mills 3rd Str. 700 11,000 8,000 NULL

4 Bill 4th Str. 700 13,000 5,000 55

5 Jane 5th Str. 800 3,000 3,000 55

6 Harley 8th Str. 700 2,000 8,000 20

7 Khale 9th Str. 900 6,000 1,000 77

Customer
Salesperson COUNT(*)

55 3

NULL 1

77 2

20 1

Salesperson COUNT(*)

55 3

77 2

Database	Management	System

Note	on	GROUP	BY,	HAVING
• The	only	attribute	that	can	appear	in	a	“grouped”	query	are
• the	grouping	attributes

• aggregate	operators	that	are	applied	to	the	group

• Thus,	the	following	is	not	legal

• Because	ther can	be	more	than	one	name	for	each	group

68

SELECT	Name
FROM	Customer	GROUP	BY	Salesperson;	

Database	Management	System

Exercise

• Write	SQL	queries	for	the	following
• Average	number	of	wins	and	losses	across	teams

• Average	number	of	wins	and	losses	per	conference

• Batting	average	for	each	player,	where	batting	average	is	the	number	of	hits	divided	
by	at	bats

69

Team(Name,	Games,	Wins,	Losses,	Conference)	

Player(Name,	Hits,	AtBats,	HomeRuns,	Team)
Player.Team ->	Team.Name

Database	Management	System

ORDER	BY
• Sort	the	result	of	a	query

70

SELECT	Number,	Name,	Salesperson	
FROM	Customer
ORDER	BY	Name;	

Number Name … Salesperson

1 Smith … 55

2 Jones … 77

3 Mills … NULL

4 Bill … 55

5 Jane … 55

6 Harley … 20

7 Khale … 77

Customer

Number Name … Salesperson

4 Bill … 55

6 Harley … 20

5 Jane … 55

2 Jones … 77

7 Khale … 77

3 Mills … NULL

1 Smith … 55

Customer

Database	Management	System

ORDER	BY
• Sort	the	result	of	a	query

71

SELECT	Number,	Name,	Salesperson	
FROM	Customer
ORDER	BY	Name	DESC;	

Number Name … Salesperson

1 Smith … 55

2 Jones … 77

3 Mills … NULL

4 Bill … 55

5 Jane … 55

6 Harley … 20

7 Khale … 77

Customer

Number Name … Salesperson

1 Smith … 55

3 Mills … NULL

7 Khale … 77

2 Jones … 77

5 Jane … 55

6 Harley … 20

4 Bill … 55

Customer

Database	Management	System

ORDER	BY
• Sort	the	result	of	a	query

72

SELECT	Number,	Name,	Salesperson	
FROM	Customer
ORDER	BY	Name,	Salesperson;	

Number Name … Salesperson

1 Smith … 55

2 Jones … 77

3 Mills … NULL

4 Bill … 55

5 Jane … 55

6 Harley … 20

7 Khale … 77

8 Bill … 20

Customer

Number Name … Salesperson

8 Bill … 20

4 Bill … 55

6 Harley … 20

5 Jane … 55

2 Jones … 77

7 Khale … 77

3 Mills … NULL

1 Smith … 55

Customer

Database	Management	System

Subqueries
• It	can	be	used	in	the	where	clause	(in	addition	to	the	FROM	clause)

• Inner	query	returns
• A	single	value	that	represents	max	credit	rating

• Outer	query	returns
• The	name	and	number	of	the	customer	with	the	highest	credit	ratings

73

SELECT	C1.Number,	C1.Name
FROM	Customer	C1
WHERE	C1.CRating	=	(SELECT	MAX(C2.Crating)	

FROM	Customer	C2);	 Inner	query

Outer	query

Database	Management	System

Example

1. FROM	clause	in	outer	query
2. Take	a	row	from	the	Customer	table
3. Check	if	the	row	satisfies	the	WHERE	clause
4. Evaluate	the	inner	query	(result:	800)
5. Evaluate	if	Crating	is	equal	to	the	result

74

SELECT	C1.Number,	C1.Name
FROM	Customer	C1
WHERE	C1.CRating	=	(SELECT	MAX(C2.Crating)	

FROM	Customer	C2);	

Number Name Address Crating Camount Cbalance Salesperson

1 Smith 1st Str. 200 10,000 9,000 55

2 Jones 2nd Str. 800 8,000 4,000 55

3 Mills 3rd Str. 700 11,000 8,000 NULL

Customer

Database	Management	System

Subqueries
• Subqueries	can	be	used	in	the	where	clause	(in	addition	to	the	from	clause)

• Six	Comparators:	=, >, < >=, <=, <> (not equal)
• inner	query	must	return	a	single	value

• If	the	inner	query	does	not	mention	any	attributes	from	the	outer	query	(C1	
not	mentioned	in	the	inner	query)	
• Then	you	only	need	to	evaluate	the	inner	query	once

• The	inner	(sub)	query	is	NOT	correlated	

75

SELECT	C1.Number,	C1.Name
FROM	Customer	C1
WHERE	C1.CRating	=	(SELECT	MAX(C2.Crating)	

FROM	Customer	C2);	

Database	Management	System

Subqueries:	SOME/ALL	comparison

• For	SOME,	the	expression	must	be	true	for	at	least	one	row in	the	subquery	
answer	
• “ANY”	is	equivalent	to	SOME	

• What	does	this	query	return?	

76

SELECT	S.Name
FROM	Salesperson	S
WHERE	S.Name =	SOME	(SELECT	C.Salesperson

FROM	Customer	C
WHERE	C.CRating =	700);		

The name of each salespeople that has a
customer with a credit rating of 700

Database	Management	System

Subqueries:	SOME/ALL	comparison

• For	ALL,	the	expression	must	be	true	for	all	rows	in	the	subquery	answer	

• What	does	this	query	return?	

77

SELECT	S.Name
FROM	Salesperson	S
WHERE	S.Name =	ALL	(SELECT	C.Salesperson

FROM	Customer	C
WHERE	C.CRating =	700);		

The	name	of	the	salesperson	that	has	all	the	customers	
with	a	rating	of	700	(if	such	a	salesperson	exists)	

Database	Management	System

Subqueries:	IN/NOT	IN	comparison	(1/4)

• With	IN,	the	attribute	matches	at	least	one	value	returned	from	the	
subquery	
• Same	as	“=	SOME”	

78

SELECT	C1.Number,	C1.Name	
FROM	Customer	C1
WHERE	C1.Name	IN	(SELECT	Name	

FROM	Salesperson);	

Database	Management	System

Subqueries:	IN/NOT	IN	comparison	(2/4)

• With	NOT	IN,	the	attribute	matches	none of	the	values	returned	from	the	
subquery	
• Same	as	“<>	ALL”	

79

SELECT	C1.Number,	C1.Name	
FROM	Customer	C1
WHERE	C1.Name NOT	IN	(SELECT	Name	

FROM	Salesperson);	

Database	Management	System

Subqueries:	IN/NOT	IN	comparison	(3/4)
• Are	these	equivalent?

• Do	we	need	to	use	DISTINCT	for	these	to	be	equivalent?

• Is	the	subquery	correlated?

80

SELECT	S.Number,	S.Name
FROM	Salesperson	S
WHERE	S.Number IN (SELECT	C.Salesperson

FROM	Customer	C);	

SELECT	DISTINCT S.Number,	S.Name
FROM	Salesperson	S,	Customer	C	
WHERE	S.Number =	S.Salesperson;	

Database	Management	System

Subqueries:	IN/NOT	IN	comparison	(4/4)

• Because	the	subquery	mentions	an	attribute	from	a	table	in	the	outer	query	
• The	subquery	must	be	(re-)evaluated	for	each	row	in	the	outer	query	(each	time	the	
WHERE	clause	is	evaluated)	

• Correlated	subqueries	can	be	very	expensive!

81

SELECT	S.Number,	S.Name
FROM	Salesperson	S
WHERE	S.Number IN	(SELECT	C.Salesperson

FROM	Customer	C
WHERE	C.Name =	S.Name);	

Database	Management	System

Subqueries:	EXISTS/NOT	EXISTS	(1/2)

• If	the	answer	to	the	subquery	is	not	empty	...	then	the	EXISTS	predicate	
returns	TRUE	
• Is	this	subquery	correlated?	

• What	does	this	query	return?	

82

SELECT	C.Name
FROM	Customer	C	
WHERE	EXISTS (SELECT	*	

FROM	Salesperson	S
WHERE	S.Number =	C.Salesperson AND	

S.Name =	C.Name);	

Database	Management	System

Subqueries:	EXISTS/NOT	EXISTS	(2/2)

• Four	predicates	can	be	applied	to	a	subquery	
• EXISTS :	is	the	subquery	answer	non-empty?

• NOT	EXISTS	:	is	the	subquery	answer	empty?

• UNIQUE :	does	the	subquery	return	just	one	row?

• NOT	UNIQUE	:	does	the	subquery	return	multiple	rows?	

83

SELECT	C.Name
FROM	Customer	C	
WHERE	EXISTS (SELECT	*	

FROM	Salesperson	S
WHERE	S.Number =	C.Salesperson AND	

S.Name =	C.Name);	

Database	Management	System

Missing	Relational	Algebra	
Operator
Divide

84Database	Management	System

Divide	Operator	(p.	54)
• Suppose	we	have	a	extra	table	in	our	database

• How	do	we	find	customers	that	have	at	least	one	account	of	each	account	
type?

85

Number Owner Balance Type
7003001 Jane	Smith 1,000,000 Savings

7003003 Alfred	Hitchcock 4,400,200 Savings

7003005 Takumi	Fujiwara 2,230,000 Checking

7003007 Brian Mills 1,200,000 Savings

Account

Type
Checking

Savings

AccountTypes

𝜋Owner,Type(Account) ÷ AccountTypes
Find	account	owners	who	have	ALL	types	of	accounts	

Database	Management	System

For	Next	Week
• Review	– Quiz	on	the	material
• Ch.	4	to	4.2
• Ch.	5.5

• Reading	assignments
• Ch.	2-2.5
• Ch.	3.5

• Be	sure	you	understand	
• Aggregate	operations
• how	join	operates
• set	operators
• GROUP	BY,	HAVING,	ORDER	BY,	Subqueries

86Database	Management	System

